REGULARITY FOR THE DIRICHLET PROBLEM ON BD

FRANZ GMEINEDER

ABSTRACT. We establish that the Dirichlet problem for convex linear growth func-
tionals on BD, the functions of bounded deformation, gives rise to the same uncon-
ditional Sobolev and partial Cl*®-regularity theory as presently available for the full
gradient Dirichlet problem on BV. By ORNSTEIN’s Non-Inequality, BV is a proper
subspace of BD, and full gradient techniques known from the BV-situation do not
apply here. In particular, applying to all generalised minima (i.e., minima of a suit-
ably relaxed problem) despite their non-uniqueness and reaching the ellipticity ranges
known from the BV-case, this paper extends previous results by KRISTENSEN and the
author [44] in an optimal way.
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1. INTRODUCTION

A variety of physically relevant convex variational problems that describe the dis-
placements of bodies subject to external forces are posed in the space BD of functions
of bounded deformation, see [9, 37, 75, 77, 78] for overviews. For a given open set
Q C R™, this space consists of all u € L'(Q;R") such that the distributional sym-
metric gradient e(u) := $(Du+ Du') is a finite, matrix-valued Radon measure on (2.
By ORNSTEIN’s Non-Inequality [63, 23, 49, 48], there exists no constant ¢ > 0 such
that || De||p1qrnxny < clle(@) ||t urnxny holds for all ¢ € C2°(€;R™). In consequence,
BD() is in fact larger than BV(€; R™), and the full distributional gradients of BD-maps
in general do not need to exist as (locally) finite R**"-valued Radon measures. Yet, by
coerciveness considerations as outlined below, this space displays the natural function
space setup for a vast class of variational integrals. For minima of such functionals, the
present paper aims to develop a regularity theory which — from a Sobolev regularity
and partial Holder continuity perspective — essentially yields the same results which are
presently known for the Dirichlet problem on BV.
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2 F. GMEINEDER

This task can be viewed as a borderline case of a theory having emerged over the past
decades. Namely, considering variational integrals

(1.1) v / g(Vv)dez, v: Q= RV,
Q

over suitable Dirichlet classes, an abundance of criteria for improved regularity of minima
is available subject to convexity, smoothness and the growth behaviour of g: RV*? — R.
It is only possible to give an incomplete list of the wealth of contributions, and instead we
refer to MINGIONE [60, 61] and the references therein for more detail. When linear growth
functionals are considered — i.e., ¢1|z| — v < g(2) < c2(1 + |z]) for some ¢1, o,y > 0 and
all z € RNX™ — then compactness considerations lead to the study of minima of a suitably
relaxed problem on BV, cf. [40, 18, 19, 14]. In both linear and superlinear growth regimes,
these contributions crucially utilise at various steps that the full gradients of minimising
sequences are uniformly bounded in some LP-space, p > 1. When (1.1) is modified to act
on the symmetric gradients exclusively, convexity and 1 < p < co-growth of g still allow
to work on W'? by KORN’s inequality. Also, in the borderline case of Llog L-growth
integrands as considered in the seminal works by FUCHS & SEREGIN [36, 37], one may
essentially still work on W' (cf. Section 2.2.2). In the linear growth, symmetric gradient
situation, however, ORNSTEIN’s Non-Inequality neither allows to a priori consider W=
or BV-regular minima nor to employ the usual full-gradient techniques. A key question
in this setting thus is to which extent the results from corresponding full gradient theory
on BV continue to hold for the Dirichlet problem on BD, too.

1.1. Aim and scope. Toward a unifying regularity theory for the Dirichlet problem on
BD, we begin by giving the underlying setup first. Let 2 C R™ be open and bounded
with Lipschitz boundary 9. We consider (generalised) minima of variational principles

(1.2) to minimise F[v / f(e(v))dz overv € @y,

where 2, is a suitable Dirichlet class. As a key feature, we suppose that the convex
integrand f: R2*"™ — R is of linear growth, by which we understand that there exist

sym

constants c¢1, ca,y > 0 such that there holds

(LG) alzl =7 < f(z) < a1+ 2]) for all z € RE T

In this situation, we put LD(Q) := {v € L'(Q;R"): £(v) € L}(®; R} to be endowed
with the canonical norm |[v[|Lp() = [[v[lL1 (@rn) + [l€(v )||L1(Q;ng§nn), and define LDg(2)

as the closure of CZ°(€;R™) with respect to || - [[Lp(q). With this terminology, we pick
ug € LD(Q) and set Z,, := ug + LDg(£2). Subject to (LG), F is bounded below on
D, and minimising sequences are bounded in LD(Q); note that this is not necessarily
the case in W (Q; R™). By non-reflexivity of LD(2) and possible concentration effects,
minimising sequences do not need to be weakly relatively compact in LD(£2) but can be
shown to be weak*-relatively compact in BD(Q) (cf. Section 2 for the requisite background
terminology). As a routine consequence, for F' to be defined for BD-maps, it must be
suitably relaxed. For u,v € BDj,(Q2) and an open Lipschitz subset w C Q we put

vl W] /féau )d.L" + /f°° ddéé | d|E®u|

(1.3)
(Trow(v —u) © vgy) ds#"
ow
Following the by now classical works [47, 40], Fy,[u] := Fy,[u; ] then coincides with
the weak*-relaxation (or weak*-Lebesgue-Serrin extension) of F' to BD(£2) subject to the
Dirichlet constraint u|spq = ug. Here, for v € BD(2) we denote the Lebesgue-Radon-
Nikodym decomposition Eu = E%u + Esu = Su?™ + E*u of' Eu into its absolutely

From now, if the symmetric gradient of an integrable map is a measure, we write Eu instead of £(u).
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FIGURE 1. The regularity theory for the Dirichlet problem on BD in
the framework of a-ellipticity (cf. (1.4)), contextualising the results ob-
tained in this paper with previous work. The arrows indicate "up to, not
including’.

continuous and singular parts for .Z". Moreover, f*°(z) := limy o tf(z/t) denotes the
recession function of f, capturing the integrand’s behaviour at infinity. Consequently,
we call a map u € BD(Q) a generalised minimiser if F,,[u] < F,,[v] for all v € BD(Q).
Similarly, we call u € BDjoc(2) a local generalised minimiser if F,[u;w] < Fy[v;w] for
all open subsets w € 2 with Lipschitz boundary 0w and all v € BDjoc(2). Subject to the
Dirichlet datum wug, the set of all generalised minima is denoted GM(F'; ug) and, similarly,
the set of all local generalised minima is denoted GMjoc(F). As a consequence of [44,
Sec. 5], generalised minimisers always exist in this framework. For future reference, we
remark that even if f is strictly convex, generalised minima are not unique in general;
see Section 4.1 for more detail.

In view of the main theme of the paper, we shall focus on higher Sobolev and partial
regularity for generalised minima of the variational principle (1.2), even leading to novel

results in the radially symmetric case f = f(] - |). The corresponding results crucially
rely on the degenerate elliptic behaviour of the integrands f, being roughly depicted in
Figure 1, and let us retrieve what is unconditionally known for the Dirichlet problem on
BV. As such, we particularly obtain criteria for the full gradients of generalised minima
to exist as locally finite Radon measures. To explain why the results given below are
close to optimal, we briefly pause to introduce the relevant ellipticity scale.

1.2. Wi;i-regularity of minima. As it is customary in the linear growth context and
motivated by BERNSTEIN’s genre [16, 40, 73] and the conditions considered by LA-
DYZHENSKAYA & URAL’CEVA [55], a natural scale of C*-integrands is given by those

f:R2X™ — R that satisfy for some a >1and 0 < A < A < o0

sym
(1.4) )\$ < {f"(2)€,¢6) < A&

(1+[22)% — BN EDE
For such integrands, (1.4) precisely describes the degeneration of the ellipticity ratio of f”'.
From a more systematic viewpoint, this scale has been studied by BILDHAUER, FUCHS
& MINCIONE [17, 18, 19, 35] in the (p, ¢)-growth or BV-context, respectively, under the
name of p-ellipticity, where y = a in our terminology; also see [40]. Note that a = 1 is
excluded here as then the corresponding integrands are not of linear growth. Even though
convex integrands f with (LG) have the same growth behaviour from above and below,
this is not the case on the level of second derivatives. To some extent, such problems
thus have some resemblance with (p, ¢)-growth type problems. Higher integrability of
the minimisers’ gradients can only be expected when p and ¢ are not too far apart or
additional hypotheses are imposed, see the seminal work [31] by ESPOSITO, LEONETTI
& MINGIONE (also cf. [60, Thm. 6.2] and CAR0ZZA, KRISTENSEN & PASSARELLI DI
NapoLI [21]). More precisely, for suitably regular, convex (p, ¢)-type problems the critical

for all z,& € RZX™.

sym

exponent ratio to yield Wllo’Z—regular minima was determined in [31] as
2

I
n

q
L5 =<1+
(1.5) »
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a threshold ratio getting in line with others identified earlier in a slightly different context
by MARCELLINI [57, 58]. Beyond this threshold, one usually imposes additional hypothe-
ses — such as local boundedness, cf. [21] — on minima in order to obtain regularity results,
and such conditions in fact can be justified for a variety of situations, so for instance by
maximum principles or, in the radial situation, Moser-type L>°-bounds.

This distinction of ellipticity regimes also enters in the BV-theory for full gradient
functionals. In fact, it is known from [18, 14] that if 1 < a < 1+ %, then generalised
minima of the corresponding full gradient functionals belong to some Wll(;f; with p > 1
whereas in the regime 1 +% < a < 3, the only Wh!-regularity results [18, 14] are subject
to the additional Ly;.-hypothesis on the generalised minima. For variational principles
of the form (1.2) subject to (1.4), a first result has been given by KRISTENSEN and the
author [44] by passing to fractional estimates. While striving for the optimal ellipticity
l<a<1+4 %, the method as employed therein only yields the Wllo’i—regularity for
l<a<1+ %, revealing a crucial ellipticity gap of size % The first main result of this
paper precisely closes this gap:

Theorem 1.1 (Universal W} !-regularity estimates). Let ug € LD(Q) and suppose that

2 mnxn . . 9
[ e CHREN) satisfies (LG) and (1.4) with 1 <a <14 =. If
(a) n = 2, then every generalised minimiser u € GM(F;ug) is of class LD(Q) N
Wll(;Z(Q;R”) for any 1 < g < oo. More precisely, u has locally exponentially
integrable gradients in the following sense: There exists ¢ = c¢(a,c1, 2,7, A, A) >

0 such that for any xo € Q and 0 < r < 1 with B(xg,5r) C Q there holds

= 1
(1.6)  |[Vul| 2 < c((l +][ |Eu|) =y 7][ lul dx).
exp L34 (B(zo,r)iR" ") B( 7 JB(wo,r)

(b) n > 3, then every generalised minimiser u € GM(F;up) is of class LD(2) N
Wll(;g(Q; R™) forq = Z:‘;n More precisely, there exists c = c¢(n, a,c1, ca,7y, A, A) >

0 such that for any xo € Q and 0 < r < 1 with B(xg,5r) C Q there holds

(1.7) <]{3<w0,r> \Vu\qu)% < c((l + ]imm \Eu|)ﬁ + % ]{3(%” | dx).

Theorem 1.1 thus gives exactly the same Sobolev reqularity in the BD-situation as is

presently known for the autonomous Dirichlet problem on BV. As mentioned above, for
2

the autonomous Dirichlet problem on BV it is possible to establish Wllo’cmog L—regularity

of locally bounded generalised minima for the wider ellipticity range 1 + % < a < 3; note

z0,57)

that for a > 3, no Wh!'-regularity results are available at present?. While, in principle,
the strategy underlying Theorem 1.1 can be modified to work in the Ly, -constrained case,
too, no method is known to us that would provide locally bounded generalised minima at
all. In fact, whereas maximum principles and Moser-type Lis.-bounds can be employed
in the full gradient setting subject to specific structural conditions on the integrands
(cf. [14, Thm. 1.11, Thms. D.1-3]), the symmetric gradient seems to destroy the impact
of any such good structural hypotheses (so e.g. radial dependence on the arguments).
In order not to produce a possibly vacuous result, we thus stick to the ellipticity range
l<a<1+ % for which the additional local boundedness is not required. Deferring the
precise discussion to Section 4, let us now briefly outline the underlying chief obstructions
that make Theorem 1.1 considerably harder to obtain than its BV-analogue.

To establish the regularity assertions of Theorem 1.1, one might consider a vanishing
viscosity sequence and then derive uniform second order estimates. Essentially inspired
by the foundational works of SEREGIN [69, 70, 71, 72], in the BV-case a difference quotient
approach yields the requisite estimates as a consequence of the fact that the full gradients
of the single wviscosity approzimations are uniformly bounded in L'(Q;R™ ™); cf. [18,

2The only systematic W!-l-regularity theory for a > 3 is available for Neumann-type problems on
BV, cf. BECK, BULICEK and the author [13], being conceptually different from the Dirichlet problem.
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19].  Within the framework of Theorem 1.1, however, the latter boundedness cannot
be assumed and L'-estimates on the full gradients must be avoided throughout. On the
other hand, generalised minima are in general non-unique — despite strict convexity of the
integrands f. Hence, even if it were applicable, the vanishing viscosity approach would
only apply to one particular generalised minimiser. The claimed universal regularity
estimates (i.e., for all generalised minima) thus require another argument.

In doing so, we modify and extend the EKELAND viscosity approximation scheme as
introduced by BECK & SCHMIDT [14] in the BV-context and generalised to the BD-
situation by KRISTENSEN and the author [44]; see [56, 1] for the first applications of
the EKELAND variational principle in the regularity context. Here, on the one hand,
the EKELAND-type approximations must be strong enough for the (perturbed) Euler-
Lagrange equations to permit a splitting strategy, thereby implying the requisite second
order estimates for the corresponding almost-minima. Simultaneously, they must be
weak enough to be treatable by the a priori information on the minimising sequences.
By our arguments below — and contrary to the W~ !-perturbations in the BV-context
[14] — the correct perturbation space now turns out to be W~ (see Section 2.2.3 for the
definition). Without the aforementioned splitting strategy, in turn inspired by SEREGIN
et al. [72, 36], we would be bound to argue as in [44], and then the desired ellipticity
range 1 < a < 1+ % would not be reached. By the degenerate elliptic behaviour of
the integrands, non-uniqueness of generalised minima and the overall lack of Korn’s
inequality, the proof of Theorem 1.1 requires to overcome both technical and conceptual
difficulties and is given in Section 4 below.

Once the presence of the singular parts E®u is ruled out for all u € GM(F;uyp), the
boundary integrals in (1.3) are identified as the only source of non-uniqueness. This
admits to apply more general principles (to be established in the Appendix, Section 8,
with emphasis on the two-dimensional case) to draw conclusions on the structure of
GM(F;up), cf. Section 4.6.

1.3. Partial Cl’a-regularity of minima. The second part of this paper is devoted to
the partial (Holder) regularity of generalised minima of F. We note that, essentially
because the minimisation of F' constitutes a vectorial problem, full Holder continuity in
general is not to be expected; see [38, 41, 61, 62] and the references therein. To streamline
terminology, in this paper we say that a map v € Llloc(Q; R™) is partially reqular if there
exists a relatively open subset €, C Q2 such that v is of class C"*® in a neighbourhood of
any of the elements of §2,, for any 0 < o < 1.

There is an extensive literature on the topic of partial regularity and proof strategies,
most notably the (indirect) blow-up method with roots in DE GIORGI’s work [25] and
the A-harmonic approximation method with roots in ALMGREN’s and ALLARD’s work
in geometric measure theory [4, 5]. These proof strategies have been adapted to the
setting of functionals of the type (1.2) with e replaced by the full gradient, see [1, 2,
32, 26, 27, 60] for an incomplete list. For instance, even in the convex full-gradient
linear growth case, indirect methods such as blow-up are difficult to implement by the
relatively weak compactness properties of BV as long as no additional Sobolev regularity
is available. Appealing to Theorem 1.1, this is e.g. the case in the very degenerate regime
a>1+ % On the other hand, should an integrand degenerate completely for large values
of the argument, one might still aim for a local-in-phase-space regularity result (in the
terminology of SCHMIDT [68]).

To establish such a regularity theorem, in turn being able to cover all degenerate
ellipticities, we make use of a direct strategy using mollifications as comparison maps.
Since, by Jensen’s inequality, mollifications can be suitably controlled by convex func-
tions, this method is particularly designed for convex problems. Originally employed by
ANZELLOTTI & GIAQUINTA [10] in the full gradient context (also see the related result
by ScHMIDT [67] for the model integrands my(-) = (1 + |- |p)%7 p # 2), functionals (1.3)
require a different treatment. First, now the decay of the comparison maps must appear
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as a consequence of a careful linearisation and hereafter KORN’s inequality in L?. More
importantly, the comparison argument forces us to control V-function type distances
from a given generalised minimiser to its mollifications by the symmetric gradients only.
While this is a consequence of the fundamental theorem of calculus in the BV-context,
the requisite estimates now must be accessed without appealing to the full gradients.
This motivates the derivation of a novel family of convolution-type Poincaré inequalities
in Section 5, which might be of independent interest. Lastly, the estimates of Section 5
necessitate a refined construction of good annuli in the partial regularity proof, where
the key parts of the comparison are performed. A combination of these tools in Section 6
then yields an e-regularity result (cf. Corollary 6.7), and implies the following second
main result of the paper:

Theorem 1.2 (Local-in-phase-space regularity). Let f € C2(R”X") be convex and satisfy

sym

(LG). Given ug € LD(R), let u € GM(F;uq). If (zo,20) € Q x RIY is such that
: | E*ul(B(xo, R))

1.8 lim f Eu — zo|de + ——F—5 0

(1) RS [ Toga 72014 T B, )

and f"(zo) is positive definite, then there holds u € CH*(U;R™) for a suitable open
neighbourhood U of xg for all 0 < a < 1. In consequence, if f" is positive definite
everywhere on RET, then the singular set X, of points in whose neighourhood u is not

of class C* for any 0 < o < 1 satisfies ZL(2,) =0, is relatively closed and is given by

Sym

(1.9) 3 = {xo € Q: there exists no zg € RLX™ with (1.8)}.

Similar as in BV-theory, the importance of the previous theorem is manifested by its
minimal assumptions regarding locality and (degenerate) ellipicity; in fact, no global uni-
form strong convexity needs to be imposed on f in order to yield the corresponding partial
CY“_regularity result. Recalling the a-ellipticity scale (1.4), Theorem 1.2 thus particu-
larly complements Theorem 1.1 in the very degenerate ellipticity regime 1+ % <a < oo,
cf. Figure 1. As a routine matter, however, strengthening the ellipticity to 1 < a < -5,
Theorem 1.1 can be invoked to yield bounds on dim(3,) — cf. Corollary 4.6. We
moreover note that the previous theorem equally proves interesting for radially sym-
metric integrands. Indeed, techniques to arrive at full C®-regularity results in the full
gradient setting (cf. UHLENBECK [79], URAL'CEVA [80] or BECK & SCHMIDT [15] in
the BV-context) are hard to be implemented: The symmetric gradient seems to destroy
the beneficial structure of the corresponding FEuler-Lagrange equations. As such, Theo-
rem 1.2 seems hard to be generalised to the model integrands m,, (revealing p-Laplacean
type behaviour at the origin) for p # 2, cf. Section 3 for a discussion. Finally, recalling
the aim of a regularity result in the very degenerate ellipticity regime, Theorem 1.2 proves
independent of the recent companion theorem [43] for strongly symmetric quasiconvex
integrals by the author. Whereas the main difficulties in [43] stem from the weakened
convexity notion, its application to convex integrands only yields a partial regularity
theorem for a-elliptic integrands, 1 < a < 3. A discussion of these matters, together with
possible generalisations of Theorems 1.1 and 1.2 is given in Section 7.

