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Abstract. We establish that the Dirichlet problem for convex linear growth func-
tionals on BD, the functions of bounded deformation, gives rise to the same uncon-

ditional Sobolev and partial C1,α-regularity theory as presently available for the full

gradient Dirichlet problem on BV. By Ornstein’s Non-Inequality, BV is a proper
subspace of BD, and full gradient techniques known from the BV-situation do not

apply here. In particular, applying to all generalised minima (i.e., minima of a suit-
ably relaxed problem) despite their non-uniqueness and reaching the ellipticity ranges

known from the BV-case, this paper extends previous results by Kristensen and the

author [44] in an optimal way.

Contents

1. Introduction 1
2. Preliminaries 7
3. Examples of integrands and limitations 14
4. Local W1,1-regularity and the proof of Theorem 1.1 14
5. A family of convolution-type Poincaré inequalities 27
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1. Introduction

A variety of physically relevant convex variational problems that describe the dis-
placements of bodies subject to external forces are posed in the space BD of functions
of bounded deformation, see [9, 37, 75, 77, 78] for overviews. For a given open set
Ω ⊂ Rn, this space consists of all u ∈ L1(Ω;Rn) such that the distributional sym-
metric gradient ε(u) := 1

2 (Du + Du>) is a finite, matrix-valued Radon measure on Ω.
By Ornstein’s Non-Inequality [63, 23, 49, 48], there exists no constant c > 0 such
that ‖Dϕ‖L1(Ω;Rn×n) ≤ c‖ε(ϕ)‖L1(Ω;Rn×n) holds for all ϕ ∈ C∞c (Ω;Rn). In consequence,
BD(Ω) is in fact larger than BV(Ω;Rn), and the full distributional gradients of BD-maps
in general do not need to exist as (locally) finite Rn×n-valued Radon measures. Yet, by
coerciveness considerations as outlined below, this space displays the natural function
space setup for a vast class of variational integrals. For minima of such functionals, the
present paper aims to develop a regularity theory which – from a Sobolev regularity
and partial Hölder continuity perspective – essentially yields the same results which are
presently known for the Dirichlet problem on BV.
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1



2 F. GMEINEDER

This task can be viewed as a borderline case of a theory having emerged over the past
decades. Namely, considering variational integrals

v 7→
ˆ

Ω

g(∇v) dx, v : Ω→ RN ,(1.1)

over suitable Dirichlet classes, an abundance of criteria for improved regularity of minima
is available subject to convexity, smoothness and the growth behaviour of g : RN×n → R.
It is only possible to give an incomplete list of the wealth of contributions, and instead we
refer to Mingione [60, 61] and the references therein for more detail. When linear growth
functionals are considered – i.e., c1|z| − γ ≤ g(z) ≤ c2(1 + |z|) for some c1, c2, γ > 0 and
all z ∈ RN×n – then compactness considerations lead to the study of minima of a suitably
relaxed problem on BV, cf. [40, 18, 19, 14]. In both linear and superlinear growth regimes,
these contributions crucially utilise at various steps that the full gradients of minimising
sequences are uniformly bounded in some Lp-space, p ≥ 1. When (1.1) is modified to act
on the symmetric gradients exclusively, convexity and 1 < p <∞-growth of g still allow
to work on W1,p by Korn’s inequality. Also, in the borderline case of L logL-growth
integrands as considered in the seminal works by Fuchs & Seregin [36, 37], one may
essentially still work on W1,1 (cf. Section 2.2.2). In the linear growth, symmetric gradient
situation, however, Ornstein’s Non-Inequality neither allows to a priori consider W1,1-
or BV-regular minima nor to employ the usual full-gradient techniques. A key question
in this setting thus is to which extent the results from corresponding full gradient theory
on BV continue to hold for the Dirichlet problem on BD, too.