1.4. Organisation of the paper. In Section 2 we fix notation, record basic definitions
and auxiliary estimates. After a discussion of sample integrands in Section 3, we pro-
vide the proof of Theorem 1.1 and selected implications in Section 4. Section 5 provides
convolution-type Poincaré inequalities to crucially enter the proof of Theorem 1.2 in Sec-
tion 6. Section 7 discusses generalisations of the results of the paper, and the appendices,
Sections 8 and 9, comprise selected uniqueness assertions and proofs of auxiliary results.
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of the paper. Moreover, I am indebted to GIANNI DAL MASO and GREGORY SEREGIN for com-
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2. PRELIMINARIES

2.1. General notation and background. We briefly comment on the notation used
throughout. By R or REXT we denote the symmetric or scew-symmetric (n x n)-
matrices with real entries. All finite dimensional vector spaces are equipped with the
euclidean (or, in the matrix case, Frobenius) norm | - |, and the inner product on such
spaces is denoted (-,-). Given a,b € R", the symmetric tensor product is given by
a®b:=3(ab" +ba’). Given zyp € R" and r > 0, the open ball of radius r > 0 centered
at xg € R™ is denoted B(zg,r) := {z € R": |z —xo| < r}. For 0 < t < s < o0,
we denote A(xo;t,s) := B(xo, s) \ B(zo,t) the annulus centered at zo having outer and
inner radii s and t, respectively. To distinguish from balls in matrix space, we write
B(z,7) == {y € RE: |y —z| <} for 2 € RET and v > 0. Cubes @ in R" are
tacitly assumed to be non-degenerate, and we denote by £(Q) their sidelengths. The
n-dimensional Lebesgue and (n — 1)-dimensional Hausdorff measure are denoted .£™ and
"1, respectively. Accordingly, the Hausdorff dimension of a Borel set A € Z(R") is
denoted dim_(A). For u € L, .(R"; R™) and an open set U C R™ with .Z"(U) < oo, we
use the shorthand (u)y = f, udz := £"(U)"" [, udz whereas, if U = B(z,r) is ball,
we abbreviate (u)g,, := (u)p(q,). Moreover, for a given finite dimensional real vector
space V', we denote .#(1oc)(€2; V) the V-valued (locally) finite Radon measures on (the
open set) Q. For p € .#(Q;V), its Lebesgue-Radon-Nikodym decomposition is given by
W= pu*+ d(‘i:s‘ u®|, where u® < £"™ and p* L. 2"

By ¢,C > 0 we denote generic constants whose value might change from line to line,
and shall only be specified if their precise value is required.

2.2. Function spaces and integral operators. In this section we give an overview of
the requisite function spaces on which the main part is based. This comprises functions
of bounded deformation, to be discussed in Section 2.2.1, as well as Orlicz and negative
Sobolev spaces to be introduced and discussed in Sections 2.2.2 and 2.2.3.

2.2.1. Functions of bounded deformation. Let 0 C R™ be open and bounded. We then
define BD(2) as the space of all u € L*(Q;R") for which the total deformation

(21)  [Rul(9) =sup{ /Q<u,diV(<P)> dr: o € CUOLRY), el oumzysr) < 1)

sym

is finite; note that by writing Eu we indicate that the symmetric distributional gradient
of u is a measure whereas by e(u) we tacitly understand that it is representable by an
L'-map. This space has been introduced in [24, 77] and studied from various perspectives
in [9, 6, 75, 11]; unless stated otherwise, all of the following can be traced back to these
references. Given u € BD(Q2), the Lebesgue-Radon-Nikodym decomposition of Eu reads
as Eu = E®u+E°u = Sul"LQ+ d(li%ziil | ESu|. Here, &u takes the role of the symmetric
part of the approximate gradient (cf. [7] for this terminology).

Let u,uy,us,... € BD(Q). We say that uj, — wu if and only if up — u in L'(Q;R™)
and Euj, = BEu in A RET). I ug 2w as just defined and |Eug|(Q) — |Eu|(Q), then

we say that (uy) converges (symmetric) strictly to u. If, moreover, /1 + | Eug|2(Q2) —

VI + [Eu2(9) with
V1+ [Euol2(9Q) ::/\/1+|£v|2dx+|E5v|(Q), v € BD(Q),
Q

then we say that (uy) converges (symmetric) area-strictly to u. These notions are usu-
ally reserved for the BV-context, but as we deal with the BD-situation exclusively we
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shall often omit the supplementary symmetric and simply speak of strict and area-strict
convergence.

Now let © have Lipschitz boundary 9€2. Both LD(£2) and BD(£2) then have trace space
L'(09Q;R™); however, note that the trace operator onto L' (99Q;R™) is not continuous with
respect to weak™-convergence on BD(Q). In this case, continuity can only be achieved
when BD(€?) is equipped with strict convergence. Moreover, as 2 has Lipschitz boundary,
any u € BD(Q) can be extended by zero to the entire R™ so that the trivial extension u
again belongs to BD(R"™) and we have

Eu=EulL Q+ Trag(u) ®© Vagjfn_l L 09,

where vy is the outward unit normal to 9. Also, we have the Gaufs-Green formula

(2.2) /Q (o, Eu) + /Q (div(p),u) dz = /8 (¢ Tron(u) © won) ™!

for all u € BD(Q2) and all ¢ € C*(Q; RE); here, div denotes the row-wise divergence.
For latter applications, the following approximation result will turn out particularly

useful:

Lemma 2.1. Let Q@ C R” be an open and bounded Lipschitz domain. Then for any
u € BD(2) and any ug € LD(R) there exists a sequence (ux) C up + Co°(€;R™) such
that uy, — w in L' (Q;R™) and

V14 |Eugl?2(2) = /14 |Eul?2(2) —l—/ | Tron(ug — u) © voq|ds#" as k — oo.
oN

2.2.2. Korn- and Poincaré inequalities in Lebesgue and Orlicz spaces. To transfer inte-
grability from e(u) to the full gradients in a flexible space scale, we recall here Korn-
type inequalities in Orlicz spaces; our notation is mainly taken from the recent work of
CIANCHI [22], also see ACERBI & MINGIONE [3] for related results.

Let A: [0,00) — [0,00) be a Young function; by this we understand that A(t) =
fg a(t)dr for t > 0, where a: [0,00) — [0,00] is non-decreasing, left-continuous and
being neither identical to 0 nor co. We then denote L*(Q; R™) the linear space of all
measurable maps u: €2 — R™ such that the Luxembourg norm

. Jul
ulla gy 1= inf {A > 0: /Q A"y ar <1

is finite. We then define E'A(Q) as the space of all u € L4(Q;R") such that the
distributional symmetric gradient belongs to L4 (£; RE ). As examples, if A(t) = [¢],
then E'A(R") = LD(R"), if A(t) = |t|? for 1 < p < oo, then E'A(R™) = WP (R™; R").
It is worth noting that the Young function A(t) := tlog(1 +t) displays a borderline case:
For a > 0, the general conclusion

(2.3) e(v)log™(1 + |e(v)]) € LL (R"; R™X") = Dy € L (R™; R™*")

sym

persists if and only if @ > 1; hence, briefly recalling the L log L-setup mentioned in
the introduction, variational problems with symmetric gradients belonging to Llog L are
essentially dealt with in wht, Namely, by the SMITH representation [74] to be used
in a different context later on, u = (ul,...,u") € CP(R";R") can be retrieved from
e(u) = (gi5(u))ij—1 via

(2.4) uk = 2 Z Ejk(u) * GiK,»j — Eij(u) * é)kKij + €k * 8jKij

nw
" 1<i<j<n

for all & € {1,...,n}, where K;;(z) := z;z;/|z|"” for x € R™\ {0}. The convolutions
here are understood in the Cauchy principal value sense, and so the map ®: e(u) — Vu
displays a singular integral of convolution type satisfying the usual Hérmander condition.
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Then (2.3) follows from the theory of singular integrals on Orlicz spaces, cf. [22]. For the
following, let us remind the reader of the space of rigid deformations

(2.5) R(Q) :={u: Q> R": u(z)=Az+b, AcRL:, beR"}

SCewW ?

which, for open and connected 2, is precisely the nullspace of €. Since elements of Z(2)
are polynomials, we shall often identify Z(Q) with Z(R™).

Lemma 2.2 ([22, Thm. 3.3, Cor. 3.4, Ex. 3.11]). Let Q C R™ be an open, bounded and
connected Lipschitz domain. Then the following holds:

(a) For each 1 < p < oo there exists ¢ = ¢(p,n, ) > 0 such that

inf V(v — p(QRNXN) < PO RRXT 1 Ewl,p Q,Rn )
. V(0 = )|l @irnxny < clle()llpppnyry  for allv ( )

Moreover, for all v € WYP(Q; R™) there holds
190 = (Vo)allus e < elle(®) — (0)allroumms:
(b) For each > 0 there exists ¢ = ¢(8,n,§) > 0 such that

inf |V(o—m)| o
TEX () exp L BFL (Q;Rn X7

sym

: < efle(0) loxp L8 (mrsr for allv € E'expL?(Q),

where exp L?(Q) is the Orlicz space corresponding to A(t) := exp(tP).

In the sequel, we gather some instrumental results on certain projection operators
and augment (2.4) by a decomposition result due to RESHETNYAK [65]. Note that, since
Z(B(0,1)) is a finite dimensional vector space, all norms are equivalent on Z(B(0,1)).
Thus, by scaling, we find that for each 1 < ¢ < oo there exists a constant ¢(n,q) > 0
such that for all zg € R™ and r > 0 there holds

(2.6) (][ |7T|qu)5 —|—7“(f |V7T|qu)g < c(n,q)][ |7r| da
B(zo,7) B(zo,7) B(zo,r)

for all m € Z(B(xo,7)). The same inequality holds true with the obvious modifications
for if ¢ = oo on the left-hand side. Moreover, there exists a bounded linear projection
operator Ilg (g, ) : LY(B(zg,r);R") 3 u — 7, € Z(B(xo, 7)) satisfying

(2.7) <]€3(zw) g (z,ryul? di?)% < c(n, (J)(]{g(

for all u € LY(B(zg,r); R™) and each 1 < ¢ < oo; see the appendix, Section 9.1, for an
elementary proof. A similar result holds for cubes @ instead of balls, and we shall refer
to this property as L?-stability of gy, ) or Ilg, respectively. In a routine manner,
the foregoing now yields the next lemma which should be well-known, but is hard to be
found in the following form:

|u|qu)%

z0,T)

Lemma 2.3 (Projections in Poincaré- and Korn-type inequalities). Let 1 < p < oo,
xo € R™ and r > 0. For each 1 < q < p there exists a constant ¢ = ¢(n,q) > 0 such that
for all u € WHP(B(xzg,7); R™) there exists m, € Z(B(zo,7)) such that

][ |lu —my|?da < erd ][ le(u)|? de.
B(zo,r) B(zo,r)

In particular, the map gy, ryu — m, is independent of q. The same holds true if we
set ¢ = 1 and replace W' (B(z0,7); R"™) by LD(B(zo,7)). Moreover, if 1 < q < p, then
there exists a constant ¢ = c¢(n, q) > 0 such that for all u € WP (B(zq,7); R") there holds
(with the same T, as above)

][ |D(u — ) |Tdx < cf le(u)]? da.
B(zo,r)

B(zo,r)

Moreover, the map gy, vy : u = m, is L-stable for each 1 < q < p in the above sense.
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Clearly, a similar version holds for cubes. The foregoing lemma will not be sufficient
for all future applications, and so we record the following result due to RESHETNYAK
[65]. As we will exclusively use it for cubes, we directly state it in the following form:

Lemma 2.4 (RESHETNYAK, [65]). For any open, non-empty cube Q C R™, there exists a
projection lg: C®(Q;R™)NLD(Q) — Z(Q) and an operator Tg: (C*° NLY)(Q; RE) —
L'(Q;R™) such that for any v € LD(Q) there holds

(2.8) v(z) = (Mgu)(z) + Tole(w)](z)  for all x € Q.
Moreover, the operator T is of the form
(29) Tole()(w) = [ Role.)=(o)(s) .

Q

where Rg: Q x Q — LR R™) satisfies |[Rq(x,y)| < ¢f|lz —y["~! for all x,y € Q
with ¢ = ¢(n) > 0.

2.2.3. Negative Sobolev spaces. The viscosity approximation strategy to be set up in
Section 4 shall require certain negative Sobolev spaces in a crucial manner. As shall

become clear later, we have to go beyond the space W11 as introduced in [14]. Given
k € N, we define the space W_k’l(Q; R™) as follows:

WEL(Q;R) = {T € Z(QRY): T= 3 9°T,, To € L' (R for all || < k}.
a€ENy
la|<k

The linear space W"1(€; R") is canonically endowed with the norm

(2.10) IT [k gy = I0f Y [ TallL@mn),
|| <k

the infimum ranging over all representations 7' = 3_, ., 0°T, with T;, € LY(Q;R™).
Similar as for W11 (€; R™) as discussed in [14], W™ is not approachable by duality.
We collect its most important properties in the following lemma.
Lemma 2.5. Let Q C R"™ be open and let k € N be given. Then the following holds:

(a) (WL R™), || - lw—+1(rn)) @8 @ Banach space.

(b) For every u € L*(;R™) and every § € Ni with |3| < k there holds

H(?BUHW*’“J(Q;R") < HUHWV*'—’“(Q;R”)'

Proof. Tn view of (a), we closely follow [14] and consider the mapping ®: L'(;R™)N >
(To)jal<k = Djaj<k 0°Ta € WHHQ;R?), where N := #{a € Nj: |a| < k}. By
definition of W™"(Q;R"), ® is a bounded linear operator and thus ker(®) is a Ba-
nach space in itself. By definition of the quotient norm, the canonical quotient map
U: LY RN/ ker(®) — W R1(Q;R") is surjective and isometric. Thus, as ker(®)
is Banach, so is L' (Q;R")V / ker(®) and eventually, as the isometric image of a Banach
space, (W ™1(Q;R™), ||- lw—#.1(;rn)). For (b),let e > 0 and choose (Ty)a € LY(Q; RN
such that u = Z\alﬁk—lﬁl 0°T, and

Z ”TaHLl(Q;R”) < ||u||w\f”—"‘wl(ﬂ;R”) +e.
|| <k—|B]
On the other hand, 0%u = Z|a\§k—\m fthT, = Z|’Y|Sk 07S,, where S, =T, if v =
a + B for some a with |a| < k —|3| and S, = 0 otherwise. Therefore,
”aﬂu”W—’“vl(Q;Rn) < Z 15511 (irm) < Z 1TallLr rny < llullwisi-x1@mrny + €
lvI<k loo| <k—|B]

and we then send € N\ 0 to conclude the proof. 0
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Next, a lower semicontinuity result in the spirit of [44, Lem. 3.2], [14, Lem. 2.6]:

Lemma 2.6. Let 1 < g < oo, k € N be given and let Q be open and bounded with
Lipschitz boundary 0. Suppose that f: RE — R is a convexr function that satisfies

cHzl? —d < f(z) < e(1+ |2|9) for some ¢,d > 0 and all z € RS, Then, for every
ug € WH9(Q; R™), the functional

/ fle(u)dz  ifu € Duy :=uo + Wy (QR"),
]:[U] = Q

+00 ifu € WRHQ;R™)\ Dy,
is lower semicontinuous for the norm topology on W_k’l(Q;R”).

Proof. Let g,g1,92,... € W *(Q;R") be such that g,, — g with respect to the norm
topology on W1 (Q; R™). If lim inf,,, o0 F[gm] = 400, there is nothing to prove. Hence
assume without loss of generality that lim;_, oo F[gy, ;] = liminf,, ;o F[gm] < co. Then
necessarily g, ;) € Zu, for all sufficiently large indices j and, since ¢~!|2|7 — d < §(z) for
all z € REXT, we obtain that (e(gnm(j))) is bounded in L(Q;REX). Since g (j) € Zu,
and ¢ > 1, KORN’s inequality in Wé’q (;R™) implies that (gm(;)) is uniformly bounded
in Whe(Q:;R"). Since 1 < ¢ < oo, there exists a subsequence (ImG)) € (Gm@))
which converges weakly in W?(Q;R™) to some § € Dy, (note that 7, is weakly closed
in Wh9(Q;R")). By the RELLICH-KONDRACHOV theorem, we can moreover assume
that g,,(j;)) — ¢ strongly in LY(;R™). Then, since LY(;R"™) — W R Q;R") by
Lemma 2.5(b),

19 = gllw-r1(@mrny < 19 = gmiap lw-+1@rmy + 19 = Imiay It @irny — 0, i — 00,

and thus ¢ = g. By standard results on lower semicontinuity of convex variational
integrals of superlinear growth (or, alternatively, RESHETNYAK’s lower semicontinuity

theorem, Theorem 2.9 below) £(gy,(;()))-ZL™" Loe(g) L™ as i — oo thus yields
Flg] < liminf Flgpn (] = lim inf Fgy].
The proof is complete. O

2.3. The Ekeland variational principle. In this section we recall a variant of the
EKELAND variational principle [30] that is suitable for our purposes. The version which
we state here is a merger of [41, Thm. 5.6, Rem. 5.5]:

Proposition 2.7. Let (V,d) be a complete metric space and let F: V. — R U {oo} be
a lower semicontinuous function (for the metric topology) which is bounded from below
and takes a finite value at some point. Suppose that, for some u € V and some € > 0,
there holds Flu] < inf F[V] +e. Then there exists v € V' such that

(a) d(u,v) <V,

(b) Flv] < Flu],

(¢) for allw €V there holds Flv] < Flw] + /ed(v,w).

2.4. Functions of measures and convolutions. In this section we collect background
facts on linear growth integrands and functionals of the form (1.2). We begin with

Lemma 2.8. Suppose that f € C*(R™%™) is convex and satisfies (LG) with c1,co,y > 0.

sym

Then f is Lipschitz with Lip(f) < ca.

The proof of the preceding lemma evolves in the same way as [41, Lem. 5.2]; the reader
might notice that for the conclusion of Lemma 2.8 it is sufficient that f is symmetric
rank-one convex — so convex with respect to directions a ® b, a,b € R™ — and satisfies
(LG). As to (lower semi)continuity, we shall mostly rely on the following theorem due
to RESHETNYAK [64] (see [64, 8, 7] for more information on functions of measures):
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Theorem 2.9 (RESHETNYAK (lower semi-)continuity). Let V' be a finite dimensional real
vector space and let (v;) be a sequence in A (; V') that converges in the weak*-sense to
some v € M (V). Moreover, assume that all of v,v1,va, ... take values in some closed
convex cone K C V. Then the following holds:

(a) If g: K — Rxo U {+00} is lower semicontinuous, convex and 1-homogeneous,
then there holds

/(diy|>d‘”|<1?3£f (dﬁﬂ)dly]'

(b) If g: K — Rxo U {400} is continuous, 1-homogeneous and if (v;) converges
strictly to v (in the sense that v; = v and |l/j|( ) — |v|(Q)), then there holds

JoGap)aw =i [ o) vl

Given a lower semicontinuous, convex function h: R;Lyxn? — Rx>o, we put V' := RxRET®
and introduce the linear perspective integrand h¥ : R>q x RIS — RU {400} by
th(é), t>0, &€ R,
(2.11) R (t,€) := ¢ & € Rom
he(§)  t=0, § € R,

where h*>(£) = limy o th(%) so that h# is positively 1-homogeneous. Also, if h has
linear growth, then h# < oo. We put K := Rso x RZX". For Q@ C R™ open and

Sym

w e A(QRE) we put v = (L") € A (Q; K) and define for A € B(Q)

sym

)= [ n) o= [ () avl = | h#(ﬁ,jﬁ') v
d du
:Ah(d;n)d$"+AhM( i S|)dm|

In particular, if w,ui,us,... € BD(Q) are such that u; — w symmetric area-strictly in
BD(Q) and f: RIS — Rxq satisfies (LG), then f[Eu;](2) — f[Eu](Q).

sym
For p € A (Q;REL) and o € RET, we use the convention

=& = p— &L
As for L, .-maps, we define the average of u € . (; R over B(xzg, ) C Q by

sym

o _ (B(=g,7))
(2.12) (o, = ]i(m,r) e Wgw'

By the Lebesgue differentiation theorem for Radon measures, Z"-a.e. xg € R" is a
Lebesgue point for p in the sense that there exists £y € RIVX™ such that

Sym
(2.13) lim (| = &ol)zo.r = 0-
The Jensen inequality here takes the following form, cf. [67, Lem. 4.12]: If h: RIIH —
R>q is convex, then
210 M((100r) < (A1),

For future applications in Section 5 and 6, we call a compactly supported, radial function
p: R™ — [0,1] a standard mollifier provided [|p||r1@n) = 1, spt(p) C B(0,1) and p is of
class C*™ in B(0,1). Given ¢ > 0, we then define the e-rescaled variant by p.(x) :=
€7"p(%2). As a consequence of (2.14), whenever p € #,c(R™;RLT) and € > 0,

h((pe *n)) < (p=*hlp])  inR™

Below, we shall particularly work with the following two choices p(1), p(?): R — R:

) 1
pM = (£"(B(0,1))) Mo,y and p®) =y, 1p(,) eXp(_W)’

1
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where 7, is adjusted in a way such that ||p(2)|\L1(Rn) = 1. Given u € L{,.(Q;R") and
p € AMoc(;RENT), we put

sym
(1 (2
Ug 1= pg ) % and .. = pé ) % U,

He = (pgl) * /‘)gn and Hee = (p(2) * Ne)gn

€

(2.15)

for € > 0. Upon straightforward modification, the proof of [10, Lem. 5.2] then implies
Lemma 2.10. Let u € Moc(Q;REX™) and let zo € Q, R > 0 be such that B(xzg, R) € .

Sym

Moreover, let € > 0 satisfy € < g, Then for any convez integrand f € C2(R;’y>§£‘;RZO)
with (LG) the following holds:

(a) If 0 <ty < te < R — 2¢, then there exists t € (t1,t2) such that

e B, ) = Flpl (B, 1) < - 1l (Blao, B)).

(b) If R/2 < t; <ty < R—2¢ and 0 < r < R/4, then there exist r' € (r,2r) and
t' € (t1,t2) such that, adopting the annulus notation of Section 2.1,

+1>ﬂM$@mM)

tz—tl T

H%AM@m%ﬂDﬂMM@m%ﬂDS%<

2.5. Estimates on V-functions and shifted integrands. We now collect estimates
on auxiliary V-functions to be dealt with later. To this end, we define for z € R™ the
auxiliary reference integrand

V(z) =14 2] -1, z € R™.
The functions V will help to define our excess quantity later on, and we record

Lemma 2.11. For everym € N, all 2,2/ € R™ and t > 0 the following holds:
(a) V(tz) < 4max{t,t?}V(z),
(b) V(z+72') <2(V(2) + V(2')),
(c) (V2—1)min{|z],[2[*} < V(2) < min{|z], [2[*},
(d) and for every £ > 0 there exists a constant ¢ = c¢(£) > 0 such that if |z| < ¢, then
2P S V(z) < ez

All assertions (b)—(d) are contained in [45, Sec. 2.4, Eq. (2.4)], [10, Prop. 2.5], easily
implying (a). We conclude this preliminary section with estimates on shifted integrands.
To this end, let f € C*(R2X") be an integrand satisfying (LG). Given a € RZX™, we

sym sym
define the shifted or linearised integrands f,: R — R by
(2.16) fa(€) = fla+ &) = fla) = (f'(a), &), € ERLL.

We state the next lemma in a form that is directly applicable to our future objectives:

Lemma 2.12. Let f € C*(R2™ Rs) be conver and satisfy (LG). Moreover, let & €

sym )
R and 0 < gg, < 1 be such that
(2.17) Mey 0e, *= MIn{A(2) smallest eigenvalue of f"(2): z € B(&o, 0¢,)} > 0.

Then for all matrices a € RI™ with B(a, %2) C B(&o, 0¢,) the following holds:

Sym
(a) fa is convex with f,(0) =0 and f.(0) = 0. Moreover, f, > 0.
(b) For all £ € RIM we have, with ¢(%2) > 0 as in Lemma 2.11(d)

? 23 " 6Li
Mgy, 0, (%) V(&) < fa(§) < (C(TO)B(Esup )|f | + (\1[2_1)1(;25
0,0¢, o

The elementary proof of the preceding lemma is deferred to the appendix, Section 9.2.

V)
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3. EXAMPLES OF INTEGRANDS AND LIMITATIONS

In this quick intermediate section we present and discuss several sample integrands
that underline the applicability and limitations of the main results of the present paper.
Here, a scale of integrands (P4)1<q<o0 18 given by

€]
/ / o t2 = ds, §ERY.

Then, essentially by [19, Ex. 3.9 and 4.17], ®, is a-elliptic and not b-elliptic for any
1 < b < a. Such integrands are covered by Theorem 1.1 for if 1 < a < 1+ %, and by
Theorem 1.2 for all 1 < a < oco. The latter theorem particularly includes the example
of the area integrand E(§) := /1 + |{|?, being 3-elliptic; recall that we dispense with
3-elliptic integrands in the framework of Theorem 1.1 as we do not have justification of
generalised minima belonging to Lys. for such integrands — a condition which is usually
required for Sobolev regularity in the full gradient situation, too.
An intermediate class of integrands is given by (M,)1<p<co defined by

My(6) = (L+ (L+ EP)F)7, € R

These integrands are a = 3-elliptic for if p = 1, and @ = p + 1-elliptic for if p > 1, cf.
[14, Sec. 3.1]. However, integrands that indeed fall outside the scope of the paper are
the linear growth integrands (m,)1<p<co given by m, (&) := (1 + |§|p)% unless p = 2; cf.
ScHMIDT [67], [68, p. 7] for the proof. In fact, if 1 < p < 2, then mj(z) blows up as
|z| \ 0 and if 2 < p < oo, then m}(0) = 0. In these situations, Theorem 1.2 applies
only if u € GM(F'; up) satisfies infq |e(u)| > 0. Namely, if |z| \, 0, then m, exhibits the
behaviour of the p-Dirichlet energies and, as to partial regularity, forces to employ a p-
harmonic comparison strategy. Whereas this does work well in the full gradient case [67)
following the works of DUZAAR & MINGIONE [28, 29], the requisite comparison estimates
in the symmetric gradient context seem to be not available at present.

4. LocAL WY_REGULARITY AND THE PROOF OF THEOREM 1.1

In this section we establish the Wlocfregularity result asserted by Theorem 1.1. Here
we employ a refined version of a vanishing viscosity approach, to be set up in Section 4.2,
with the ultimate objective to obtain suitable second order estimates in Section 4.4. In
Section 4.5 we then establish Theorem 1.1 and collect selected implications in Section 4.6,
thereby completing the lower three regularity assertions gathered in Figure 1.

4.1. Strategy and obstructions. We start by clarifying the underlying obstructions
first, thereby motivating the particular setup of the proof. For f is convex, the higher
Sobolev regularity of Theorem 1.1 is usually accessed through the Euler-Lagrange system
satisfied by u € GM(F;ug). On the other hand, as Eu is a finite R;‘yxn?—valued Radon
measure, the relevant Euler-Lagrange system needs to be understood in the sense of
ANZELLOTTI [8], containing the gradient of the positively homogeneous recession function
f°°. Note that f° essentially ignores the specific ellipticity of f (e.g., with the integrands
m,, from the previous section, mp® = | - | for all 1 < p < 00), and hence it is difficult to
extract the relevant higher mtegrabihty as long as the presence of E°u is not ruled out
per se. Equally, this also explains why directly working on the minima is in fact a useful
device for the partial regularity to be addressed in Section 6; we here essentially restrict
ourselves to neighbourhoods of points where E°u is assumed to vanish, cf. Theorem 1.2.

To overcome this issue in view of higher Sobolev regularity, one is led to consider
good minimising sequences, usually obtained by a vanishing viscosity approach, and
derive the requisite compactness estimates. As it is common in the case of degenerate
p-growth functionals with 1 < p < 2, the original functionals are stabilised by adding
quadratic Dirichlet energies %HV?}H?}, The minima v; of the correspondingly perturbed

functionals then are proven to converge (up to a subsequence) to a minimiser v of the
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original functional, and uniform regularity restimates on the v;’s carry over to v. When
the p-growth integrand f (for p > 1) is strongly convex, hence strictly convex, minima
are unique and so this method in particular leads to the requisite regularity estimates
for all minima. In the linear growth setting, cf. (LG), the recession function f>° is
positively 1-homogeneous and thus never strictly conver despite possible a-ellipticity
(and hereafter strict convexity) of f. Since, by the representation (1.3) of the weak*-
relaxed functional F,,[—; ], the recession function acts on the singular part Eu of u €
GM(F; ug) exclusively, even strict convexity of f does not imply uniqueness of generalised
minima — which cannot be expected in general anyway, compare the counterexamples in
the more classical BV-case [34, 66]. A vanishing viscosity approach as outlined above
thus is only able to yield Sobolev regularity for at most one generalised minimiser as long
as generalised minima are not known to belong to LD o)

In particular, based on this approach, we cannot rule out the existence of other,
more irregular generalised minima. A similar issue has been encountered by BECK &
SCHMIDT [14] in the BV-setting and by KRISTENSEN and the author [44]. To circumvent
this issue, we adapt and extend the modified vanishing viscosity approaches outlined
in [14, 44]. Effectively, we start from an arbitrary given generalised minimiser u €
GM(F'; up) and construct a suitable minimising sequence (v;) that converges to u in the
weak*-sense in BD(Q2). To do so, we consider an extension of a perturbed version of F'
to a suitable negative Sobolev space for whose topology the perturbed functional turns
out lower semicontinuous. Then EKELAND’s variational principle provides us with an
’almost minimiser’ of the perturbed functional, cf. Section 4.2. Such almost minimisers
satisfy Euler-Lagrange differential inequalities which make elliptic estimates available.
Finally, these almost minimisers are shown to converge in the weak*-sense to the given
generalised minimiser, and uniform regularity estimates will eventually inherit to the
latter.

In the setting of functionals on BV as considered in [14], perturbations in W' are
sufficient. This is due to the fact that the full gradients of generalised minima are a
priori known to exist as finite Radon measures. As discussed at length in [44, 42], the
implementation of the underlying difference quotient approach in the setup of functionals
(1.2) leads to terms of the form

2
(4.1) T:/pQ—lAs’huj|2 - da,
o (14 le(uy)?)z

where p: @ — [0,1] is a localisation function and, given v: R” — R™ h # 0 and
se€{l,..,n},

Agpv(zx) = %(v(m + hes) —v(x))

denotes the difference quotient of v. Here, (u;) is a suitable minimising sequence con-
verging to u in the weak*-sense. In the BV-setting (in which case the symmetric gradi-
ents in the definition of T' are replaced by the full ones), the term T can be controlled
by ||Vu,|jr1. As T is a priori not controllable by ORNSTEIN’s Non-Inequality in the
BD-situation, KRISTENSEN and the author [44] employ fractional estimates in order
to avoid the appearance of T', simultaneously perturbing in the space (W(l)’oo)*(Q;R").
The latter method, being based on the embedding BD(€) — W™/ ("=1+5)(Q. R") for
0 < s < 1 then yields weighted Nikolskii estimates (and thus Wl estimates for some
suitable 0 < « < 1) for the symmetric gradients of generalised minima. However, this
only yields the smaller range of ellipticities 1 < a < 1+ % Still, since f € C? (R&'), gen-
eralised minima should be expected to satisfy a differentiable Euler-Lagrange equation
and hence the use of fractional methods does not give the expected optimal ellipticity
range 1 <a <1+ % In order to obtain the latter, it seems that we are bound to obtain
uniform weighted second order estimates in the spirit of BILDHAUER [19, Lem. 4.19] or
BECK & SCHMIDT [14, Lem. 5.2]. Unlike the full gradient case, the requisite second
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estimates do not come out by a plain difference quotient approach but a fine analysis of
the identities provided by suitably weakly perturbed Euler-Lagrange systems, see Theo-
rem 4.3 below. In view of this aim, it turns out that the suitable perturbation space is
W2 (Q; R™) (cf. Section 2.2.3), and we can now turn to the precise implementation of
the approximation argument.

4.2. Viscosity approximations. We now set up the Ekeland-type viscosity approx-
imation scheme, and hereafter suppose that f € C(RE)Y) is convex with (LG) and
ug € LD(Q). For ease of notation, we write F := F,,[—;Q] in the sequel. Let
u € GM(F;ug) be arbitrary. By smooth approximation in the (symmetric) area-strict

topology, Lemma 2.1, we find a sequence (u;) C Py, := uo + LDo(Q2) such that
uj —u in L'(Q;R"),

1+ [Buy[2(Q) = /1 + [Bul2(9) +/ | Traq(uo — u) ® vaq| dA™ .
o0

By Theorem 2.9 ff. and hereafter continuity of w — f[Ew](2) for the symmetric area-
strict metric, (u;) is a minimising sequence for F', and we have Fu;] = Flu;] — Flu] =
min F[BD()]. Passing to a non-relabeled subsequence, we may thus assume

(4.2)

(4.3) min F[BD(Q)] < Flu;] < min F[BD(Q)] + for all j € N.

852

Since the trace operator Tr: LD(R™\ Q) — L' (99; R") is surjective, we find a compactly
supported extension @y € LD(R™) of ug. After a routine mollification of @y, we obtain
uj-m € Wh2(Q;R") such that

1
4.4 o0 _ <
(4.4) ||U] Uo||LD(Q) > 8Lip(f)j2’

where Lip(f) is the Lipschitz constant of f (cf. Lemma 2.8). We then put 2; :=
u?? + Wo? (4 R™) € WH?(Q;R™). Since uj — ug € LDo(€2), we find ; € Z; such that

~ 1
lJwj —uo — (u; — U?Q)”LD(Q) < W7

from where it follows that

i B 1
(45) ||U] — Uj”LD(Q) < ||u] — Ug — (Uj — u?Q)HLD(Q) + ||UO - U?Q”LD(Q) < W

Since W2(Q; R™) € LDg(Q), we find for arbitrary ¢ € W52 (Q; R™):

inf F[Pu,] < Fluo + ¢]
= Fluo + ¢l = Fluj® + ¢l + Fluf® + o]
< Lin()lle(wo = uf) s qmazn) + Fluf® + ¢
(4.4)
<

1
8]72+F[U?Q+§0]

At this stage, we infimise the previous overall inequality over all ¢ € Wé’2(Q;R") to
obtain

. 1.
(46) mf F[.@uo] S 8]72 + lIlfF[.@j].
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Then, since min F[BD(Q2)] = inf F[2,,], we deduce that
Flug] < Flug] = Flug] + Flug]
< Lip(f)lle(u;) — e(u))llrqmrnzmy + Flu]

sym

(45) 1 (43) 3 .
(4.7) < 12 + Flu;] < 85 + inf F[Zy,]
(46) 1
S 2]72 + inf F[.@J}
We consequently introduce the quantities A; and the integrands f;: R — R via
(@8)  Aj=14 [(U+@)P) e and €)= F€)+ 50+ IEP)
Q 3J

for £ € RLY. In order to employ the Ekeland variational principle with respect to
sufficiently weak perturbations, we extend the integral functionals corresponding to f;

to W=21(Q; R™) by

(4.9) Fj[w] := /Qfa(5(w)) dz ifw e 9,
e ifwe WS (QRY)\ ;.

For each j € N, the functional F; is not identically +o0o on W~2!(Q;R"). The latter
space is Banach by Lemma 2.5 (a) and, by Lemma 2.6 with f = f;, ¢ =2 and k = 2, F;
is lower semicontinuous with respect to the norm topology on W72’1(Q; R™). Moreover,
we record
~ ~ 1 (47) ]_ . ]. . —21 n
Fj[uﬂ S F[Uﬂ + 2]72 § j72 +lan[9j] S F +1HfFj[W ? (Q,R )],
having used the very definition of Fj} in the ultimate step. Therefore, Ekeland’s varia-
tional principle, Proposition 2.7, provides us with v; € W~2H(Q;R"™) such that
~ 1
vj = tjllw-21(rn) < 5
(4.10) 1
Fjlv;] < Fj[w] + }HU]- — wllw-21(q;rn) for all w € W21 (Q; R").

We extract from (4.10) some routine information by testing with w = u;:

(4.10), - 1 ~
Fily;] < Fluy]+ 3||Uj — Ujllw-21 ()

4 (4.10), ~ 1 U 1
(4.11) < F[Uj]+w/§2(1+|€(Uj) )dx+j7
@ 2

J
The latter quantity is finite and so, by the very definition of F}, v; € ; C WH2(Q; R™).
Moreover, as v; — uf® € Wy (Q; R") € LD (),

inf F[Zy,] < Fluo + (v; — uf)] = Flv;] + Flvj]

(4.12) < Lip(f)lluo — u®|lLp) + Flv;]

(44) 1 (4.11) 3 .
< @—FF]'[’U]'] < ]72+1an[9“0]

For latter purposes, we record the perturbed Fuler-Lagrange equation

X

(4.13)

J

1 n
fi(e(v))), () dz| < Flelw-z1@pny  forallp e W (4 R").
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This inequality can be obtained by testing (4.10), with w = v; £ f¢ for 6 > 0, ¢ €
W};Q (€;R™), dividing the resulting inequalities by 6 and then sending 6 \, 0. Moreover,

by the linear growth hypothesis (LG) and £ = min{,c;}, we infer from (4.11) that

(4.14) /Q5(Uj)|d95+Aj1j2/9(1+|5(vj)|2)d:1: gc(ian[.@uo} +v$"(ﬂ)+j%)

holds for all j € N. Finally, we note that due to Poincaré’s inequality on LDy(€2) we

obtain
sup/ lvj| dz < sup [/ v —uja-9|dx+/ \u?%dx}
jeNJa jeN LJg Q

(4.4, (4.14)
<Csup | [ Je(wp)ldo + [uipe] < o,
JEN Q

(4.15)

where C' > 0 is the constant appearing in the requisite Poincaré inequality. We finally
record

Lemma 4.1. The sequence (v;) as constructed in (4.10) possesses a subsequence (v;)) C
(v;) such that

V() S in BD(Q) asl — oo,
where u € GM(F'; ug) is the generalised minimiser fized in the beginning of the section.

Proof. By (4.14) and (4.15) we conclude that (v;) is uniformly bounded in BD(f2), and
thus possesses a subsequence (v;;)) C (v;) such that vj( X v in BD(Q) as [ — oo
for some v € BD(Q). Since L'(Q;R") — W~ 21(Q;R™) by Lemma 2.5(b), Vi) — v
in W™2(Q;R"). On the other hand, (4.2), (4.5) and (4.10) imply that Vi) — w in
W~2H(Q;R"™). Hence u = v, and the proof is complete. O

4.3. Preliminary regularity estimates. To justify the manipulations on the per-
turbed Euler-Lagrange equations satisfied by the v;’s, we now derive non-uniform regu-
larity estimates. Since (4.13) do not display elliptic differential equations (but differential
inequalities), the corresponding higher differentiability assertions need to be approached
slightly more carefully than for plain viscosity methods:

Lemma 4.2. Let f € C*(R"*") satisfy (LG) and, for some A € (0,00), the bound

Sym
(4.16) 0< (f"(z)§¢) < Ai for all z,§ € RLX".

S S R ST
Define vj for j € N by (4.10). Then there holds v; € lec;g(Q;R”).