1.1. Aim and scope. Toward a unifying regularity theory for the Dirichlet problem on
BD, we begin by giving the underlying setup first. Let Ω ⊂ Rn be open and bounded
with Lipschitz boundary ∂Ω. We consider (generalised) minima of variational principles

to minimise F [v] :=

ˆ
Ω

f(ε(v)) dx over v ∈ Du0 ,(1.2)

where Du0
is a suitable Dirichlet class. As a key feature, we suppose that the convex

integrand f : Rn×nsym → R is of linear growth, by which we understand that there exist
constants c1, c2, γ > 0 such that there holds

c1|z| − γ ≤ f(z) ≤ c2(1 + |z|) for all z ∈ Rn×nsym .(LG)

In this situation, we put LD(Ω) := {v ∈ L1(Ω;Rn) : ε(v) ∈ L1(Ω;Rn×nsym )} to be endowed
with the canonical norm ‖v‖LD(Ω) := ‖v‖L1(Ω;Rn) + ‖ε(v)‖L1(Ω;Rn×nsym ), and define LD0(Ω)

as the closure of C∞c (Ω;Rn) with respect to ‖ · ‖LD(Ω). With this terminology, we pick
u0 ∈ LD(Ω) and set Du0 := u0 + LD0(Ω). Subject to (LG), F is bounded below on
Du0

and minimising sequences are bounded in LD(Ω); note that this is not necessarily
the case in W1,1(Ω;Rn). By non-reflexivity of LD(Ω) and possible concentration effects,
minimising sequences do not need to be weakly relatively compact in LD(Ω) but can be
shown to be weak*-relatively compact in BD(Ω) (cf. Section 2 for the requisite background
terminology). As a routine consequence, for F to be defined for BD-maps, it must be
suitably relaxed. For u, v ∈ BDloc(Ω) and an open Lipschitz subset ω ⊆ Ω we put

F v[u;ω] =

ˆ
ω

f(E u) dL n +

ˆ
ω

f∞
( dEsu

d|Esu|

)
d|Esu|

+

ˆ
∂ω

f∞(Tr∂ω(v − u)� ν∂ω) dH n−1.

(1.3)

Following the by now classical works [47, 40], Fu0 [u] := Fu0 [u; Ω] then coincides with
the weak*-relaxation (or weak*-Lebesgue-Serrin extension) of F to BD(Ω) subject to the
Dirichlet constraint u|∂Ω = u0. Here, for u ∈ BD(Ω) we denote the Lebesgue-Radon-
Nikodým decomposition Eu = Eau + Esu = E uL n + Esu of1 Eu into its absolutely

1From now, if the symmetric gradient of an integrable map is a measure, we write Eu instead of ε(u).
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a = 1 a = n+1
n

a = n
n−1 a = 1 + 2

n a→∞

Partial Regularity, Thm. 1.2

∃ p > 1: GM ⊂W1,p
loc , Thm. 1.1

∃ p̃ > 1: GM ⊂W2,p̃
loc , Cor. 4.5

GM ⊂W1,1
loc, cf. [44, Thm. 1.2]

Figure 1. The regularity theory for the Dirichlet problem on BD in
the framework of a-ellipticity (cf. (1.4)), contextualising the results ob-
tained in this paper with previous work. The arrows indicate ’up to, not
including ’.

continuous and singular parts for L n. Moreover, f∞(z) := limt↘0 tf(z/t) denotes the
recession function of f , capturing the integrand’s behaviour at infinity. Consequently,
we call a map u ∈ BD(Ω) a generalised minimiser if Fu0 [u] ≤ Fu0 [v] for all v ∈ BD(Ω).
Similarly, we call u ∈ BDloc(Ω) a local generalised minimiser if Fu[u;ω] ≤ Fu[v;ω] for
all open subsets ω b Ω with Lipschitz boundary ∂ω and all v ∈ BDloc(Ω). Subject to the
Dirichlet datum u0, the set of all generalised minima is denoted GM(F ;u0) and, similarly,
the set of all local generalised minima is denoted GMloc(F ). As a consequence of [44,
Sec. 5], generalised minimisers always exist in this framework. For future reference, we
remark that even if f is strictly convex, generalised minima are not unique in general;
see Section 4.1 for more detail.