Proof. Let zp € Q and 0 < r < R < dist(xg,09Q). Also, let s € {1,...,n}, 0 < h <
1(dist(z0,09) — R) and pick p € CZ(2;[0,1]) be such that 1p,,) < p < Lp.R)-
We test the perturbed Euler-Lagrange equation (4.13) with ¢ := As,,h(pgAs,hvj) €
W}:’Q (€;R™). In consequence, integration by parts for difference quotients yields

1
(4.17) \ /Q (B f(6(03)).2(0° D) da| < <1 A a0 Bnpy) -2 e

We define for Z™-a.e. x € B(xo, R) bilinear forms %, s 5, (z): RIX" x REX™ — R by

sym sym

1
Bij,sn ()N, €] 1:/ (£ (e(vj) (@) + thAs pe(vy)(@))n, ) dt,  n,& € R
0
Then we note that, because of (4.16) and the definition of f;,
(4.18) (2 A)THEP < B sn(@)6 €] < (A+ (77 A4;)HIEP = Cyl¢f
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for all ¢ € RZX", independently from s, h and z. Thus each %, 5 () is an elliptic bilinear

sym )
form itself and a suitable version of Young’s inequality is available. With this notation,

we infer from (4.17) by expanding the terms on the left and regrouping
I:= / Bj s n(2)[pe(As nv5), pe(As pvj)] da < / B s.n(2)[pe(As,nv5),2Vp © Ag pv;] do
Q Q
1
+ 5HAs,—h(PzAs,h%‘)wall(ﬂ;Rn)
1
<5 [ Bran@loe(Bune).pe(d.p))do
1
+ 5 / %j,s,h@)pv[) © As,hvjv va © As,hvj] dx
Q
1
+ 3HAS,,h(ﬁAsyhvﬂ-)Hw_z,l(g;w) = I+ III+1V.
Absorbing term IT into I, we obtain
4.19 ! A 2qp < i<y
(4.19) 2].2Aj/ﬂ|/’5(s,h%)|x_2—— < i+

and thus need to give bounds on IIT and IV. As a consequence of (4.18), we immediately
obtain

III < 4C; sup |Vp\2/

Q B(zo,R)
which is finite due to v; € WH?(Q; R"). As to term IV, we use Lemma 2.5(b) to find by
LI(Q;R™) < W1 (Q; R™) for some 1 < ¢ < 2:

(4.20)

A pvj|* dz < 40;‘(51321) Vo) 0113512 0ymmy

C(Q, q) c Q7q7 n)
1v < S22 0, (528,05 sy < (j||g(p2AS7hvj)|Lqmﬂwn

sym )

c(Q,q,n) c(©,q,n)

< IV © Aanj oz + 1076 (s 10) | aqrmnr

sym)

1
a

c(Q,q,n)

1 ) )
< (500 [V V2 ey + (7 [ 102 @ane) o + elstm. )

< (92, g n)

(Slglzp |Vp|)||vvj”L2(Q;R") + W /Q |P5(As,hvj)| dz +¢(Q2,n, 4, q)

where ¢(Q,n,j,q) > 1 and ¢(2,q) > 0 are constants. Here we used Korn’s inequality in
Wé’q (€;R™) in the second and Young’s inequality in the penultimate step. The second
term on the very right hand side of inequality (4.20) consequently is absorbed into the
very left hand side of (4.19), and then we obtain SUD| 4| < 1 (dist (x0,00) —R) I < 00. Thus,

(As ne(v))n is uniformly bounded in L2(B(m0,r);R;‘yXJ) and hence 0se(v;) exists in

LQ(B(LL'(),T);R;;;?) for each s € {1,...,n}. As a consequence, dsv; € W"?(B(zg,r); R")

by Korn’s inequality. By arbitrariness of s € {1,...,n}, o € Q and R > 0 sufficiently
small, we thus obtain v; € W22 (©2;R™). The proof is complete. O

loc

4.4. Uniform second order estimates. We now turn to uniform estimates (in j € N)
for the viscosity approximating sequence (v;). The following result is a key ingredient in
the proof of Theorem 1.1, and we single it out as a theorem on its own right:

Theorem 4.3. Let f € C2(R§yﬁl) satisfy (LG). Moreover, suppose that for some A > 0
there holds

(4.21) 0 < (" ()e &) < AL

m fOT allz,f € Rnxn.

sym
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Moreover, let (v;) be the viscosity approzimation sequence constructed in the previous
subsection. Then there exists a constant ¢ = ¢(A,c1,c2,7,n) > 0 such that for every
x0 € Q, 0 <r <1 with B(zg,2r) € Q and all j € N there holds

Z / (e(0;))9ue(wy), e (v)) de < le(v;)| de
(422 B(zo,r) T B(zo,2r)

C

2
/ (4 ()P da+ < (inf F[Z,,] +1.27(Q) + ).
B(xo,27) Jar

+
Ajj2r3 ;2

In the following, it is customary to introduce the shorthand notation
oj = fi(e(vy)) and A;[v;€n] = (ff (v)E,n), v,§,m e RET
We begin by collecting the properties of o;:

Lemma 4.4. Let the integrand f € C*(R2X") satisfy (LG) and (4.21) and define v; by

sym

(4.10). Then for all € € {1,...,n} and ¢ € WE*(Q;R") there holds

(4.23)

/ (010, 2()) da
Q

1
< ;HQOHW*L1(Q;R")~

Proof. By Lemma 4.2, v; € W22(Q;R"). We note that dyo; = [ (e(v;))0e(vj), and

loc
since sup_ pnxn | f7(2)] < 00, 0 € W2 RS, Let ¢ € C2°(Q;R™). Then 9y is an
sym

sym

admissible competitor in (4.13) and so, since o; € Wh2(Q; Rxn,

loc sym
\ [ @< aa
Q

Here, the last estimate is valid by Lemma 2.5 (b). Then the case of general W.2(Q;R")-
maps ¢ follows by routine smooth approximation and Wh2(Q; R") < W™ 1(Q, R™). O

413) 1 1
< S0l -2@mn) < Sllellw-rsamn-

- \ [ etononad]

We now come to the

Proof of Theorem 4.3. We divide the proof into three steps, and fix j € N throughout.

Step 1. Modified perturbed Euler-Lagrange equations. To establish (4.22), we shall
use the weak Euler-Lagrange equation (4.23) from Lemma 4.4 satisfied by o;. Let
ke {l,.,n} and let zyp € Q,0 < r < 1 be such that B(zg,2r) € Q. We choose a
cut-off function p € C(;[0,1]) such that Ip, ) < p < Lp(g,2mn and [VFp| < (%)k
for k € {1,2,3}. Without loss of generality, the interior B' of spt(p) is a ball, too.

Then, since v; € Wiﬁ(Q;R") by Lemma 4.2, we obtain that ¢ = p?dx(v; — a;) =:
p?Opw; belongs to WL2(Q; R”) and hence qualifies as a competitor map in (4.23). Here,
a; € Z(Q) is a rigid deformation to be specified later on, and wj; is defined in the
obvious manner. We write A = (A"")?", _, for an (n x n)-matrix A and denote the [-th
component of a vector u € R by u®). Then applying (4.23) to £ = k and summing over
k € {1,...,n} yields by virtue of Lemma 2.5 (b)

Z/ ako_zm im Qakw]) ‘%

k,i,m

||026kwj||wfl=1(9;n§n)

M3 Il MS

(4.24)

IN
(-
o

101 (p*w;) = 2(pOkp)wjllw-11 (mm)

Il
-

IA
A
S

”wJ”Ll(B’ iR7))
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where the left-hand sum is taken over all indices k,i,m € {1,...,n}. Towards (4.22), we
note that

(4.25)

n

Z/B(IW)<f}/(£(vj))8ka(vj),8ka(vj)>dx < ;/QAj[E(’Uj);pakg(vj)7pak5(vj)] da

k=1
= Z /(Gkaj-m)pQ@keim(vj)dx,
k,i,m Q2

whereby it suffices to estimate the right hand side in view of (4.24). From (4.24) we
deduce

(4.26)
2 Y [ @uoy e @) do < = Y [ (@0 (@i 0kl + (000" da
k,i,m Q k,i,m 2

(n)

cin
+ 7||wj||L1(B’;]R")

== X [ @roi @0 + @0

k,i,m

" Z /Sz(akaj’m)((@ipz)amwg(‘k) + (8m/)2)5iwg('k)) dx

k,i,m
L /Q(a’“"é%((amp?)akwﬁ“ + (O p?) 00 da

k,i,m
c(n)

c(n) n

+ jTH’U}j”Ll(B/;]Rn) =1 + 11 + III + 7““@ HLl(B/;Rn).
Step 2. Estimating the terms 1,11 and III. Ad I and III. Let us note that, since the
indices i,m run over all numbers 1,...,n and o;(z) € R{ for L"-ae. z € Q, we
have I = ITI. Moreover, we note that the artificial terms leading to the appearance of
IT are just introduced to have the symmetric gradient appearing, that is, terms which

are conveniently controllable. In consequence, defining ;0 := (; G)Zm)?,mzl and jék =
(/O™ ey with

JO™ = (Omp”)e™ (wy),

j®§€m = 2(8mp)€ik(wj), kyi,m e {1,...,n},

we find by o;(z) € RET for £"-ae. x € Q and the definition of the Frobenius inner
product on R™*"™

L+ I00] < 2I00| < 4] > /ﬂ(aka;im)(awz)gik(wj)dx
k,i,m

=4 =:1V.

Z/Q@kaj,j@zym)dm
k=1

We now employ the definition of ¢; and Aj;[e(v;);-,-]. Then we obtain, applying the
Cauchy-Schwarz inequality to the bilinear forms A;[e(vj); -, -:

1 = = Sym sym
v < 5 Z/ Ajle(v); pOre(vy), pOke(v;)] dx + 8 Z/ Ajle(vy); ;0™ ;07" dz = IV,
k=17 k=19
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Appealing to (4.21) and recalling [Vp| < 2, we then further estimate

! 1 -
v <o ; /Q A;[e(v;); pOie(v;), pOe(v;)] dx

(4.27) 128An? 128n2
+ 5 / le(vy)| dz + 24 / le(v)[? da
r B(xo,27) reAa;] B(zo,27)
=V + V4 Vs,

Ad IL. By symmetry of oy, i.e., 0§ (x) = o}*(x) for all i,m € {1,...,n}, j € N and for

L™a.e. x €, and a permutation of indices, it suffices to estimate the term

(4.28) 2[VI| := 2 Z/ (00 i™)(0:%) (O™ da

k,i,m
with an obvious definition of VI. Integrating by parts twice yields

VI—Z/@kalmap mw()dx——Z/ Zmak ((0:0%) amw )

k,i,m k,i,m

= - Z / ((0ikp?) )+ (8ip2)8mkwj('k)) dx
Q

(429) k,i,m

Z/ O™ @) + 0T (O da

> [ @uoi @0 + o 0?0l
— VIt o+ VIL,

where V1, ..., VI, are defined in the obvious manner. Note that, by the Wﬁ;f—regularity
of v; and the Wllt;i—regularity of o;, this is a valid computation. The crucial point in this
calculation is that the only derivatives that apply to w; appear in the form Bkw](-k) (and

are decoupled from the (i, m)-components), and summation over k € {1,...,n} corre-

sponds to taking the divergence of w;. We define 9, := (zbj(z,)c)l 1= ((Op*)w (k))l 1 €

W2 (Q; R™). Then, with div(o;) denoting the row-wise divergence, we obtain

VI = |3 [ div(ol) @l de| -
ki

4.13) 1 X
< ;ZH%’,k
c(n)

< H IV20? w11 @mny < =

<diV(0j), '(/}j,k> dx

(4.30)

‘sz'l(Q;R")

(0j,e(¥jk)) dz
Q

/\

||w]||L1 B’;R") =: VIIL.

Here we used Lemma 2.5(b) in the penultimate inequality. The term VI3 is treated
similarly, now defining ;5 := ((8ip2)8kwj(-k));‘=1 € WL2(Q;R™) as w; € Wi2(;R™) by
Lemma 4.2. Then we estimate analogously

> /Q (div(o;), §y) dz

VI3 <
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1< E)\n
< 5 2 1@ =0 @iy
k=1
1 — k " '
<5 20 M@k -2y = Z 10((0i6%)") = (Ginp g =10
k,i=1 kz 1

At this stage, note that by repeated use of Lemma 2.5(b),

10k ((9:p*)w0l™) — (O p® )l [y -2 0y < 0%l N1 () + 11Dikp®) w0l |11 @)

Hence, we obtain (by possibly enlarging the constant ¢(n) > 0 from the estimation of
VL)

(431) |V13‘ < ]( 2) ||w]||L1(B' Rn) = = VII.

We turn to the estimation of VI, and VI4. We recall that we still have the freedom to
choose the rigid deformations a; as they appear in the definition of w;. As spt(p) = B’
is ball®, we find a constant C'(B’) > 0 such that for every v € W"?(B’; R™) there exists
a € Z(R™) such that

(4.32) v —a|]dz < cnr/ le(v)| dz and / v — a\zdx < cnr2/ |5(v)|2 dx.
B’ B’ B’ B’

It is important that for each such v we can choose one rigid deformation a to make both
inequalities work, and by Lemma 2.3, this is in fact possible. Accordingly, we choose for
each j € N some a; € Z(R") such that inequality (4.32) holds with v being replaced by
v; and with a being replaced by a;. Turning to VI3, we go back to the definition of o}
and thereby obtain by virtue of Young’s inequality and the above Poincaré inequalities
(4.32) that

1
VL[ < Z/ (1" (e(vy)) jQ\E(UJ)I)I(ammpz)\Iwék)ldx

k,i,m

1
4.33 2L ) 2 NE
(4.33) < L1p(f)/B/ |w]dx+2Ajj2(/B/|w]| dx-i—/ () ) )
0<r<1 i
ot ) maxtlipt). 1 [ e+ 515 / le(vy)? da).
BI 2.A

r3

As to V1, we note that since (¢(v;)) is uniformly bounded in L'(Q; R by (4.14), so

is (div(v;)) in L'(€2). We then estimate, using the pointwise bound* | div(w;)| < |e(v;)]
and (4.14),

VI, < c(n)/@ loj] | div(w,)|dx

=2

(4.34) i
c(n) max{Lip(f), 1} '
r2 ( /B’ ‘5(01 )|

1 2
+ g galetes) dz).
By our choice of a; and (4.14), VII can now be estimated by

(n)

c(n) /. " 2
(435)  VIL< S5l < ?(lan[9u0]+7$ (Q)+P)'

Step 3. Conclusion. We now gather estimates and start from (4.25) to find

( )

Z / Ay le(w):pe(ey). pihe(op)] d < LTI+ U e

31n view of Poincaré’s inequality, it would be sufficient to assume that spt(p) is a connected Lipschitz
domain.
4Note that rigid deformations have zero divergence.
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(4.27), (4.29) c(n)
S (V] + V2 + V3) + VIl + ...+ VI4 + T||E(wj)||Ll(B/;R"))

whence we absorb V7 into the left side of the previous inequality. We then succesively
combine (4.27), (4.30)—(4.35) with (4.14) to obtain via 0 < r < 1

Z/A £(vj); poke(vy), pOre(vy)] da < —/ e(vy \dx—k%x
J

a:o,2r) J 23
x/ (1+\€(Uj)|2)dx+f<ian[.@uo}+7$n(9)+%>,
B(zo,27) Jr j

where we track constants to find that ¢ = ¢(Lip(f),A,n,v,¢1) > 0. Since Lip(f) only
depends on c¢2,y by Lemma 2.8, this immediately gives (4.22) by (4.25), and the proof
is hereby complete. O

4.5. Proof of Theorem 1.1. Based on Theorem 4.3, we can proceed to the proof of
Theorem 1.1. It needs to be noted that the second order estimate given in (4.22) is the
decisive ingredient which we lacked in [44], and in the following we demonstrate how
(4.22) leads to a Sobolev regularity improvement. Here, we are led by the ideas exposed
in [18, 14] for the gradient case.

Proof of Theorem 1.1. Let uw € GM(F;up) be given and let B(x,5r) C © be an open
ball. In this situation, w is a local generalised minimiser, which in particular implies
that F,[u; B(zo,57)] < Fylv; B(zo,57)] for all v € BD(B(x¢,5r)). We now denote (v;)
the specific Ekeland viscosity approximation sequence as constructed in (4.10)ff., with Q
being replaced by B(z, 5r) and ug being replaced by u|g(s,,5r). Lemma 4.1 then implies
that there exists a subsequence (v;()) C (v;) such that v 2w in BD(B(wo, 57)) as
l — 0.

We begin with n > 3. Since in particular 1 < a < 2 1n the present situation, we

introduce the auxiliary convex function V,(¢) = (1 + [€]2)*F", ¢ € RIS Recalling
(vjy) C WIOC( (20, 57); R™) from Lemma 4.2 and dlﬁerentlatlng Va(e(vjy)), we obtain

for all k € {1,...,n}

—2—a

2—a\?2
OuVale i) < (757) 10ke (i) 2 le(sw) P + le(wiw) ) 2

RYE
< c(a) \8ks(vj(l))|2 T
(14 [e(via)]?)2
Therefore, we find by the previous inequality, the lower bound in (1.4) and Theorem 4.3:

IVa(e@im))I? 20, = C(n)(Hv(vll(g(vj(l))))HIQ_,Z(B(zO,r))

2 (B(zo,7))
1
+ = Va(e(v; 2dz
5 )., Velewo)P da)
<c(n a)(/ V(e l)))|2 dzx
T B (L le(v;)1?)®
1 1
+5 (1+ [e(oy) ) de)
(4.36) ™ JB(z0.r)
(4.22), (4.14) ¢
= le(vj@))| dz
72 JB(0,2r) 0

c

+ x/ 1+ |e(vip)|?) de
Aj(l)](l)27"3 B(zo,QT)( € jm)' )

(Fulu Bwo, 5r)] + 72" (Bao, 57)) +

c 2
*Sor )

o =T+ ... +1IV,,
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where ¢ = ¢(n,a, A\, A, v, c1,c2) > 0. Here, the first estimate is valid by the scaled Sobolev
inequality, whereas we have used v/1 + t2 < 1+t for the ultimate one. As a consequence
of the definition of V,, we find

(4.37) |z\2fTa < Va(z) for all z € RZX™.

sym

This yields local uniform boundedness of (e(v;;))) in L?(B(zo, ) R ) for ¢ = 2-ap,
and the latter number satisfies ¢ > 1 if and only if 1 <a <1+ 57 which is the standing
assumption of Theorem 1.1. Let us note in advance that (4.12) implies that lim;_, ., IT; =
0, whereas lim;_, o, III; = 0 holds trivially. Now consider the function ¥, (t) := |¢|? for
q > 1. Then Wg°(t) = oo for if [t| > 0. Since e(v;q))L" L B(xo,7) X Bu L B(zo, ),
we obtain as a consequence of RESHETNYAK’s theorem, Lemma 2.9, and the notation
adopted in (2.11) afterwards with v = (Z", Eu),

dE*u dv
U, (&) dz + / e d|E*u| = / ¥ dly|
/B(xo,r) ! ) B(zo,r) (d|ES |) | ‘ B(zo,r) <d|1/|) |
(4.38) < liminf/ \I/q#(LE(Uj(l))) dx
l—o0 B(zo,r)

0P (BUBlrnsr) | )
r
Since the very right hand side is finite, we conclude that E®u vanishes on B(zg,r). By
arbitrariness of B(z, 1), we moreover infer that E*u = 0 in © and so u € LD(Q2) together
with e(u) = &u. Moreover, by Korn’s inequality, Vu € L(B(zg,r); R"*™). To obtain
the precise form of (1.7), we choose a rigid deformation 7, € Z(B(xo,)) such that
||vu||Lq(B(l'07T');R"X") < ||V(U - 7Tu)||L<1(B($077»);]RnX") + HVWUHL(I(B(JJ(j,T');RnX")
(2.6) n

= C(”‘E(“)”Lq(B(zo,r);R:yé:) J”“;il][ |7T“|dx>

B(zo,r)

= ! d
< (e laqogen iy + 78, ulda
ZTo,T

(4.38) Eul(B 5 s n
< c<<| u|(B(xo,57)) _|_Tn—2)2 +7“571][ \u|dx)
B(zo,r)

r2

Dividing the previous inequality by ra o= rg%f, we obtain

b = 1
(][ |Vu|qu) Sc((l—i—][ |Eu\)2 —i—f][ |u\da?)
B(zo,r) B(xo,5r) " B (o)

This is (1.7) and the proof is complete for if n > 3. Now let n = 2. As above, (V,(e(v;()))
is locally uniformly bounded in W'?(B(z, 57); R”) and thus, using TRUDINGER’S em-
bedding W™ (Q) < exp L7771 (Q), (4.36) equally yields

Va(e(w;))l By < VI+ o +TVL

Working with ¥(¢) = exp(t%T) = exp(t*7%) instead of ¥, from above, we similarly
conclude that u € E'expL® %(B(zg,7)). We then employ CIANCHI’s inequality from

expL" T

Lemma 2.2(b) with =2 — a(> 0) and hereafter % = 2=%_ In consequence,
IVul|  2za <V —ma)ll  2-a HIVrull e o
expL3-a (B(zo,r)) expL3-a (B(zo,r)) expL3—a (B(zg,r);R"x")

1
= C(||5(“)”expL2*G<B(a:0,r>;m‘y¥,r) T ]{3( : [ul dx)
Zo,T

= 1
c((l +][ |Eu|) + 7][ [ul dx),
B(zo,57) T JB(wzo,r)

and the proof is complete. O

IN
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4.6. Selected implications. We now collect some consequences of the results estab-
lished above and particularly improve the results from [44]. We begin by strengthening
[44, Cor. 3.8], justifying the second arrow from below in Figure 1.

Corollary 4.5 (Existence of second derivatives). Let n > 2 and suppose that f €
C*(RI) satisfies (LG) and (1.4) for some 1 < a < -"~. Then there holds GM,oc(F) C

sym

W24(Q; R™) for any 1 < q < n2=2.

loc n—a

Proof. Let u € GMjoc(F') and let B(:L'o, r) € Q be an open ball. By Theorem 1.1
and its proof, we have GMj,o(F) € WP(Q;R™) for any 1 < p < oo if n = 2 and
any 1 <p — (v;) be the Ekeland viscosity approximation sequence
constructed in (4.10) with € being replaced by B(zg, ) and uo being replaced by u[g(z,,r)-
Then we record, using Young’s inequality with exponents 2 and 57— for some 1 < g < 2,

q Ve (v)l? —q gy 2
|V€(U,)‘qu§,/ _Vel)l g, 224 (1+ |e(v;)[?) ¥ =7 da.
/B(a:g,r) ! 2 B(zo,r) (1 + |€(vj)|2) 2 2 B(zo,r) !