In view of the main theme of the paper, we shall focus on higher Sobolev and partial
regularity for generalised minima of the variational principle (1.2), even leading to novel

results in the radially symmetric case f = f̃(| · |). The corresponding results crucially
rely on the degenerate elliptic behaviour of the integrands f , being roughly depicted in
Figure 1, and let us retrieve what is unconditionally known for the Dirichlet problem on
BV. As such, we particularly obtain criteria for the full gradients of generalised minima
to exist as locally finite Radon measures. To explain why the results given below are
close to optimal, we briefly pause to introduce the relevant ellipticity scale.

1.2. W1,1
loc-regularity of minima. As it is customary in the linear growth context and

motivated by Bernstein’s genre [16, 40, 73] and the conditions considered by La-
dyzhenskaya & Ural’ceva [55], a natural scale of C2-integrands is given by those
f : Rn×nsym → R that satisfy for some a > 1 and 0 < λ ≤ Λ <∞

λ
|ξ|2

(1 + |z|2)
a
2
≤ 〈f ′′(z)ξ, ξ〉 ≤ Λ

|ξ|2

(1 + |z|2)
1
2

for all z, ξ ∈ Rn×nsym .(1.4)

For such integrands, (1.4) precisely describes the degeneration of the ellipticity ratio of f ′′.
From a more systematic viewpoint, this scale has been studied by Bildhauer, Fuchs
& Mingione [17, 18, 19, 35] in the (p, q)-growth or BV-context, respectively, under the
name of µ-ellipticity, where µ = a in our terminology; also see [40]. Note that a = 1 is
excluded here as then the corresponding integrands are not of linear growth. Even though
convex integrands f with (LG) have the same growth behaviour from above and below,
this is not the case on the level of second derivatives. To some extent, such problems
thus have some resemblance with (p, q)-growth type problems. Higher integrability of
the minimisers’ gradients can only be expected when p and q are not too far apart or
additional hypotheses are imposed, see the seminal work [31] by Esposito, Leonetti
& Mingione (also cf. [60, Thm. 6.2] and Carozza, Kristensen & Passarelli di
Napoli [21]). More precisely, for suitably regular, convex (p, q)-type problems the critical

exponent ratio to yield W1,q
loc-regular minima was determined in [31] as

q

p
< 1 +

2

n
,(1.5)
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a threshold ratio getting in line with others identified earlier in a slightly different context
by Marcellini [57, 58]. Beyond this threshold, one usually imposes additional hypothe-
ses – such as local boundedness, cf. [21] – on minima in order to obtain regularity results,
and such conditions in fact can be justified for a variety of situations, so for instance by
maximum principles or, in the radial situation, Moser-type L∞-bounds.

This distinction of ellipticity regimes also enters in the BV-theory for full gradient
functionals. In fact, it is known from [18, 14] that if 1 < a < 1 + 2

n , then generalised

minima of the corresponding full gradient functionals belong to some W1,p
loc with p > 1

whereas in the regime 1+ 2
n ≤ a ≤ 3, the only W1,1-regularity results [18, 14] are subject

to the additional L∞loc-hypothesis on the generalised minima. For variational principles
of the form (1.2) subject to (1.4), a first result has been given by Kristensen and the
author [44] by passing to fractional estimates. While striving for the optimal ellipticity

1 < a < 1 + 2
n , the method as employed therein only yields the W1,1

loc-regularity for

1 < a < 1 + 1
n , revealing a crucial ellipticity gap of size 1

n . The first main result of this
paper precisely closes this gap:

Theorem 1.1 (Universal W1,1
loc-regularity estimates). Let u0 ∈ LD(Ω) and suppose that

f ∈ C2(Rn×nsym ) satisfies (LG) and (1.4) with 1 < a < 1 + 2
n . If

(a) n = 2, then every generalised minimiser u ∈ GM(F ;u0) is of class LD(Ω) ∩
W1,q

loc(Ω;Rn) for any 1 ≤ q < ∞. More precisely, u has locally exponentially
integrable gradients in the following sense: There exists c = c(a, c1, c2, γ, λ,Λ) >
0 such that for any x0 ∈ Ω and 0 < r < 1 with B(x0, 5r) ⊂ Ω there holds

‖∇u‖
exp L

2−a
3−a (B(x0,r);Rn×n)

≤ c
((

1 +

 
B(x0,5r)

|Eu|
) 1

2−a
+

1

r

 
B(x0,r)

|u|dx
)
.(1.6)

(b) n ≥ 3, then every generalised minimiser u ∈ GM(F ;u0) is of class LD(Ω) ∩
W1,q

loc(Ω;Rn) for q = 2−a
n−2n. More precisely, there exists c = c(n, a, c1, c2, γ, λ,Λ) >

0 such that for any x0 ∈ Ω and 0 < r < 1 with B(x0, 5r) ⊂ Ω there holds(  
B(x0,r)

|∇u|q dx
) 1
q ≤ c

((
1 +

 
B(x0,5r)

|Eu|
) 1

2−a
+

1

r

 
B(x0,r)

|u|dx
)
.(1.7)

Theorem 1.1 thus gives exactly the same Sobolev regularity in the BD-situation as is
presently known for the autonomous Dirichlet problem on BV. As mentioned above, for

the autonomous Dirichlet problem on BV it is possible to establish W1,L log2 L
loc -regularity

of locally bounded generalised minima for the wider ellipticity range 1 + 2
n ≤ a ≤ 3; note

that for a > 3, no W1,1-regularity results are available at present2. While, in principle,
the strategy underlying Theorem 1.1 can be modified to work in the L∞loc-constrained case,
too, no method is known to us that would provide locally bounded generalised minima at
all. In fact, whereas maximum principles and Moser-type L∞loc-bounds can be employed
in the full gradient setting subject to specific structural conditions on the integrands
(cf. [14, Thm. 1.11, Thms. D.1–3]), the symmetric gradient seems to destroy the impact
of any such good structural hypotheses (so e.g. radial dependence on the arguments).
In order not to produce a possibly vacuous result, we thus stick to the ellipticity range
1 < a < 1 + 2

n for which the additional local boundedness is not required. Deferring the
precise discussion to Section 4, let us now briefly outline the underlying chief obstructions
that make Theorem 1.1 considerably harder to obtain than its BV-analogue.

To establish the regularity assertions of Theorem 1.1, one might consider a vanishing
viscosity sequence and then derive uniform second order estimates. Essentially inspired
by the foundational works of Seregin [69, 70, 71, 72], in the BV-case a difference quotient
approach yields the requisite estimates as a consequence of the fact that the full gradients
of the single viscosity approximations are uniformly bounded in L1(Ω;Rn×n); cf. [18,

2The only systematic W1,1-regularity theory for a > 3 is available for Neumann-type problems on

BV, cf. Beck, Buĺıček and the author [13], being conceptually different from the Dirichlet problem.
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19]. Within the framework of Theorem 1.1, however, the latter boundedness cannot
be assumed and L1-estimates on the full gradients must be avoided throughout. On the
other hand, generalised minima are in general non-unique – despite strict convexity of the
integrands f . Hence, even if it were applicable, the vanishing viscosity approach would
only apply to one particular generalised minimiser. The claimed universal regularity
estimates (i.e., for all generalised minima) thus require another argument.