The first term is uniformly controlled by Theorem 4.3. If n = 2, then the second term is
uniformly bounded in j € N regardless of 1 < ¢ < 2 as sup,cy ||s(fu])||Lp (Blwo,r) R < OO
for all 1 < p < oo (see the proof of Theorem 1.1). If n» > 3 and 1 < a < "5, then
l<a< 1+ %, and again by the proof of Theorem 1.1, the second term is uniformly
bounded in j € N if

2— 2 - _
(4.39) azq%q < " _;n that is, ¢ < n _Z =:g(n).

Note that g(n)

in W29 for 1 < ¢ < . From here the result follows in the same way as in the proof
of Theorem 1.1, agaln usmg Korn’s inequality. (]

. Hence, (v;) is locally uniformly bounded
n(2 a)

Compared with [44], we have now established that for the ellipticity regime 1 < a <
~2, all generalised minima possess second derivatives in some Ll. ¢ > 1. An easy

application of the measure density lemma [41, Prop. 2.7] yields the following
Corollary 4.6 (Singular set bounds). Let f € C*(R2X") satisfy (LG) and (1.4) for

sym

some 1 <a <1+ 2. For a given map v € BD1c(Q), put

Yy = {m € Q: limsup
RN\

Then the following holds:
(a) If n=2and 1 < a <2, then any u € GMo.(F) satisfies dim»(X,) = 0.
(b) (F) satisfies dim s (2,) < n2=2.

We conclude this section by describing the structure of GM(F;ug) and begin with

| E*v|(B(z, R))
Ev—z|dL"+ | >0 forallze REST 5.
Fr 00"+ g

nl’

Corollary 4.7 (Uniqueness modulo elements of Z(2)). Let @ C R™ be an open, bounded
and connected set with Lipschitz boundary and ug € LD(Q). In the situation of Theo-
rem 1.1, generalised minimisers are unique up to rigid deformations, that is,

u,v € GM(Fup) = In € Z(Q): u=v+ .
Proof. By Theorem 1.1, GM(F;up) C LD(2). Now suppose that u,v € GM(F;ug) are

two generalised minima such that e(u) # e(v) Z£"-a.e.. Then, by strict convexity of f
and convexity of f°,

Fu [U + ’U Z / f d!L‘ 4z 1 foo(TI'(U() N U)) o V(’)Q) d%n—l.

2
we{u,v} 0
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For u,v € GM(F;ug), the right-hand side equals min F',,,[BD(£2)] which consequently
yields a contradiction. Hence, e(u — v) = 0 Z™-a.e., and since 2 is connected, this
implies that u = v + 7 for some 7 € Z(2). O

As in the BV-case, Corollary 4.7 cannot be improved to yield full uniqueness. To
this end, it is important to require a suitable variant of strict convexity on the recession
function f°°; note that f°° is positively 1-homogeneous and hence not strictly convex.
In this respect, the relevant concept is as follows (also see [68, Sec. 4.5]): We say that
a function g: RE" — R has strictly conver sublevel sets provided for each ¢ € R the

set T'y(g) := {z € RX™: g(z) < t} is bounded, convex and if z1,2z9 € 9T'4(g), then

sym

Az1 4+ (1 — A)zo ¢ OT4(g) for any 0 < X < 1.

Corollary 4.8 (Uniqueness and structure of GM(F;ugp)). Let Q C R™ be an open,
bounded, connected set with Lipschitz boundary such that for any fizred a € R there holds

*%m_l({l’ €oN: x;=a})=0 for alli € {1,...,n}.

In the situation of Corollary 4.7, suppose that the map f°: R™ 3 z — f*(z ©v) has
strictly convex sublevel sets for allv € R™\{0}. Then there exists a generalised minimiser
u € GM(F;ug) and a rigid deformation m € Z(Q) such that

(4.40) GM(F;up) = {u+ Ar: Ae[-1,1]}.

Finally, if there exists a generalised minimiser u which attains the boundary values
Troa(ug) " L-a.e. on 0Q, then GM(F;ug) = {u}.

The condition on f2° to have strictly convex sublevel sets is satisfied if, e.g., f is
spherically symmetric, ruling out that (£°°)~!({1}) contains any line segments of positive
length. Corollary 4.8 follows from Corollary 4.7 similarly as in the BV-case, cf. [14,
Thm. 1.16], but is technically more demanding; for the reader’s convenience, the appendix
A, Section 8, includes the precise reasoning with emphasis on the two-dimensional case.

5. A FAMILY OF CONVOLUTION-TYPE POINCARE INEQUALITIES

Approaching Theorem 1.2, we pause to provide a family of convolution inequalities
to instrumentally enter the partial regularity proof below. We believe that the result
might be of independent interest, and thus state selected versions thereof in the end of
the section.

Proposition 5.1. Let A > 1 and let V(z) := /1 + |2|2 — 1 be the auziliary reference
integrand as usual. Then there exists a constant ¢ = c¢(n,\) > 0 such that the following
holds: For every open and bounded Lipschitz domain Q@ C R™, u € BDj.(R™) and
numbers e, L > 0 there holds

(5.1) V(L(u — pe xu))de < cmax{(Le), (Le)?} V(Euw),
Q Q+B(0,\v/ne)

where p: R™ — R is an arbitrary standard mollifier in the sense of Section 2.4.

Before passing to the proof of the preceding proposition, let us remark that (5.1)
cannot be established as in the full gradient case, cf. [10, Lemma 5.3]. Namely, if we
wish to obtain (5.1) for u € BV(R";RY) with the symmetric gradient on the right-hand
side being replaced by the full gradient, it suffices to invoke the fundamental theorem
of calculus in conjunction with Jensen’s inequality. In view of (5.1), ORNSTEIN’s Non-
Inequality forces us to avoid the appearance of the full gradient on the right-hand side.
Upon localisation, a slightly weaker result can be readily obtained as follows: Invoking the
SMITH representation formula (2.4) and then arguing as in the full gradient case, we may
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Q(l) Q(2) Q(3)
’ N:(Q)

Q. |

k

A (204 1)ey
~ . e
Q
].—‘gA = E)\Zn —
EX

F1GURE 2. Neighbouring cube notation.

conclude® that for any 0 < 8 < 1 (but not for 3 = 1) there exists C = C(3, diam(£2)) > 0
with

(5.2) IV (L(u = pe))lli (o) < Cmin{Le”, L2*}V (Eu)|(2 + B(0, )

for all w € BD(Q2) and L > 0. However, this is neither optimal nor good enough for
deriving the requisite decay estimate in Section 6; see the proof of Proposition 6.4 and
Remark 6.6 afterwards.

Proof of Proposition 5.1. The proof consists in four main steps. After giving the geo-
metric setup in a first step, we establish a preliminary Poincaré-type inequality involving
the reference integrand V' in the second step. Then we globalise by a covering argument
with respect to cubes having edgepoints contained in a certain lattice, depending on the
parameters € and \. Lastly, we smoothly approximate to conclude the full claim.

Step 1. Preliminaries. Let A > 1 be given. Let Q be as in the proposition and
denote, for t > 0, N;(Q) := {& € R™: dist(x, Q) < ¢} the t-neighbourhood of Q2. We put
l:= [/\il] +1 € N so that ﬁ < {, and define € := 7.

We now consider the lattice I'c, := €,Z" and denote Q., the collection of all open
cubes of sidelength €, and edge points contained in I'c,. Given @ € Q.,, we denote @
the cube which has the same center as ) and sides parallel to those of @ but sidelength
(20+1)ey. Then Q has all its edge points equally contained in ., , No(Q) = Q+B(0,¢) C
@, and can be written as the union of A" = A" (A,n) € N cubes from Q.,; for notational
convenience, we denote these cubes Q9 i = 1,...,.4", and arrange that for all Q € Q.,,
the relative positioning of Q" to @ is the same — see Figure 2 for this setup. Moreover,

if Q € Q., satisfies Q@ NQ # 0, then we have Qc Ny me(§2). In fact, in this case there

exists 29 € QN and thus for any z € Q we have dist(z,9Q) < |zo — z|. By the geometry
of @ (see Figure 2), it is clear that |xg — z| does not exceed

Vnex ++/ne = \/ﬁe(% +1) < Ane

and hence dist(z,(2) < Ay/ne so that z € Ny .(2). Summarising, for every Q € Q.,

with QN Q2 # 0, we have @ = U2, QU) € Ny /().
Step 2. A Poincaré-type inequality for the reference integrand V. In a second step, we
claim that there exists a constant ¢ = ¢(n) > 0 such that for every open cube @ C R",

5Namely, express the difference u — pe * u by the convolution integrals emerging from (2.4) and then
use the embedding of BD(R™) into Wf:)’cl (R”;R™) or W (n=1+)(R™, R™) for 0 < s < 1 (cf. [45]). Since
suitable fractional potentials of W !-maps can be controlled conveniently, this allows to arrive at the
claimed estimate for all 0 < 8 < 1.
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FIGURE 3. Not-to-scale construction in the proof of Proposition 5.1. In
step 1, the lattice parameter ) must be adjusted in a way such that for
any Q € Q.,, QcC Nyyme(2) = QU S, /.. Note that the correcting
rigid deformations required for the nonlinear Poincaré inequality of step
2 are taken over the enlarged cubes @

every L > 0 and every u € C>(R™;R") there holds
(5.3) / V(L(u — Tigu)) de < Cmax{LAQ), (LHQ))*} / V(e(u)) da.
Q Q

Here, ﬁQu denotes the rigid deformation determined by Proposition 2.4. It is crucial for
this inequality to be available in this very form, and so we provide the details. Thus let
u € C*°(R™;R") and employ the representation from Lemma 2.4: There exists f[Qu €
Z(Q) such that for all z € @ there holds

u(x) = qu(x) + Tole(w)](x) = Hqu() + /Q Ro(x,y)e(u)(y) dy,

where |Rg(z,y)| < Crlz—y|' ™" for all z,y € Q, x # y, with a constant Cr = Cr(n) > 0.
Let 2 € Q. We define a measure i,: %(Q) — Rxq by putting . (A) := [, Crle —
Y|t dy for A € B(Q). Since |z —y| < /nl(Q) for all z,y € Q,
dy Cr
D =Cr e = @
We also need a remark on the upper bound. Namely, if z € @, then Q C B(z, v/nf(Q))
independently of x. Thus, with w,, = .Z"(B(0,1)),
dy

d
12(Q) < Cr / = / o < Crwany/nl(Q).
B(z,v/at(@)) [T = Yl B(0,vit(Q)) 1Y

In conclusion, there exists ¢ = ¢(n) > 0 such that

6.4 Q) < (@) = U@

for all cubes @ and = € Q. Now, u,/u,(Q) is a probability measure on %(Q) for every
z € Q. In consequence, as |u — Ilgu| < |Tgle(u)]| pointwisely in @ and V: R>p — Rxq
is monotone, we estimate by Jensen’s inequality



30 F. GMEINEDER

/QV(L(u—HQu)) §/ ( /RQ (z,y)e )dy) dx

< /Q v (LcRum(Q) /Q |:|f(_ ;(ﬂ)_'l uj(y@)) dw

Lemma 2.11(a), (5.4)

Y e (LUQ)). (LUQ)?) ¢
c)(y)] Crdy
X/QV</Q |z — "t pe( )>dJC
"L cmae((£(Q)). (@)% [ [ Ve D as

< eman (14(@). (L@ g5 | [ Ty
gcmax{(Lé(Q)),(Lé(Q))Q}@ /Q V(e(u)(y))py(Q) dy
L emax{ (LUQ)), (LUQ))*) /Q V(e(u)()) dy

Tracking the dependencies of constants, ¢ = ¢(n) > 0, thereby establishing (5.3).
Step 3. Inequality (5.1) for C*°-maps. As a main feature of the symmetric gradient

operator, let us note that as first order polynomials, all elements m# € Z(R™) of its
nullspace are harmonic. Thus they satisfy the mean value property and, as a consequence,
convolution with standard mollifiers locally turns out to be the identity on the rigid

deformations, cf. [33, Chpt. 2.2.3, Thm. 6]. For any @ € st, we recall the definition
of the cube Q from step 1. Then (5.3) holds true with @) and IIgu being replaced by Q
and II~ ol respectively. We then obtain, using Lemma 2.11(i) in the third step

/QV( (w—peru)dr < 3 /v (1= pe + u)) d

QEQ.,
QnQ;é(Z)
Z /V uw—1I )—pE*L(u—ﬁéu))dx
QGQEA
QnQ;é(Z)
Lemma 2.11( ~
2 > / o) + V(pe * L(u — Hzu)) dz.

QEQ:,
QNOQAD

At this stage, we use Jensen’s and Young’s inequalities to conclude that for any @ € O,
there holds

/ Vipe *L(u—ﬁ@u))dz < / Pe *V(|u—ﬁ@u\)dz
Q Q

< /N o V= Tigu) da

N.(Q)CQ ~
55) < /Q V(L - figu)) do
(5.3)
< cmax{L{(Q) }/
UQ=2F e

§2 cmax{Le, (Le) }Z/ V(e(u))de,

)
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where ¢ = ¢(\, n) (note that ¢ only depends on \). Note that, for any fixed j € {1, ..., .4}
and all Q, Q' € Q., with Q # Q', QY N Q'Y = (). On the other hand, by step 1, for any

fixed j € {1,...,n}, UQGQEA, QNQ£0 QY c UQGQ“’QQQ;&@ QcC Ny m=(€2). Therefore,

(5.6) Q;; /Qm ))da < /Nwa(m V(e(u))da.

QmQ;ﬁV)
Consequently, we obtain by @ C @ and (5.5) in the first step:

Z/ ufﬁu ) Z/ (pe * L(u—1I ))dx)

QeQ., Q€eQ.,
QNQAD QNOQAD

(5.5)

< cmax{(Le), LE}ZZ Ve(u))

QeQ., j=17Q%
QmQ;é(Z)

= cmax{(Le), (Le) }Z Z u)) dz

j=1QeQ., Q(J)
QmQ;é(Z)
(5.6)
< emax{(Le), (Le)*} V(e(u))dx.
Ny yme(Q)
Since A = A (A, n), ¢ = ¢(\,n) in the previous estimation, and (5.1) follows for u €
C>*(R™; R™).

Step 4. Passage to the general case. Let u € BDyo.(R™). By localisation, it is no loss
of generality to assume u € BD(R™). Let n € C2°(B(0,1);[0,1]) be a standard mollifier.
We put up = 115 * u, so that, by passing to a non-relabeled subsequence, ur — u
Z™-a.e. in R™. This yields by Fatou’s lemma for all € > 0

/V(L(u—pg*u) dm<hm1nf/V (ug — pe *x ug)) dz
Q

—00

< emax{(Le), (Le) }hmmf/ o V(e(ux)) dy

< cemax{(Le), (Le)?} lim inf / V(Eu)
k—o00
Afs+ 1 (Q)

< emax{(Le), (Le)*} V(Eu),
Nayme(2)
where we used inequality (5.1) for smooth maps in the second and Jensen’s inequality in
the third step. This is the inequality claimed in the proposition and the proof of (5.1)
for u € BDjoe(R™) is hereby complete. O

For consistency, let us note that if the right hand side of (5.1) is zero, then w must
coincide with a rigid deformation on each of the connected components of U +B(0, Ay/ne)
and so on those of U; in consequence, it must coincide with its mollification on each of
these connected components and hence the left hand side is zero indeed.

Corollary 5.2. Let A > 1 and let V(z) := /1+ |22 — 1 be the auziliary reference
integrand as usual. Then there exists a constant ¢ = c(n,\) > 0 such that the following
holds: For every open and bounded Lipschitz domain Q@ C R™, v € BDj.(R™) and
numbers €, L > 0 there holds

(5.7) / V(L(u — e * (pe ¥ u))) dz < cmax{(Le), (Le)?} V(Eu),
Q Q+B(0,23/ne)
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where p,n: R™ — R>q are arbitrary standard mollifiers in the sense of Section 2.4.

Proof. Denote the left-hand side of (5.7) by I. We use Lemma 2.11(b) and Jensen’s
inequality to obtain

I§2/QV(L(u—(pg*u)))dm+2/QV(L(p€*u—na*(pg*u)))dx

Prop. 5.1

< cmax{(L&),(LE)Q}(/

Ve + [ V(E(p. v u)
Q+B(0,\\/ne) Q+B(0,A\/ne)

A/n>1 5
<  cmax{(Le), (Le)*} V(Eu),
Q+B(0,2Ay/ne)

where again ¢ = ¢(A,n). The proof is complete. O

We conclude this section by discussing a particular borderline case in the spirit of
(5.1), for simplicity stated on the entire R™:

Corollary 5.3 (Sobolev-Poincaré inequality in convolution form). For any 1 <p < 25
there exists a constant ¢ = c(n,p) > 0 with the following property: For every u € BD(R™)
and € > 0 there holds

1
(5.8) (/ |u — pe * ul? dm) T <eelT e / |Ewl,

where p: R™ — R>q is an arbitrary standard mollifier in the sense of Section 2.4.
Proof. Let u € LD(R™). By the STRAUSS inequality [76] and Poincaré’s Inequality,
Lemma 2.3, there exists a constant ¢ = c(n,p) > 0 such that [[u — HqulLr(grr) <

Q)7 (Wl (@ipnyy for all w € LD(R™) and cubes @ C R™. We argue as in the
proof of Proposition 5.1, but now work with the lattice T'. = €Z" and, for Q € Q., define
@ to be the cube with the same center as @ but (2n+ 1)-times its sidelength. This yields

/ |u — pe xulPdz < c Z Z 0Q)P- p"+"(/ |E(u)|d33>p
n QW

Jj=1 QeQ.
@) (") )
i S [ el
j=1 QEQ (7)
< cermn / e(w)ldz)”,
and from here the conclusion follows by smooth approximation as above. O

Following the scheme of proof, other inequalities can equally be obtained, so, e.g.,
by replacing the LP-norm on the left-hand side of (5.8) by Sobolev-Slobodeckjii (use
BD(R") < W*7=1s (R";R"), 0 < s < 1, cf. [44]) or Triebel-Lizorkin seminorms.

6. PARTIAL CY"*-REGULARITY AND THE PROOF OF THEOREM 1.2

In this section we provide the proof of the second main result of this paper, Theo-
rem 1.2, allowing for possibly very degenerate ellipticities.

6.1. Outline of the proof and setup. In order to reach the full degenerate ellip-
tic regime which Theorem 1.2 applies to, we employ a direct comparison strategy that
uses mollifications of generalised minima as comparison maps. A direct strategy here
is suggested by both the very weak compactness properties of BD and the general lack
of higher integrability of generalised minima in the very degenerate ellipticity regime
(e.g., if 14+ % < a < o0). Comparison methods of this type, originally employed in [10]
for the full gradient case, consequently require to control V-function-type distances of
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generalised minima to their mollifications. This is where the convolution-type Poincaré
inequalities of the previous section enter crucially. More precisely, we proceed as follows:

(i) Section 6.2.1: Estimates for comparison maps. By linearisation, Proposition 6.1
establishes that if a C*-Holder continuous function satisfies a certain smallness
condition and has symmetric gradient close to some carefully chosen reference
point, then it almost enjoys the typical decay for linear systems. For the linearised
integrands, full gradient estimates are available by KORN’s inequality in L?.

(ii) Section 6.2.2: Smoothing and selection of good radii. To construct the requi-
site C1**-comparison maps for step (i), we carefully mollify the given generalised
minimiser and demonstrate that, under suitable smallness assumptions, the mol-
lification parameters can be chosen such that the comparison estimates from (i)
become available, cf. Lemma 6.2 and Corollary 6.3.

(iii) Section 6.2.3: Comparison estimates and decay. Here we give the aforementioned
comparison argument and employ minimality to deduce a preliminary decay esti-
mate for generalised minima, cf. Proposition 6.4. To control the emerging terms,
the comparison will be essentially reduced to good annuli where the relevant dif-
ferences can be dealt with conveniently. The construction of such annuli hinges on
Lemma 2.10, giving control over the symmetric gradients, whereas Corollary 5.2
allows to suitably bound lower order terms.

These steps lead to an e-regularity result, Corollary 6.7, finally implying Theorem 1.2;
cf. Section 6.3. We now introduce the requisite terminology for the proof below: Given
xo € Q@ and R > 0 such that B(xzg, R) € , we define for u € BDj,.(R2) two excess
quantities by

(6.1)  ®(u;xo, R) := /B( o V(Eu — (BEu)syr) and ®(u;xo, R) = m,

where the mean values in the definition of ®, ® are taken with respect to £, cf. (2.12).

6.2. Preliminary decay estimates. After the preparations of the previous section, we
now carry out the steps (i), (ii) and (iii) as outlined in Section 6.1 above.

6.2.1. Estimates for comparison maps. Let f € C? (R satisfy (LG) and let 0 < o < 1.
Throughout this paragraph, we fix £ € R;‘yﬁl, a radius 0 < g¢, < 1 and assume that
f € C?(R2X7) satisfies

Sym

(6.2) NEP? < (F"(€0)€,€) < AJE[? forall € € REYY

sym

for some 0 < A < A < oo. Moreover, we suppose that there exists a bounded and
non-decreasing function wg, o : R>0 — R>o with limg o we, o, (t) = 0 such that

(6.3) [F7() = £ (&0)] < wep .06, (1€ = &0l)  for all £ € B(&o, ¢, )-
Finally, for 0 < 7 < R and zo € Q with B(zo, R) € Q and v € C"*(B(zo, r); R") we put

La Qi o. on
dev, (v; zo,r) == /B(zom) fle(v)) dx —inf{/B(mom)f(a(w))dx; wfgvéfg%€;3:§ )}

togy (v30.7) i= sup[e(0) = €0l + 27 ()] rmmmnsae)

B(zo,r)
The deviation dev,, captures how far v is away from minimising F' on C**(B(zo,r); R")
for its own boundary values. Conversely, t, ¢, will prove instrumental to find the men-
tioned smallness condition which is necessary to infer the decay estimate of the Holder
continuous comparison maps. We have

Proposition 6.1. Let f,a, o, 0¢,, A\, A and we, o, be as above. Then there exists 1 <
Ceomp = Ceomp(My A\, A) < 00 such that the following holds: If v € CI’O‘(B(me/Q);R”)
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satisfies to g, (v; x0, R/2) < 0¢y/Ccomp, then there exists a bounded, non-decreasing func-
tion ¥: R>o — R with im0 9(t) = 0, only depending on n, A\, A and wg, . , and a
constant ¢ = c(n, A\, A) > 0 such that for all 0 < r < R/2 we have

2 r\nt2 )
/B(%m) le(v) = (e(v))zo.r|” dz < C( (E) /13(z0,R/2) le(v) = (€(v))ag,ry2|” da
(6.4) + V(ta,g (v; 2o, R/Z))/ le(v) — §o|2 da
B(zo,R/2)

+ deva(v;xo,R/2)>.

The preceding proposition essentially follows by reduction to the full gradient case as
a consequence of KORN’s inequality. For the reader’s convenience, it is established in the
Appendix, Section 9.3, together with the requisite estimates for linear systems.

6.2.2. Smoothing and selection of good radii. In this section we concentrate on step (ii)
and establish the required adjusting of the smoothing parameters. The following lemma
and its corollary closely follow [10, Lem. 4.2] but with a slight change in the relevant
constants. Here and in all of what follows, we choose and fix a constant A, > 1
for latter application of the convolution inequality from Proposition 5.1; for instance,
Aeon = 1+ ﬁ will do.

Lemma 6.2. Let u € BDioo(R"), 2o € R™, r > 0 and put & = (Eu)y, . Moreover,

suppose that &)(u, xo,7) < 1, where d is defined by (6.1). Then for each 0 < o < 1 there
exists ¢ = c(n,a) > 0 such that if

(6.5) TEI;(U; Xo,T) "t ,

1
© T 18Vmeon
then the mollification u. . of u (cf. (2.15)) satisfies
(6.6) ta,o (Ue,e; 0, 5) < c(n, a)®(u; zg, r) i .

Proof. First observe that, as a consequence of elementary estimates for convolutions, we
obtain with a constant ¢ = ¢(n) >0

T T\
: @ ; [P S - — .
In fact, for 2 € B(zo, 5) we have |e(ucc)(z) — | = |p£2) * (e(ue) — &o)(x)| and thus

(6.8) sup  [e(uee)(@) =&l < sup  fe(ue)(z) — &ol-
z€B(z0,r/2) z€B(z0,r/24¢€)

On the other hand, for any radially symmetric standard mollifier : B(0,1) — [0, 1] there
exists a constant ¢, > 0 such that for all g € L'(R";R2%") and & > 0 there holds

sym
c
(6.9) M5 * 9l oo B Tamrxny < == sup  |g—¢| for all £ € RZX",
[ ]co (B(zo,7/2);Raym’) Se B(zo.1/2+6) y
which can be established by straightforward computation. Therefore, with ¢ = ¢(n) > 0,
[e3 r @
(6.10) r[e(uelcon B oo,/ < € (7) sup - Je(ue) = &ol.
€ B(zo,r/2+¢)

In consequence, adding (6.8) and (6.10) yields (6.7), and in order to arrive at the claimed
estimate, we must give an estimate for supp(,, ,/24¢) [€(ue) — §ol- As € is adjusted by
(6.5) and thus B(x, &) C B(xo,r) for all z € B(xo, 5 +¢), we obtain by Jensen’s inequality

V@)@ @) < V(Eu-&)
B(z,e)
< (g)ni(u;xow) < 0 (u; xg,r)7iia < 0

(6.11)
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for all such x, where £ = (48y/TAcon)™. Here, the ultimate estimate is due to our assump-

tion ®(u;zo,7) < 1. By Lemma 2.11(d) with £ = v/£2 4+ 2/ and using (6.11), we obtain
for all z € B(xo, § +¢) with a constant c¢(n) > 0 (as our choice of £ only depends on n)

(6.12) le(ue) (@) = o < e(n)V (e(ue) (@) — &) < e(n)®(u; o, 1) 7

Now, by (6.7), the specific choice of € by (6.5), (6.12) and since ®(u;zq,7) < 1,

~ 2a

ta,g (Uee; T0,7/2) < c(n, ) (1 + (5(u;x0’r)>_n+4a> B(u; o, 7)o

< ¢(n, a)&)(u;xo,r)wr%.
This is (6.6), and the proof is complete. O
Working from (6.6), Jensen’s inequality in conjunction with Lemma 2.11(d) then yields
Corollary 6.3. In the situation and adopting the terminology of Lemma 6.2, we have
/ le(ue.c) — &o|? dz < c(n, a)®(u; 2o, 1), and
B(zo,r/2)

(6.13)
/ e(te.e) — (e(tte.e))agryol de < c(n, 0)®(us 20, 7).
B(zo,r/2)

6.2.3. Comparison estimates and decay. In this section, we let u € GM(F;ug) be a
generalised minimiser, where f satisfies the requirements of Theorem 1.2. Throughout,
let zp € Q@ and R > 0 with B(zg,R) € Q be given. We put & = (Eu)s,,r and let
0¢, > 0. For a € B(&, 0¢,) we recall from (2.16) the shifted integrand f,: RE — R
defined by

fal§) = fla+&) = fla) = (f'(a),£), &€ R
Given a map w: B(zg, R) — R"™, we then define w,: B(zo, R) — R™ by

(6.14) We () == w(z) — Ay, (z) == w(z) — alr — x0).
Proposition 6.4 (Preliminary decay estimate). Let f € C? (REx) be a convex function
with (LG). Also, suppose that & € REIY, 0 < g¢, < 1 are such that the following hold:

(a) There exists a bounded and non-decreasing function we, o : R>0 — Rx>o with

}1\% Weo,0¢, (t) =0,

IF7(€) = f"(€0)| < wep,0, (1€ = Eol)  for all§ € B(&o, e,)-

(b) Mgy, 0, = min{A(2) smallest eigenvalue of f"(2): z € B(§o, 0¢,)} > 0.
Then there exist constants © = ©(gg,,n,a) € (0,1) and

(6.15)

c= c(n7)‘00m 9507m€0,050’Lip(f>7 sup |f//|) >0

B(£0,0¢0)
such that
(6.16) (Bu)py.r =& and ®(u;zo,R) < ©
imply that

R

r

n+1 "
) )(@(u;xo,R))mqm;xo,R))

holds for all 0 < r < R/4. Here we have set v :=u. . (cf. (2.15)) where

(6.17)  ®(u;zp,r) < c(@(v;xo,%) + (1 + (

(6.18) et & (u; 3, R) 7w .

1
T 48N Aeon R
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Proof. The comparison argument underlying the proof consists of three ingredients:
Lemma 2.10 and Proposition 5.1, both expressing properties of (the symmetric gradi-
ents of) generic BDj,.-maps, and generalised local minimality of .

Step 1. Preliminaries. Let 0 < r < R/4 and put a := (¢(v))g,,»- By (6.18) and since
t — tae, (v; 20, 1) is non-decreasing, we have by Lemma 6.2 and &, = (Eu),, g

tae (U320, 7) < taye, (V320, &) < c(n, a)®(u; zg, R) 7=,

where we can assume without loss of generality that ¢(n,a) > 1. From here we deduce
(6.19)  |&—al < ][ le(v) — &ol dz < tag, (vs@0,7) < c(n, @)@ (u; 29, R) 75,
B(zo,r)

and put, with ¢(n,«) > 0 as in the preceding inequality,

0¢ 1+4a 1\ 2(n+4a)
(6.20) 0 .= (40(%0{)) (10> .

With this choice of ©, ®(u; zo, R) < © implies | —a| < 0¢,/2 by virtue of (6.19). Hence
B(a, %2) C B(&, 0¢,), and so (6.15), continues to hold in B(a, %*). Lemma 2.12(b)
moreover implies that there exists co = co(&o, 0y, Meo,0¢, - LIP(f); SUDB (¢, 0¢, ) [FD) > 1

such that
(6.21) V() < fa§) ScoV(€)  forall & € REYT.

sym

Step 2. Selection of good radii. For this proof, we put for w € BDj,.(£2) with slight abuse
of notation

Fafuws] == / fa(Ew)

whenever w € €2 has Lipschitz boundary dw. By Lemma 2.12(a), f, > 0 and so F, > 0.
To employ the comparison argument in step 3 from below, we require a suitable bound
on the difference F,[04; A] — Faltia; A] in terms of the excess ®(u; xo, R), A C B(xo, R)
denoting an annulus. This task can, in general, only be achieved on certain annuli A,
and we proceed by constructing the latter. We define an exit index

125
(6.22) Ni=|— .
8(P(u; o, R)) 2w +sa
Then, by (6.16) and (6.20), N > 15/(®(u; 2o, R)) 75+ . We then put, for k € {1,...,8N},
5 R ~
(6.23) o = R A ke (B(us o, B)) 7

so that s € [3R,ZR]. By our choice (6.18) of €, we have R — 2e > IR. Also, by
Lemma 2.12(b), f, € C2(R;Ly>fr?) is of linear growth. Since moreover r < £, Lemma
2.10(b) is applicable and yields that for any k € {1, ..., N} there exist t; € (ksk—1, Ksk)
and 7y, € (r,2r) with
(6.24)

1 1

- __  Lemma 2.10 _
/ fa(EVq) — fo(Et,) < 45‘(7 + *) / Ja(Etg)
A(zo37k,tk) kg — Rgk—1 T/ JB(xo,R)

(6.23), (6.18) ~
< o (@G Ry

+ @ )= (D)) [ g

r

Now, recalling the choice (6.18) of ¢, for k =1,..., N the annuli
(6.25)  Ag == A(z0; tr — 2AeonV1E, 1 + 2XconV/RE), sk 1= i + 5 (P(u; o, R))7sa
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are pairwise disjoint and contained in B(zg, R). Let us address this point in detail: By
our choice of ¢, disjointness of Ay and Ay is equivalent to

(6.26)
A VAL = 0B 11— 2 onv/Tie > 55 + 2heon/TiE

5.25),(6. R ~ R ~
C2U ) — b > = (B(u; 20, R)) 757 + 2o (B(u; o, R)) 7755
500 12

Now note that by construction, tp11 — tx > Kgks7 — Kgk = %R(Ef(u; T, R))%}r&x7 and
so the last inequality of (6.26) is certainly satisfied provided % > (®(u; o, R))%r}rSG,
which in turn follows from (6.20). Now, succesively employing (6.25), ty < kgy < %R,
(6.18) and (6.20), we similarly arrive at sy + 2Aconv/ne < R. Thus, A, C B(zg, R) for
all ke {1,...,N}.

By pairwise disjointness of the Ag’s and A, C B(zg, R), we can therefore conclude
that there exists &' € {1, ..., N} such that

N[ fuEi) < [ fulBa)+ et [ fu(BE) < / fu(BiLy).
A Ay An B(zo,R)

To extract information from this estimate, we employ the lower bound on N, cf. (6.22)ff.,
to obtain

~ 1 ~ 1 ~
(6.27) fo(BEu,) < ﬁ(q)(u;x()’ R))Zn-}-8a / fa(Elly),
Ak’ B(IQ,R)
For future purposes, let us particularly remark that
€ 500 R((’I;(u, o, R))'n«#%a (6.20) 1 11
Y I < — <1
Skt =t R(®(u;x0, R))Z0 5 48X con/1 Acony/70 10

because of /n > v/2 and hence

2
(6.28) max{( - ) , ( : ) } < 1008 (3 20, R)) 75
Sgr — Tgr Sgr — g

Step 3. Comparison estimates. Let now ry,tr/, si be defined as in step 2 so that

r<r < g < tg < spr < R. We define a Lipschitz function p: B(zg, R) — [0, 1] by
2

(6:29)  p(w) = (ol = )Ly <lal< ot /2 () Llal> (spo+ta0) /23 ()
for € B(xp, R). Then we have ¢ := v, + p(u, — U,) € BD(B(zg, R)) and, in particular,
w|3B(w0,sk/) = aa‘é)B(wmsk/)' Since thus u|8B(a:0,sk/) = (¢ + A-’EO)‘@B(ZEQ,Sk/) A" tae. on
OB(xo, sg’), generalised local minimality of u for F implies by virtue of the integration
by parts formula (2.2)

/ fo(Bily) = / F(Bu) — £(a) — (f'(a), Biia)
B(xovsk/) B(xOvsk’)

<[ A @@ - [ )

B(xzo,sp/)
Splitting B(zo, sk/) according to the definition of p, we consequently arrive at
Foltia; B(zo, 7w)] + Faltia; B(xo, twr) \ B(xo, 74)] + Fal[tia; B(zo, sw) \ B(wo, tr)]
< Falta; B(zo, mw)] + FalVa; B(zo, ti) \ B(wo, )]
+ Fo[(Va + p(ta — 0a)); B(zo, s1) \ B(zo, ta)].

Regrouping terms and employing (6.30), we consequently arrive at

I:= Fa[ﬂa;B(xo,Tk')] < [Fa[ga;B(xOJ"k’)]
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+ (Fa[ﬁa; B(zo,tr) \ B(zo, )] — Faltia; B(xo, tir) \ B(o, rk/)})

o+ (Pal(Fa + pli — 5)): B(wo, s1:) \ Blao, tir)] = Pl Blao, s17) \ Bz, )|
= II+III+1IV.

Ad 1. By Jensen’s inequality and Lemma 2.11(b) in the first and (6.21), r < 7/ in the
second step, we find

(6.30) O (u; o, 1) < 4/ V(Eu — a) < 4cgFyftig; B(xo, i )] = 4ol
B(zo,r)

Ad II. In a similar vein as in the estimation of (6.30), we recall a = (£(v))g,,» to obtain
(6.31) II= / fa(e(w) —a) dz < ¢y ®(v; o, 21).
B(aio,’l”k/)

Ad III. By our choice of rg/, tg in step 2, cf. (6.24), we use ®(u;xg, R) < 1 to bound III
by

(6.32) III <

B(CE().,R)
Ad IV. This step of the proof crucially utilises the convolution inequality from Section 5,
and to this end, we employ Corollary 5.2 with L = —2 In combination with (6.28),

Spr—tyr "

we hereafter obtain

/ V(u) dz < ¢(n, Acon)i(u;xo, R) TFsE X
Alzostyrsy) NSk — L

(6.33)

X / V(Euy,).
J A(Z03t e —2Acon V/1E,S 1 +2Acon v/ TIE)

We then arrive at the following string of inequalities:

Lemma 2.11(b), (6.21) aa B F'Ja
v < deo / V() + V(Bit) + / V(£ dz)
A(zostyr,sy) A(zostyr,Spr) Sk — T

< 800( [ V (Ei,) +/ V(u) da;)
J A(zo3t s —2€,5,0+2€) A(zostyr,spr) Sk — i
(6.33)

< Sco( / V (Etl,)
Aoty —2e,8,+2¢)

(s Aeon) B (s 20, B) 755 [ V(Eﬂa))
J A(z05tr —2Xcon VIIE, S s +2Acon /TIE)

(6.21)
<sd(f (i)
A(z03t 1 —2Xcon VNE,S s +2Acon V/TE)
el Aeon) B0, )T [ g (ETL))
B(Io,R)
(6.27) ~

27 e, Meons ¢0) (s 0, R) 7 / fa(Eily)
B(zo,R)

where, in the final two steps, we have used that sp + 2Aconyv/ne < R as established
in step 2. We may now gather the estimates for I,...,IV to obtain with a constant
¢ = ¢(n, Acon, co) >0

(6.34) ®(u;x9,7) < c(@(v;xo,%) + (1 + <If) )(&)(u, xO,R))m /

B(zo0,R)

fulEa) ).
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Step 4. Conclusion. In order to arrive at the requisite form of the preliminary decay
estimate (6.17), we estimate by succesive application of Jensen’s inequality and (6.21):

/ Fa(Biia) < co / V(Bu — a)
B(Io,R) B(I(MR)

<oeo( [ V&) + 2 B0 RV - )
(6.35) < c(ch)(/B(x 0 V(Bu — &) + R" ]{3@ ,

< c(n,co)</B(mojR) V(Eu— &)+ (f)n /Bwow V(| Eue,e — 50|))
< cmen)(1+ (2) Yot )

V(e(v) - &) de)

r

the ultimate estimate being valid due to our choice § = (Eu)z,.r and r + 2 < R.
Combining this estimate with (6.34), we obtain (6.17), and the proof is complete. O

Proposition 6.5. In the situation of Proposition 6.4 we have
R\n\ ~
(6.36) deve (v; 20, &) < c(l + (?> )fb(u; xo, R) 7t D (u; zo, R).