In doing so, we modify and extend the Ekeland viscosity approximation scheme as
introduced by Beck & Schmidt [14] in the BV-context and generalised to the BD-
situation by Kristensen and the author [44]; see [56, 1] for the first applications of
the Ekeland variational principle in the regularity context. Here, on the one hand,
the Ekeland-type approximations must be strong enough for the (perturbed) Euler-
Lagrange equations to permit a splitting strategy, thereby implying the requisite second
order estimates for the corresponding almost-minima. Simultaneously, they must be
weak enough to be treatable by the a priori information on the minimising sequences.
By our arguments below – and contrary to the W−1,1-perturbations in the BV-context
[14] – the correct perturbation space now turns out to be W−2,1 (see Section 2.2.3 for the
definition). Without the aforementioned splitting strategy, in turn inspired by Seregin
et al. [72, 36], we would be bound to argue as in [44], and then the desired ellipticity
range 1 < a < 1 + 2

n would not be reached. By the degenerate elliptic behaviour of
the integrands, non-uniqueness of generalised minima and the overall lack of Korn’s
inequality, the proof of Theorem 1.1 requires to overcome both technical and conceptual
difficulties and is given in Section 4 below.

Once the presence of the singular parts Esu is ruled out for all u ∈ GM(F ;u0), the
boundary integrals in (1.3) are identified as the only source of non-uniqueness. This
admits to apply more general principles (to be established in the Appendix, Section 8,
with emphasis on the two-dimensional case) to draw conclusions on the structure of
GM(F ;u0), cf. Section 4.6.

1.3. Partial C1,α-regularity of minima. The second part of this paper is devoted to
the partial (Hölder) regularity of generalised minima of F . We note that, essentially
because the minimisation of F constitutes a vectorial problem, full Hölder continuity in
general is not to be expected; see [38, 41, 61, 62] and the references therein. To streamline
terminology, in this paper we say that a map v ∈ L1

loc(Ω;Rn) is partially regular if there
exists a relatively open subset Ωu ⊂ Ω such that v is of class C1,α in a neighbourhood of
any of the elements of Ωu for any 0 < α < 1.

There is an extensive literature on the topic of partial regularity and proof strategies,
most notably the (indirect) blow-up method with roots in De Giorgi’s work [25] and
the A-harmonic approximation method with roots in Almgren’s and Allard’s work
in geometric measure theory [4, 5]. These proof strategies have been adapted to the
setting of functionals of the type (1.2) with ε replaced by the full gradient, see [1, 2,
32, 26, 27, 60] for an incomplete list. For instance, even in the convex full-gradient
linear growth case, indirect methods such as blow-up are difficult to implement by the
relatively weak compactness properties of BV as long as no additional Sobolev regularity
is available. Appealing to Theorem 1.1, this is e.g. the case in the very degenerate regime
a ≥ 1+ 2

n . On the other hand, should an integrand degenerate completely for large values
of the argument, one might still aim for a local-in-phase-space regularity result (in the
terminology of Schmidt [68]).

To establish such a regularity theorem, in turn being able to cover all degenerate
ellipticities, we make use of a direct strategy using mollifications as comparison maps.
Since, by Jensen’s inequality, mollifications can be suitably controlled by convex func-
tions, this method is particularly designed for convex problems. Originally employed by
Anzellotti & Giaquinta [10] in the full gradient context (also see the related result

by Schmidt [67] for the model integrands mp(·) = (1 + | · |p)
1
p , p 6= 2), functionals (1.3)

require a different treatment. First, now the decay of the comparison maps must appear
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as a consequence of a careful linearisation and hereafter Korn’s inequality in L2. More
importantly, the comparison argument forces us to control V -function type distances
from a given generalised minimiser to its mollifications by the symmetric gradients only.
While this is a consequence of the fundamental theorem of calculus in the BV-context,
the requisite estimates now must be accessed without appealing to the full gradients.
This motivates the derivation of a novel family of convolution-type Poincaré inequalities
in Section 5, which might be of independent interest. Lastly, the estimates of Section 5
necessitate a refined construction of good annuli in the partial regularity proof, where
the key parts of the comparison are performed. A combination of these tools in Section 6
then yields an ε-regularity result (cf. Corollary 6.7), and implies the following second
main result of the paper:

Theorem 1.2 (Local-in-phase-space regularity). Let f ∈ C2(Rn×nsym ) be convex and satisfy

(LG). Given u0 ∈ LD(Ω), let u ∈ GM(F ;u0). If (x0, z0) ∈ Ω× Rn×nsym is such that

lim
R↘0

[ 
B(x0,R)

|E u− z0|dx+
|Esu|(B(x0, R))

L n(B(x0, R))

]
= 0(1.8)

and f ′′(z0) is positive definite, then there holds u ∈ C1,α(U ;Rn) for a suitable open
neighbourhood U of x0 for all 0 < α < 1. In consequence, if f ′′ is positive definite
everywhere on Rn×nsym , then the singular set Σu of points in whose neighourhood u is not

of class C1,α for any 0 < α < 1 satisfies L n(Σu) = 0, is relatively closed and is given by

Σu =
{
x0 ∈ Ω: there exists no z0 ∈ Rn×nsym with (1.8)

}
.(1.9)

Similar as in BV-theory, the importance of the previous theorem is manifested by its
minimal assumptions regarding locality and (degenerate) ellipicity; in fact, no global uni-
form strong convexity needs to be imposed on f in order to yield the corresponding partial
C1,α-regularity result. Recalling the a-ellipticity scale (1.4), Theorem 1.2 thus particu-
larly complements Theorem 1.1 in the very degenerate ellipticity regime 1 + 2

n ≤ a <∞,
cf. Figure 1. As a routine matter, however, strengthening the ellipticity to 1 < a < n

n−1 ,

Theorem 1.1 can be invoked to yield bounds on dimH (Σu) – cf. Corollary 4.6. We
moreover note that the previous theorem equally proves interesting for radially sym-
metric integrands. Indeed, techniques to arrive at full C1,α-regularity results in the full
gradient setting (cf. Uhlenbeck [79], Ural’ceva [80] or Beck & Schmidt [15] in
the BV-context) are hard to be implemented: The symmetric gradient seems to destroy
the beneficial structure of the corresponding Euler-Lagrange equations. As such, Theo-
rem 1.2 seems hard to be generalised to the model integrands mp (revealing p-Laplacean
type behaviour at the origin) for p 6= 2, cf. Section 3 for a discussion. Finally, recalling
the aim of a regularity result in the very degenerate ellipticity regime, Theorem 1.2 proves
independent of the recent companion theorem [43] for strongly symmetric quasiconvex
integrals by the author. Whereas the main difficulties in [43] stem from the weakened
convexity notion, its application to convex integrands only yields a partial regularity
theorem for a-elliptic integrands, 1 < a ≤ 3. A discussion of these matters, together with
possible generalisations of Theorems 1.1 and 1.2 is given in Section 7.

1.4. Organisation of the paper. In Section 2 we fix notation, record basic definitions
and auxiliary estimates. After a discussion of sample integrands in Section 3, we pro-
vide the proof of Theorem 1.1 and selected implications in Section 4. Section 5 provides
convolution-type Poincaré inequalities to crucially enter the proof of Theorem 1.2 in Sec-
tion 6. Section 7 discusses generalisations of the results of the paper, and the appendices,
Sections 8 and 9, comprise selected uniqueness assertions and proofs of auxiliary results.
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2. Preliminaries

2.1. General notation and background. We briefly comment on the notation used
throughout. By Rn×nsym or Rn×nscew we denote the symmetric or scew-symmetric (n × n)-
matrices with real entries. All finite dimensional vector spaces are equipped with the
euclidean (or, in the matrix case, Frobenius) norm | · |, and the inner product on such
spaces is denoted 〈·, ·〉. Given a, b ∈ Rn, the symmetric tensor product is given by
a� b := 1