Proof. Adopting the terminology of step 1 of the previous proof, we leave the setting
unchanged up to formula (6.23). Instead of Lemma 2.10(b) we use Lemma 2.10(a) to
find, for each k € {1,..., N}, a number t; € (ksr—1, ksr) such that

(6.37)

50 ~ 1
fa(E:Ja) _/ fa(Eaa) S 7(13(11,,1'0,]%) 2t / fa(Eﬂa)v
/B(aco,tk/) B(wo,tyr) AconV/10 B(z0,R)

providing the requisite substitute for formula (6.24). Equally, we find s = tp +

T&&)(u; xo, R) 7se such that

- 1 = 1 -
(6.39) FulB,) < 2 @uiao, R [ f(B)
A, 15 B(zo,R)
the annulus Ay now being defined as in (6.25) with the obvious change of t; and s .
Let 6 > 0 be arbitrary. We then put
C1 = {p € Wh°(B(xo, ty); R™): @ = ¥, on dB(zq, trr)}
Cy:i= {(p S WLOO(.A(.’E(); [ Sk/); Rn) ©p = Vg ON &4(%; txr, Sk/)}
and find 1 € Cy, 2 € Cy such that
. 0
[ hemde< it [ juee)dot
B(J;o,tk/) B(aﬁg,tk/)

p€eCy
(6.39) 0

/ Fu(ela)) dz < inf / Fulel)) da + 5.
A(zostgr,8pr) peC2 A(zoityr,s,r)

Let us note that, employing an integration by parts, for all ¢ € C; there holds
/ fa(e(a)) = fa(e(p)) dw = / f(e(w)) = f(e(p) + a) da.
B(xzo,t,) B(zo,tg)
By definition of f,, we then obtain
dev, (v; zo, tg) = / fa(e(vy)) dx

B({L’(),tk/)

(6.40) ¥ € C1*(B(wo, tr); R™)
. . € 7 Lo, ') ’
o {/B(m,tk/) Juleto) des ¥ =g on 51%(;0”5’“’) } |
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Since 1, 2 are Lipschitz and coincide on 0B(zg, tx), we deduce that the glued map
p3 = 1m¢1 + 14 (zost, s, ) P2 belongs to W (B(z9, 53 ); R™). We then obtain,
using that ¢ — dev, (v; 2o, t) is non-decreasing in the first inequality,

deva (v;zo, &) < dev,(v; o, tg)
(6.40), C1*CcWh°°, (6.39), _ 0
< [ fe@ydo- [ feedot g
B(zo,ts) B(zo,ty)
(6.39), B
<[ RE@)d - [ gl oo
B(mo,sk/) B(mo,sk/)

([ (a2 - pem)

- (/B(%W) (fa(Biia) — fule(ps).2™) ) + 0

=V+VI+6.
Ad V. Splitting B(xg, sx) = B(zo, tx) U A(xo; g, tgy) and employing (6.38), we obtain
(6.38) N N 1~ i N
<(/ FalBT) — FulBT)) + B D7 [ f(ER)
A(zoityr,spr) B(zo,R)
(6.37) _

< ¢(Co, My Acon)®(u; 70, R) 7w / fa(Etyg).
B(zo,R)

Ad VI. Different from step 3 of the proof of Proposition 6.4, we now use the comparison
map 1 1= @3 + p(Ua — Va), p still being defined by (6.29) but now with the new choices
of t and sg/. In advance, we note that 1) = u, " *-a.e. on IB(zg, sx/). Since

(6.21)

/ V(e(ps)2™) < e / Ju(Bps) de
A(Io;tkl,sk/) A(Io;tk/,sk/)

(6.39), _ 0\ Jensen . 0
<ol [ fomin) e+ 2) o[ g+ 2)
A(zoityr,Syr) 2 A 2

Generalised local minimality of u for F' and p|g(z,.:,,) = 0 yields

VI < / Lo (B3 + p(Ta — Ta))) — fale(0s)L™)
A(“«’Oxtk’ 751«’)

(6.41)

< 400(/.A(m0,tk/,sk/) V(e(ps) L") + V(El,) + V(E(ﬂa)gn))

+ o / Vv (—) dz
Alzostyr,sp)  \SK — i

~ 1 0
Fullii) + B Ry [ g () + )

(6.41), Cor. 5.2, (6.38)
§ 6(007 n, >\Con) (
'Ak/

(6.38)

< c(co,n,Awn)((if’(u;xo,g))m/( |
B(zo,R

- 0
folBit) +3)
Combining the estimates for V and VI yields

deve (v; xo, E) < 0(00,71,Acon)<(§>(u;m0,R))m/

fo(E,) +6).
2 B(z0, R) (ko) )

Now we employ (6.35) and send 6 N\, 0 to conclude. The proof is complete. O

Remark 6.6. As mentioned after Proposition 5.1, the crude but easier obtainable es-
timate (5.2) is not sufficient for applications in the proof of Propositions 6.4 and 6.5.
In fact, by the above proof we are bound to set L = —L— . With the particular choice

Spr—tgr
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of € by (6.18), we then find that Le® cannot be suitably bounded to still arrive at the
requisite decay estimate. On the other hand, one might redefine €, but then estimates
of the remaining proof cannot be obtained in the requisite form and the decay estimate
cannot be inferred.

Corollary 6.7 (s-regularity). Let f € C*(R2X™) be a convex integrand with (LG) and

sym

suppose that there exist zo € RI and 0., > 0 such that the following hold:
(C1) Mzg,0., > 0,
(C2) For all £,&' € B(z0, 04,) there holds |f" (&) — f"(&)] < w(|€ —&'|) with a bounded
and non-decreasing function w: R>9 = Rx>o such that limy o w(t) = 0.
For any a € (0,1) there exist g € (0,1] and o € (0,1) such that the following holds for
all w € GMioc(F): If £ € Q and R > 0 are such that B(z, R) € 2 and
(a) KEu)x,R - ZO‘ < 920/3;
(b) ®(u;x, R) < eo,
then there holds &)(u;x,ajR) < U2O‘j§>(u;x7R) for all j € Ng. In particular, g and o
only depend on 1, Acon; 0z05 Mg, 0.y > W, €1, C2 and SUPR(., ,_ ) [7"].

Proof. Let o € (0,1), x € © and R > 0 be such that B(z,R) C Q. Note that, if
€o € B(z0, 20¢,) With g, = 0,/3, then mg,, 0ep > 0 and [f"(§)—f"(&o)| < Weo,0¢, (1€—¢&ol)
for all £ € B(&o, 0¢,) With we, o, =w. We put §o := (Eu)y, g

We pick the constants ©, ¢ > 0 from Proposition 6.4 with zg = z, fix the mollification
parameter € as in (6.18) and let g9 € (0,0) to be fixed later on. Thus, for all 0 <
r < %, (6.17) is in action with v = u... From Lemma 6.2 applied to the radius R,
we obtain ta ¢, (v;z, &) < c(n, @)®(u; z, R) "1 | ¢(n, o) > 0 denoting the constant from

wtaa : Qo 1
Lemma 6.2. Thus, diminishing £p, we may assume that c(n, a)e] < min{ — 5h

Ccomp > 0 being the constant from Proposition 6.1. This entails tq ¢, (v; 2, %) < % and
thus |e(v)(y) — (£(v))s,r| < 1for all0 < r < £ and y € B(z,r). Therefore, a consecutive
application of Proposition 6.1, Lemma 2.11(c), Corollary 6.3 and Proposition 6.5 yields

wsean =o(5) 7+ (5 ()
X (ﬁ(c(n,a)@(u;x,R)ﬁ) + 5(u;x,R)m)) x ®(u;x, R).

for all 0 < r < £. In conclusion, (6.17) yields the existence of 581) € (0,1] and cgec > 0
such that there holds

~ 2 R\2n+3
(6.42) B(u;z,7r) < cdec(ﬁ) (1 + (f) H(®(u; 2 R))) (u; 2, R)
r
forall 0 < r < %, the non-negative function i : R>o —+ R>( being given by
H(t) = 9(c(n, a)t"im) 4 t7isa

cf. Proposition 6.1 for the introduction of . Tracking dependencies, Eél), Cdec and H
Ol’lly depend on n, )‘con» Oz mzo,gzo y W, Llp(f) and SupB(zo,gzo) ‘fll|~ We now define

(6.43) o= mm{ V2- T 2Cdec }

and, using that limy o H(t) = 0, choose s(()z) > 0 such that there holds

(6.44) 5(()2) <o™? and sup{H(t): 0<t< 5(2)} < g2,
We now define gy := min{sél),so )} and claim that, if z € Q and R > 0 are such
that B(z, R) € Q with |(Eu)y.r — 20| < 0s,/3 and ®(u;z, R) < &0, then there holds
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®(u;z,0/R) < 0™ ®(u;z, R) for all j € Ny. To conclude the proof by iteration, we put
; Eu(B(z,0/R .
9, BuBoR) o

ZL"(B(x,07R))

and establish validity of
J
~ ) o~ 1
(Dec;) ®(u;z,0’R) < 0**®(u;x, R) and |29 — (3)| < Qz E 2—

for all j € Ny. This is trivial for j = 0. Now assume validity of (Dec;) for some j € Ny,
the second part of which implies fo € B(z0, 202,) so that (C1) and (C2) continue to hold
in IBS(fO , $0,). Moreover, the first part of (Dec;) yields ®(u;z,09R) < Egl). Therefore,

- ) (6.42) H(D(u: IR ~ )
O(u;z, 07T R) < 02 (cgeco?2Y) (1 + ((ué—x;;f)))é(u;x, o' R)
o mn
G41) o~ o (643), (Dee))
< 0%(2¢deco” )@ (u; x, 07 R) < o VUTHV D (u; x, R).

Toward the second part of (Dec;), it suffices to establish |§(()j+1) — 5(()3’)| < %QZOQ*jfl.
Observe that

V(Iféj“)—féj)l)s][ C V(Bu-€Y)
B(z,07t1R)

1 .
(6.45) <= V(| Bu— &)
o B(z,07 R)
(Dec;) (6.44),0<o<1
< 2P (uyx, R) < 020‘3“% < ,

which, by definition of V, entails |§(]+1 (j)| < /3. Therefore, by Lemma 2.11(a), (c),

|§(()j+1) (J)| < l \/V |§(J+1) (j)‘)
6.45

O 2 e O g

= \/ﬁ(ﬂ—l) = 3Pz

The proof of the corollary is thereby complete. O

6.3. Proof of Theorem 1.2. We can now proceed to the
Proof of Theorem 1.2. Let u € GM(F;ug) and (xo, z0) € Q x RZX™ be such that f”(zo)

sym
is positive definite and (1.8) is satisfied. Since f” is continuous, there exists g,, > 0 such
that (C1) and (C2) from Corollary 6.7 are satisfied. Let €9 > 0 be as in Corollary 6.7.

By (1.8), limp~0(|€u — 20)zo,r + |(E*0)20,r| = 0, and since V(-) < |- |,

¥ n |EU|(B($O7]i)) (1.8)
(U7 o, ) 2<]][3(x0,R) |éau O| 52 n(B(IOa ll)) ) ’ \‘

By (1.8) and &u € Li, (Q; REYT), we conclude that there exists some g > 0 and an
open neighbourhood U; of z( such that B(zg,2Ry) € Q and

][ EudL" — z
B(w,Ro)

hold for all x € U;. Diminishing U; if necessary, we can assume that U; C B(zg, Rp).
Let z € Uy, so that B(z, Ry) C B(x,2Ry). Thus,

Eu(B(z, Ry)) wd P
Z7(B(z, o)) Ji(m,m fud?

€0 QZO} | E*u|(B(zo,2Ro)) _ 1 min{@ 920}
47 6 )7 £L"(B(xg,2R0)) VA 4’ 3

< mm{

|Erul(B(ro, 2R0)) _ 02

= 7 (B(w, 2Ro)) 3

20 +2n

— 2
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On the other hand, since V(-) < |-| and V() = -],

+ 2n+1 | ESU|(B(£L'O, 2RO))
ZL"(B(o,2Ro))

As a conclusion, conditions (a) and (b) from Corollary 6.7 are satisfied for all z € U;
and R = Ry. Therefore, there exists C' > 0 such that ‘I)(u, z,r) < C(r/RO)QO‘%(u;x, Ry)
holds for all z € Uy and 0 < r < Rg/4. By definition of 5, this implies E*u = 0 in Uy
and hence Eul Uy = e(u).Z" |_U;. Now, for all such = and r,

V(]{g(zyr) |€(U) - (E(U))m,r| d,,Sf") < ]i( V(&(u) — (E(U))w,r) dem < C(Ro,€0)’r2a

z,r)

@(u;x,R0)§2f |Eu — zo| L™
B(ZE,R())

< €&g.

and so, Lemma 2.11(d) yields a constant ¢(Rg,eg) > 0 such that

71[3(1,@ le(u) = (e(u))ar|dL™ < (c 71[3(1,@ View) — (e(u))e,r) d,,zﬂ")% B

Now, the usual Campanato-Meyers characterisation of Hélder continuity [41, Thm. 2.9]

implies that e(u) is of class C%* and hence L? in a neighbourhood U of zy. Thus, by
Lemma 2.2 (a),

][ |Vu — (Vt)pr 2 dL" < c][ le(u) — (e(u))gr|? dL™ < er?™.

B(z,r) B(z,r)

We again invoke the Campanato-Meyers characterisation of Holder continuity to con-
clude that u is of class C''® in an open neighbourhood of z. Finally, by the Lebesgue
differentiation theorem for Radon measures, cf. (2.13), £™-a.e. zy € Q satisfies (1.8),
and the proof of the theorem is complete. O

7. REMARKS AND EXTENSIONS

We conclude the paper with some remarks on possible generalisations of Theorems 1.1
and 1.2 with focus on non-autonomous problems. First, by the very nature of the proofs,
Theorem 1.1 and 1.2 straightforwardly generalise to local generalised minima. Second,
in analogy with [10, Sec. 6], if f: Q x R2X™ — R and ¢: 2 x R™ — R are such that

sym
2+ f(z,2) is of class C? for all z € Q,
cilz] =y < fz,2) <ol +2]) for all z € Q, z € REXP,
|f(z1,2) — f(22,2)] < eslvr — 22| (1 + |2]) for all z1, x5 € Q, z € R,

|g(x17y1) _g(m2a92)| S C4H.’IJ1 - J}Ql + |y1 - yQHH for all T1,T2 € Q7 Y1,Y2 S RTL7

for some ¢q,...,c4 > 0,7 >0 and 0 < u < 1, then Theorem 1.2 generalises to functionals

(7.1) Flu] := / f(z,e(u))dz +/ g(z,u)dz.
Q Q

More precisely, let u € GMjoc(F) and suppose that (zo,20) €  x RE\" is such that zo
is the Lebesgue value of Eu at xy, Moreover, assume that there exists A > 0 such that
Nz|? < (D? f(x,20)z, 2) holds for all z € R uniformly in an open neighbourhood of
xg. Then there exists an open neighbourhood U of z( such that u has Hoélder continuous
full gradients in U. Let us, however, note that a corresponding result is far from clear if
the overall variational integrand (z,y, z) — f(z, z)+g(x,y) does not possess the splitting
structure but is of the general form (z,y, z) — f(z,y, 2).

Namely, here one usually invokes Caccioppoli’s inequality in conjunction with Gehring’s
lemma on higher integrability to conclude that minima of elliptic problems belong to
some Wll(;z, p > r, where p is the Lebesgue exponent of the natural energy space W',
As explained in [45], there exist linear growth integrands and generalised minimisers
u € BV\VVI’1 which do satisfy a Caccioppoli type inequality. This easily carries over
to the BD-situation, and hereby rules out any integrability boost by virtue of Gehring.
On the other hand, even for semiautonomous integrands (z, z) — f(z, 2), a well-known
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counterexample due to BILDHAUER [18, Thm. 4.39] asserts that if f € C*( x RV*™)
satisfies a uniform variant of (1.4) for a > 3, then generalised minima might in fact
belong to BV \ W', In particular, the Caccioppoli inequality itself cannot yield higher
integrability results in the linear growth setting.

On the other hand, the approach of Section 6 is robust enough to apply to integrands
(x,y,2) — f(x,y, 2) indeed if suitable superlinear growth in the last variable is imposed
and thus the Gehring-type improvement is available (cf. [10, Thm. 6.1]):

Remark 7.1 (p-growth functionals: Partial regularity). Let 1 <p < oo, 0 < u <1 and
let f: QxR"xRXX™ — R be a variational integrand that satisfies

Sym

2 flx,y, 2) is of class C?,

|D: f(z,y,2)| < er(1+ |27,

Col 2P =y < flw,y,2) < es(1+[2]),

|f(@1,91,2) = f(@2,y2,2)| < calyn|M(lor — 22 + [y1 — y2[)H (1 + [2[P)
for all z,x1,22 € Q, y,y1,y2 € R" and z € R{T and constants c1,...,cq > 0, v > 0.
Let u € Wl’p(Q;R") be a local minimiser of the variational integral corresponding to f.

loc

Moreover, let (x0,y0,20) € 2 X R™ X ngxn? 1s such that xq is a Lebesgue point for both
u and e(u), with Lebesque values yo or zy, respectively. If there exists A > 0 such that
Az)? < <D§ f(x,y,20)z, 2) holds for all z € R2X™ uniformly in an open neighbourhood of

sym
(z0,Y0), then u has Holder continuous gradients in an open neighbourhood of xg.

In view of partial regularity, we have omitted symmetric quasiconvex functionals
throughout. In fact, at present it is not known how to modify the method exposed
in Section 6 even in the full gradient case (also see the discussion in [10, 67]). The
only result available in the BV-full gradient, strongly quasiconvex case is due to KRIS-
TENSEN and the author [45], and the case of strongly symmetric-quasiconvex functionals
on BD is due to the author [43]. If the condition of strong symmetric quasiconvexity pro
forma is introduced for conver C*-integrands, then it translates to 3-elliptic integrands
in the sense of (1.4) and does not apply to the very degenerate ellipticity regime covered
by Theorem 1.2. Whereas the main obstructions in [45, 43] stem from the weakened
convexity notion, they moreover require higher regularity of the variational integrands,
namely, Ci;ff for some 1 > 1 — 2. In this sense, the results of [43] and Theorem 1.2 are
independent.

As to Sobolev regularity, the case of non-autonomous integrands (z,z) — f(x,z)
which satisfy the obvious modification of (1.4) uniformly in x, however, is more intricate.
Even if f is of class C? in the joint variable and satisfies the estimates corresponding to
[19, Ass. 4.22], it is not fully clear to arrive at the decoupling estimates that eliminate
the divergence as done in the proof of Theorem 4.3. Whereas for partial regularity
C%?_Holder continuous z-dependence of D, f still suffices, the corresponding Sobolev
regularity theory is far from clear when aiming at an ellipticity regime beyond 1 <
a < 1+ + (also see BARONI, COLOMBO & MINGIONE [12] for the related borderline

case 1% = 1+ & in the superlinear growth regime). Namely, in this case the Euler-

Lagrange equations satisfied by (generalised) minima cannot be differentiated. In the
full gradient, superlinear growth regime, this setting has been extensively studied by
MINGIONE [59, 61, 62] and KRISTENSEN & MINGIONE [52; 53, 54]. Here, Nikolskii
estimates are employed but — as a matter of fact — do not use any information apart
from the Euler-Lagrange equation itself and the continuity properties of f with respect
to its first variable. Such a strategy has been pursued in [44] for autonomous functionals
(in the regime 1 < a < 1+ %) However, if we wish to amplify the ellipticity regime as is
done in Theorem 1.1, then we ought to use the instrumental identities for the minimisers
that come out as a byproduct of second order estimates, cf. Theorem 4.3. As the latter are
essentially obtained by differentiating the first variation-style perturbed Euler-Lagrange
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equation, the approach presented in Section 4 requires modification, an objective which
we intend to deal with in the future.

Lastly, let A[D] be a first order, constant-coefficient differential operator A[D] on
R™ between the two finite dimensional vector spaces V, W. Then the canonical Dirichlet
problem (1.2) has a relaxed minimiser in BV4(Q) := {v € L'(;V): A[DJu € .#(; W)}
if A is C-elliptic (and hence L'-traces of BV*-maps are definable), cf. [20, Thm. 5.3].
By means of Hilbert-Nullstellensatz-techniques [74, 46], the splitting strategy underlying
Theorem 4.3 — yet being technically more demanding — is likely to work as well. On
the other hand, based on the Poincaré-type inequalities from [20], the partial regularity
result from Theorem 1.2 hinges on the existence of a mollifier p such that px 7 = 7 for
all 7 € ker(A[D]). This is a consequence of the Bramble-Hilbert lemma, and we shall
pursue this elsewhere.

8. APPENDIX A: ON UNIQUENESS AND THE STRUCTURE OF GM(F’;ug)

In Section 4.6 we addressed some uniqueness assertions and the structure of the set
of generalised minimisers. Working from the assumption that generalised minima are
unique up to rigid deformations, we here complete the proof of Corollary 4.8 with

Proposition 8.1. Let Q C R™ be open and bounded with Lipschitz boundary 02 and
let ug € LD(S2). Moreover, suppose that f: R — R is convex integrand with (LG)
such that for each v € R™\ {0} the map f°: R™ 3 z — f*(z ®v) has strictly convex
sublevel sets (in the sense of Section 4.6) and every two generalised minima differ by a

rigid deformation. Then the following hold:
(a) If there exists one generalised minimiser u € GM(F;ug) with u = uy ™ *-a.e.
on 09, then GM(F;ug) = {u}.
(b) If 92 moreover satisfies for all a € R

(8.1) A" {r e 0 xi=a}) =0 foralli € {1,...,n},
then there exists u € GM(F;ug) and m € R(Q) such that
(8.2) GM(F;uo) = {u+Am: Ae[-1,1]}

Note that, the hypotheses of Corollary 4.7 imply those of the preceding proposition.
For the rest of this section, we tacitly assume that the hypotheses of Proposition 8.1 are
in action.

We begin with some preliminary considerations. Given uy € LD(Q) and a convex
integrand with (LG), we start by noting that for any v € GM(F';ug), the set

Ry = {m € Z(Q): u+7 € GM(F;uo)}

8.3
(8:3) is convex, closed and bounded in Z(2).

Convexity of R, is a direct consequence of convexity of F,,[—; Q] on BD(Q2). If (7;) C
R, satisfies m; — 7 in Z(12), then Lipschitz continuity® of f*° readily implies that
Fuolu+ mQ) = limj_o0 Fy,[u + 75;Q] = min F,,,[BD(Q); Q] and hence 7 € Ry, too.
Lastly, if R,, were not bounded, we would find (7;) C R, with ||7;|| — oo for an arbitrary

norm || - || on Z(2). There exists a constant ¢ = ¢, > 0 such that c|a| [b] < |a @ b| for all
a,b € R". Since, by (LG), c1]z| < f*°(2) for all z € RET, we find

C’/Q | Troq(u — up — m;)| d#" ! < /Qfoo(TraQ(uO —u—Tj) © V) dA"
< (min Fyy [BD(Q)]) — f[Eu)(Q) < oo,

so that the triangle inequality and equivalence of all norms on Z() yields the contra-
dictory sup;¢y [|7]| < oo. In consequence, (8.3) follows.

6The recession function is convex and of linear growth, thus Lipschitz, too.
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As an adaptation of [14, Lem. 6.2], we now establish that whenever = € Z(Q) is such
that u+m € GM(F;ug), then there exists a "~ !-measurable function 8: 9Q — R\ (0, 1)
such that Traq(uo)(z) = Traq(u)(z) + B(z)m(z) for # " -ae. x € .

In fact, if u+ 7 € GM(F;ug), then by (8.3), u+ 7 € GM(F;ug) for all 8 € [0,1]. In
particular, we find

2f[Eu](2) + [ (Traq(up — u — ) © vog) dA™ 1

o0
+ 2 (Traa(up — 1) ® veq) dA#" " = 2min F,,,[BD(Q)]
o0
< 2f[Eu)(Q) + 2/5»9 F° ((Trag(uo —u— g)) ® I/aQ) doemt,

and since
™
QfOO (TI‘@Q (UO —u— 5) ® V@Q) < foo (TI‘@Q (UO — u) ® I/aQ)

(8.4)
+ [ (Traoq(up — u — 7)) @ vpg) S ‘-a.e. on 09,

we deduce that we have equality in (8.4) J#" l-a.e. on 9Q. Because the map z +
(2 ® vaa(x)) has strictly convex level sets for " l-a.e. x € 99, by [68, Lem. 4.8],
for "~ 1-a.e. x € O there exists R(z) > 0 such that

Traq(uo(x) — u(zr) — m(x)) = R(x) Traq(ue(z) — u(x)) for " ae. x € 0.

Clearly, on {z € 9Q: 7w(z) = 0} we must have R = 1. Conversely, on {x € 9Q: w(z) #
0}, we have R # 1, Traa((1— R)(uo —u) — ) = 0 and hence Traq (uo—u) = 25 Traq ().
We may thus define

B(z) = {1 where 7(z) = 0,

ﬁ%w) otherwise,
so that B(x) € R\ (0,1), and it is easily seen that 8 has the required properties.

Proof of Proposition 8.1 (a). In [44] this has been established for conver domains, and
we here give the general case. Suppose that v € GM(F'; ug) is a generalised minimiser.
Then v = u + 7, and generalised minimality of v together with Trpq(u) = Traa(uo)
" 1a.e. on 0N yields

. °(r(z) ® vaq(x))d#™ 1 (x) = 0.
Since f*°(a®b) > Clal|b| for some C' > 0 and all a,b € R", 7 =0 2" 1-a.e. (and thus,
by continuity, everywhere) on 9. Write w(x) = Az + b with A € RZX" and b € R™.
Clearly, for Q is open and bounded, 9 cannot be contained in an (n — 1)-dimensional
affine hyperplane. If dim(ker(A)) < n — 1, then ker(A) is contained in an (n — 1)-
dimensional hyperplane H. We have, for some xg € 99, {y: Ay = —b} = x¢ + ker(A).

Since 99 ¢ xo + ker(A), we find 1 € 9Q N (2o + ker(A))°. Then, however, 7(z1) = 0

implies Azq = —b and so z1 € ¢ + ker(A), a contradiction. In consequence, necessarily
dim(ker(A)) = n, in which case A = 0 so that, because of m =0 on 99, b = 0 and hence
7 =0 on R". In conclusion, v = v and hence GM(F;ug) = {u}. O

We now establish Proposition 8.1(b) for n = 2; the higher dimensional case is similar
and is left to the reader.

Proof of Proposition 8.1 (b). By assumption, GM(F;ug) = u + Ry, R, being defined
as in (8.3). Suppose that R, contains two linearly independent elements 71, 7mo. Then,
by the above discussion, we may write Trog(ug) = Traga(u) + fim1 = Traa(u) + Bams
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Ht-a.e. on 90 for some suitable 81 2: 9Q — R\ (0,1). Therefore, B1m — fama = 0
Ht-a.e. on 0. We write 71 (x) = Ayx + by, ma(x) = Asx + by, where

_ 0 A N b11 o 0 1% _ b21
= ()= () e a5 5) = (32)

for some suitable A, u € R, by, by € R?; in two dimensions, every rigid deformation is of
this form. Now suppose that f1m; — Bome = 0 S -a.e. on 9N, and denote © C 99 the
set where equality holds; hence, #1(9€\ ©) = 0. Then for any = = (1, z2) € ©,

A2y +b b
) i) (2025 ) = oy (b ).

Denote I' := {z € ©: B1(z) # 0}. Our aim is to establish s#1(T') = 0. We split
r=Tr,UlulsuUly

:={z €T: pxs+bg; =0and — ux; + bay =0}

U{J} €l pxo+ by =0and — pzy + bogy 750}

U{x €T: pxs + boy # 0and — uxy + bag = 0}

U{x € T': pxo + bay # 0and — uxy + bag # 0}.
For T'y, note that if p # 0, then I'; consists at most of one single point and hence
A1) =0. If u =0 and s#1(I';) > 0, then I'; # () implies by; = byy = 0 and hence,
in total, by 4 = 0, w3 = 0, which is ruled out by linear independence of 71, m. Hence,
AN T) =0.

Now, for z € I, we may put v(z) := gfg; and obtain from (8.5)

Az2 + by pr2 + ba
(86) <—)\$1 + b12> =) (—uxl + b22> ’

e The treatment of I'; and I's is symmetric (interchange the roles of 27 and x3).
So suppose that #1(T'y) > 0. If 4 # 0, then 'y C {x € ': 29 = %} and hence
A1 (T'y) = 0 by (8.1), a contradiction. Thus p = 0. From (8.6) we deduce that
Axo + by; =0 for all z € I'y. Again, if A # 0, then 'y C {x € T': 9 = f%}
and hence #*(I'y) = 0 by (8.1). Hence A = 0, and so m; = by, m = by. In
this situation, linear independence of 71, mo and hereafter of by, by implies that
B1 = B2 = 0 #'-ae. on I, a contradiction to B; # 0 s#'-a.e. on I'. As
a conclusion, s#1(I'y) = 0, and similarly, now invoking the first part of (8.1),
AN T3) = 0.

e Suppose that #(I'y) > 0. For x € T'y, we have pzs +bo; # 0 and —puz; +baoy #
0. From here we deduce

_ AIl - b12

Az +bu y(z) =
11 — bag

prs + bay
Therefore, y(z) must be independent of x1,z5 and thus is constant. Hence,
there exists a € R such that m; = amy on I'y. The affine-linear map 71 — ams thus
vanishes on a set of positive .7#'-measure. Therefore, it necessarily vanishes on
a line ¢ C R2. In other words,

(8.8) (A1 — ads)x = a(by — by) for x € 4.

There are three options: If Ay —aAs, is invertible, then (A1 —ads)z = a(bs — by)
has a unique solution and thus contradicts (8.8) for all € £. Thus, 41 —aAs is
not invertible, and by the structure of A1, Ao, this implies A = au. Either a = 0,
in which case (8.7) yields b;; = bys = 0. Then m; = 0, contradicting the linear
independence of my,mo. If a # 0, then (8.6) yields by; = abs; and bjs = abas.
In conclusion, 7, = ams, again contradicting the linear independence of 7w, and
7y Therefore, s#1(I'y) = 0.

for all x € I'y.
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In conclusion, S} (I') = 0 so that f; = 0 H#'-a.e. on 9. Then we obtain from
Troo(ug) = Traq(u) + fim = Trog(u) H#'-a.e. on O that u € GM(F;ug) is a gener-
alised minimiser which attains the correct boundary data ug % !-a.e.. In this situation,
Proposition 8.1(a) yields GM(F;up) = {u}. In total, GM(F;ug) C v+ Rr for some
suitable m € Z(Q). Since in this situation GM(F;ug) is a closed and bounded interval
by (8.3), the statement of Proposition 8.1 for n = 2 follows. O

Proposition 8.1 rises the question under which minimal geometric assumptions on 052
the representation (8.2) continues to hold, an issue that we intend to pursue elsewhere.

9. APPENDIX B: PROOFS OF AUXILIARY RESULTS

We now collect here the proofs of some minor auxiliary results used in the main part
of the paper.

9.1. On the Li-stability (2.7). We start by justifying (2.7). Let 2y € R™ and r > 0.
Pick an L2-orthonormal basis {1, ...,mx} of Z(B(0,1)) and consider the orthonormal
projection Ilg(g,1): LQ(B(O, 1);R™) — Z(B(0,1)) given by Il 1yv := ZkN:1<U77Tk>L27Tk-
For Z(B(0, 1)) consists of polynomials, it is clear that we may also admit v € L'(B(0,1);R")
in the last formula. By (2.6), this yields the estimate

Mg 0,1)vlILr B0,1)r7) < c(M)|v]lLi(B(0,1)27)
for v € LY(B(0,1);R") so that IIg(,1) extends to a bounded linear operator from
L'(B(0,1);R"™) to Z(B(0,1)). Now (2.7) follows by rescaling.

9.2. Proof of Lemma 2.12. Let a € RZX"™ be fixed and let £ € RZX" be arbitrary.

Sym e
Assertion (a) follows by differentiation, and f, > 0 is a consequence of convexity of f.
As to (b), since f is Lipschitz by Lemma 2.8 and because of B(a, 9570) C B(&o, 0, ),
(SupB(ﬁo,Qso) |f,/|)‘§|2 for ‘§| < 9%7
2Lip(f)[¢] for |¢| > 9570.

Therefore, if || > 95707 we may successively apply Lemma 2.11(c) and (a) to find

fa(§) :/0 (f'la+tg) = f'(a),§)dt < {

¢, 2 0¢, 1 2 8 1
fl=20 | g s B ——v(=¢) < —V(©).
| ‘ 2 ez 2 \/5_1 ¢, \/5_1960 ()
Thus, by Lemma 2.11(d) with £ = %2 and the corresponding constant ¢ = c(£) = (%)

50 . L6Lip(f)
fa(§) < (0( 3 )B@Sf},lio)'f |+ V2- 1),

For the lower bound, we observe that by (2.17) and B(a, %) C B(&o, 0¢, ),

V.

1 1
fal&) = /0 /0 (f"(a+ st&), &) dsdt > me, . €| for all £ € B(0, %2).

Similarly, if %2 < |¢|, then positive definiteness of f” on R yields

sym

F2(6) = fu(6) — £2(0) > /O Hi /0 Il (f"(a+ st&)¢, &) dtds > Mgy 0c, §|5§0| ‘§|2.

Hence, we obtain for all £ € R:X™ by Lemma 2.11(c) and monotonicity of R 5 t — V(¢),

sym

2 2
fa(f) > m&m@goV(£)1{|£|<ggo/2}(§) + mMeo,0e, (%) V(i) IL{|§|Z.Q§0/2} (5)

> gy 00 (22 V(6).

The proof is complete.
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9.3. Linear comparison estimates and the proof of Proposition 6.1. Let 2 C R”
be an open and bounded domain with smooth boundary. For w € Wl’z(Q; R™), consider
the variational principle

(9.1 to minimise G[v] := / g(e(v)) dz over v € w + W2 (Q;R"),
Q

where g(z) := o[z, 2]+ (b, z) +c is a polynomial of degree two on RI" with a symmetric

bilinear form o R{T" x RETT — R, b € REZT and ¢ € R. We moreover assume that

o is elliptic in the sense that there exists £1,fs > 0 such that ¢1|z|? < [z, 2] < l3]2|?
holds for all z € RZX".

sym

Lemma 9.1. There exists a unique solution u € w + W (Q;R™) of (9.1). Moreover,
this solution satisfies the following:
(a) There exists a constant ¢ = c(n,l1,€2) > 0 such that if B(xo, R) € Q, then for
all 0 < r < R/2 there holds

- r<e(B) u) — (e(u 2 da
/B(wow) |5(U) (5( ))zo r| doe < (R) -/]3(30071%/2) |€( ) (5( ))zo,R/2| dz.

(b) If Q= B(xo, R) for some xy € R™ and R > 0, then for any « € (0, 1) there exists
a constant ¢ = c(n, a, {1, £z) > 0 such that if w € C**(B(zo, R); R™), then

EtWleo @ mms < EWloos B mrysn:

sym

Proof. KORN’s inequality [|[V|lp2qrnxn) < clle(@)llL2(qrnxny for all ¢ € W2 (4 R™)
implies that minimising sequences are bounded in W?(€; R") (as the Dirichlet datum
w is fixed). From here, the existence of minima is standard by convexity of g, and
uniqueness follows from strict convexity of g. The proof of (a) follows along the lines of
[37, Lem. 3.0.5]. For (b), consider the symmetric bilinear form %#: R™*" x R"*"™ — R
defined by A|z,&| := F[z5™, ™| for z,£ € R"*™. Then A is strongly elliptic in the
sense of Legendre-Hadamard: For all a,b € R™ there holds

Bla@b,a®b] =a®ba®b]>c(n,ly,l)|al?|b?
and since trivially |2z, £]| < ¢(n, €1, 02)|2][€] for all z, £ € R™"*™, A is a strongly elliptic

bilinear form on R™*™. By minimality of u for G, u satisfies the Euler-Lagrange equation

02) {— div(#[Vu, ) =0  inQ,

u=w onJdf).
Therefore, by the classical Schauder estimates for strongly elliptic systems and scaling,
there exists a constant ¢ = ¢(n, {1, ¢3) > 0 such that

Vulco.e @ mymneo) < AVClooe Ggmmme)-

Trivially, [e(w)]co.e G mrms) < Vo Baommee):
B(xg, R), L>"T2%(B(z0, R); Ri) =~ C%(B(xo, R); Rim') with the Campanato spaces

L£P*. We then estimate, using Lemma 2.2(a) in the third step and scaling,

By the simple geometry of

[vw]coﬁa(B(mo,R);Ran) < C[Vw]£2="+2ﬂ(B(gco,R);]R"Xn)

1
=csup sup (7/ |Vw — (vw)B($7T')ﬁB(J;O7R)‘2 d$n>
B(z,r)NB(zo,R)

1
2

2eQ0<r<2Rr N1

Nl=

1
<csup sup (m/ le(w) — (€(w))B(m,r)mB(zo,R)‘2 dgn)
z€QO0<r<2R T B(z,r)NB(z0,R)

S C[ ( )]COQ(B(IO R) Rnxn

sym

where still ¢ = ¢(n, €1, £2). This yields (b), and the proof is complete. O
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The key in the above proof is that an easy reduction to the strongly elliptic bilinear
forms applied to the full gradients is possible. This is not the case for elliptic bilinear
forms. Clearly, in (b) we could have allowed for more general domains, but this is not
needed for the

Proof of Proposition 6.1. We split the proof into two steps, linearisation and comparison
estimates.
Step 1. Linearisation. We begin by defining the auxiliary integrand g: R2*" — R by

sym

9(&) = f(&) + (f'(€0), (€ — €0)) + 5(f"(€0)(€ = &0). (€ — &0)), € € RLLY.
Using a Taylor expansion of f up to order two around &y, we deduce by (6.3) that

(9.3) 1£(€) — 9()] < wepoe, (1€ — E01)IE — &l?, € €B(&,o0c,)-

By Lemma 9.1, the unique solution A of the auxiliary variational principle

(9.4) to minimise / g(e(w)) dz over all w € v+ W*(B(zo, &) R™),
B(z0,R/2)

belongs to C*(B(xo, R/2); R™). By Lemma 9.1 (a), there exists ¢ = ¢(n, A, A) > 0 such
that
r

- 9 . . n+2 - 9 .
(9.5) / o 50) = () dr < (%) / |~ €Wz yal”d

for all 0 < r < R/2. Moreover, enlarging ¢ > 0 if necessary, Lemma 9.1 (b) gives

(9.6) [e(M]co.e @R < €000 Bl RRY

sym )’

Since h is a solution of the variational principle (9.4), the bounds of (6.2) yield that
(9.7) 1e(h) = Sollr2(Bao, ry2ymxr) < €lle@) = Sollz(Bao, ry2)mxe

sym sym )’

where still ¢ = ¢(n, A, A) > 0. Therefore we deduce for every z € B(zg, %) that
e(P)(@) =&l < sup |e(h) = (e(h))ag,rr2l + [(6(R))ag,r/2 = &0l

B(zo0,R/2)
(9.6),(9.7) 1
< cRe)co @ mmmy) T (7{3@ ) ~ ol d)
0,
< REWlooe Gz + o S 1) — &l
Zo,

= Ccompta,go (U§ Zo, %)a

where Cecomp = Ceomp(A, A, 1) > 1 shall be the constant claimed in the proposition, and
SO

(9.8) sup |e(h) — &o| < Ccompta,e, (Vs To, %)
B(z0,R/2)

Step 2. Comparison estimates. We will now compare v with h. To this end, we first
notice that by Jensen’s inequality, (9.5) and 0 <r < &,

/B(zw) |£(v) = (£(V))ag,r[* dz < c(/ le(v) — e(h)2 dr

B(zo,r)

- /B(xo,r) ‘E(h) - (E(h))zo,r|2 d:L‘)

< c(/B(W) le(v) — e(h)|? dz

+ <§)n+2 /B(w /) le(h) — (5(h))x0,R/2\2dx>
= C(/B(IO,R/2) le(v) — e(h)|* d
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* (%)"” /B(:L’ R/2) £(0) = (=(0))eo. /2l dx)’

where ¢ = ¢(n,\,A) > 0. In view of (6.4), we thus need to control the first term on
the very right hand side of the previous inequality. Since h solves (9.4) and v — h €
VV(l)’2 (B(xo, %); R™), an elementary integration by parts establishes

1
5[ @) ) e) s de= [ g(e(w) - glelh) da.
B(wo,R/2) B(zo,R/2)
Using this equality in the second step, we then deduce

[ ke —empas S L[ (@) e) — b elo) - ) s
B(zo,R/2) B(zo,R/2)

IN

2
=2 / R CORCOLE

=3[ o)~ ey s

o ED SO 0
o E) o) )

2
=: X(Il +12—|—I3),

the single terms I, I, I3 being defined in the obvious manner.

Ad I;. Since ccomp > 1 and by virtue of our assumption tq ¢, (v; 2o, R/2) < 0¢,/Coomp,
we obtain e(v)(x) € B(&o, 0¢,) for all z € B(zo,R/2). In consequence, by (9.3), the
definition of t, ¢, and because wg,, o, ~is non-decreasing,

I, = / g(e(v)) = f(e(v))dz < Weo, 0, (ta,g (Vs o, R/2))/ le(v) — 50‘2 dz.
B(zo,R/2) B(zo,R/2)
Ad I,. Here we invoke the definition of dev, and minimality of h for (9.4), yielding
I, < devq(v;zg, R/2).
Ad Is. By our choice (9.8) of ccomp > 1 and tq ¢, (v; 2o, R/2) < 0g,/Ccomp(< 1), (9.8)
implies that e(h)(z) € B(&o, 0¢,) for all z € B(zo, R/2). Hence, by (9.3),

|/ ((R)(@)) = gle(h) ()] < wep.pq, (e(h) () = &l)le(h)(z) — &l
for all z € B(zo, R/2). Now, because wg, o, is non-decreasing, (9.8) and (9.7) imply

I — / F(e(h)) — gle(h)) da
B(zo,R/2)

< Weo,0¢, (ccompta,ﬁo (v; o, R/2)) / |E(h) - £0|2 dz
B(zo,R/2)
< Wy g0, (Ceompbang (03 70, R/2)) / e(v) — &P da,
B(zo,R/2)

where ¢ = ¢(n, A\, A) > 0. In conclusion, we find with some constant ¢ = ¢(n, \,A) >0

r

/B(zw) le(v) = (£(0))agr|* dz < c( (ﬁ)”“ /B(IO)RM) £() — () 522 da

+ devy (v; zg, R/2) + U(ta g, (v; 20, R/2)) /
B(fL'O7R/2)

e(w) — &[*dz),

where ¥(t) 1= we, o¢, (1) + Weo,0¢, (Ccompt) meets the required properties. This is (6.4),
and the proof is complete. O
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