2 (abT + baT). Given x0 ∈ Rn and r > 0, the open ball of radius r > 0 centered
at x0 ∈ Rn is denoted B(x0, r) := {x ∈ Rn : |x − x0| < r}. For 0 < t < s < ∞,
we denote A(x0; t, s) := B(x0, s) \ B(x0, t) the annulus centered at x0 having outer and
inner radii s and t, respectively. To distinguish from balls in matrix space, we write
B(z, r) := {y ∈ Rn×nsym : |y − z| < r} for z ∈ Rn×nsym and r > 0. Cubes Q in Rn are
tacitly assumed to be non-degenerate, and we denote by `(Q) their sidelengths. The
n-dimensional Lebesgue and (n−1)-dimensional Hausdorff measure are denoted L n and
H n−1, respectively. Accordingly, the Hausdorff dimension of a Borel set A ∈ B(Rn) is
denoted dimH (A). For u ∈ L1

loc(Rn;Rm) and an open set U ⊂ Rn with L n(U) <∞, we
use the shorthand (u)U :=

ffl
U
udx := L n(U)−1

´
U
udx whereas, if U = B(x, r) is ball,

we abbreviate (u)x,r := (u)B(x,r). Moreover, for a given finite dimensional real vector
space V , we denote M(loc)(Ω;V ) the V -valued (locally) finite Radon measures on (the
open set) Ω. For µ ∈M (Ω;V ), its Lebesgue-Radon-Nikodým decomposition is given by

µ = µa + dµ
d|µs| |µ

s|, where µa � L n and µs⊥L n.

By c, C > 0 we denote generic constants whose value might change from line to line,
and shall only be specified if their precise value is required.

2.2. Function spaces and integral operators. In this section we give an overview of
the requisite function spaces on which the main part is based. This comprises functions
of bounded deformation, to be discussed in Section 2.2.1, as well as Orlicz and negative
Sobolev spaces to be introduced and discussed in Sections 2.2.2 and 2.2.3.

2.2.1. Functions of bounded deformation. Let Ω ⊂ Rn be open and bounded. We then
define BD(Ω) as the space of all u ∈ L1(Ω;Rn) for which the total deformation

|Eu|(Ω) := sup
{ˆ

Ω

〈u,div(ϕ)〉dx : ϕ ∈ C1
c(Ω;Rn×nsym ), ‖ϕ‖L∞(Ω;Rn×nsym ) ≤ 1

}
(2.1)

is finite; note that by writing Eu we indicate that the symmetric distributional gradient
of u is a measure whereas by ε(u) we tacitly understand that it is representable by an
L1-map. This space has been introduced in [24, 77] and studied from various perspectives
in [9, 6, 75, 11]; unless stated otherwise, all of the following can be traced back to these
references. Given u ∈ BD(Ω), the Lebesgue-Radon-Nikodým decomposition of Eu reads

as Eu = Eau+Esu = E uL n Ω+ dEsu
d|Esu| |E

su|. Here, E u takes the rôle of the symmetric

part of the approximate gradient (cf. [7] for this terminology).

Let u, u1, u2, ... ∈ BD(Ω). We say that uk
∗
⇀ u if and only if uk → u in L1(Ω;Rn)

and Euk
∗
⇀ Eu in M (Ω;Rn×nsym ). If uk

∗
⇀ u as just defined and |Euk|(Ω)→ |Eu|(Ω), then

we say that (uk) converges (symmetric) strictly to u. If, moreover,
√

1 + |Euk|2(Ω) →√
1 + |Eu|2(Ω) with√

1 + |Ev|2(Ω) :=

ˆ
Ω

√
1 + |E v|2 dx+ |Esv|(Ω), v ∈ BD(Ω),

then we say that (uk) converges (symmetric) area-strictly to u. These notions are usu-
ally reserved for the BV-context, but as we deal with the BD-situation exclusively we
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shall often omit the supplementary symmetric and simply speak of strict and area-strict
convergence.

Now let Ω have Lipschitz boundary ∂Ω. Both LD(Ω) and BD(Ω) then have trace space
L1(∂Ω;Rn); however, note that the trace operator onto L1(∂Ω;Rn) is not continuous with
respect to weak*-convergence on BD(Ω). In this case, continuity can only be achieved
when BD(Ω) is equipped with strict convergence. Moreover, as Ω has Lipschitz boundary,
any u ∈ BD(Ω) can be extended by zero to the entire Rn so that the trivial extension u
again belongs to BD(Rn) and we have

Eu = Eu Ω + Tr∂Ω(u)� ν∂ΩH n−1 ∂Ω,

where ν∂Ω is the outward unit normal to ∂Ω. Also, we have the Gauß-Green formulaˆ
Ω

〈ϕ,Eu〉+

ˆ
Ω

〈div(ϕ), u〉dx =

ˆ
∂Ω

〈ϕ,Tr∂Ω(u)� ν∂Ω〉dH n−1(2.2)

for all u ∈ BD(Ω) and all ϕ ∈ C1(Ω;Rn×nsym ); here, div denotes the row-wise divergence.
For latter applications, the following approximation result will turn out particularly
useful:

Lemma 2.1. Let Ω ⊂ Rn be an open and bounded Lipschitz domain. Then for any
u ∈ BD(Ω) and any u0 ∈ LD(Ω) there exists a sequence (uk) ⊂ u0 + C∞c (Ω;Rn) such
that uk → u in L1(Ω;Rn) and√

1 + |Euk|2(Ω)→
√

1 + |Eu|2(Ω) +

ˆ
∂Ω

|Tr∂Ω(u0 − u)� ν∂Ω|dH n−1 as k →∞.

2.2.2. Korn- and Poincaré inequalities in Lebesgue and Orlicz spaces. To transfer inte-
grability from ε(u) to the full gradients in a flexible space scale, we recall here Korn-
type inequalities in Orlicz spaces; our notation is mainly taken from the recent work of
Cianchi [22], also see Acerbi & Mingione [3] for related results.

Let A : [0,∞) → [0,∞) be a Young function; by this we understand that A(t) =´ t
0
a(τ) dτ for t ≥ 0, where a : [0,∞) → [0,∞] is non-decreasing, left-continuous and

being neither identical to 0 nor ∞. We then denote LA(Ω;Rm) the linear space of all
measurable maps u : Ω→ Rm such that the Luxembourg norm

‖u‖LA(Ω;Rm) := inf

{
λ > 0:

ˆ
Ω

A
( |u|
λ

)
dx ≤ 1

}
is finite. We then define E1A(Ω) as the space of all u ∈ LA(Ω;Rn) such that the

distributional symmetric gradient belongs to LA(Ω;Rn×nsym ). As examples, if A(t) = |t|,
then E1A(Rn) = LD(Rn), if A(t) = |t|p for 1 < p <∞, then E1A(Rn) = W1,p(Rn;Rn).
It is worth noting that the Young function A(t) := t log(1 + t) displays a borderline case:
For α ≥ 0, the general conclusion

ε(v) logα(1 + |ε(v)|) ∈ L1
loc(Rn;Rn×nsym ) =⇒ Dv ∈ L1

loc(Rn;Rn×n)(2.3)

persists if and only if α ≥ 1; hence, briefly recalling the L logL-setup mentioned in
the introduction, variational problems with symmetric gradients belonging to L logL are
essentially dealt with in W1,1. Namely, by the Smith representation [74] to be used
in a different context later on, u = (u1, ..., un) ∈ C∞c (Rn;Rn) can be retrieved from
ε(u) = (εij(u))ni,j=1 via

uk =
2

nωn

∑
1≤i≤j≤n

εjk(u) ∗ ∂iKij − εij(u) ∗ ∂kKij + εki ∗ ∂jKij(2.4)

for all k ∈ {1, ..., n}, where Kij(x) := xixj/|x|n for x ∈ Rn \ {0}. The convolutions
here are understood in the Cauchy principal value sense, and so the map Φ: ε(u) 7→ ∇u
displays a singular integral of convolution type satisfying the usual Hörmander condition.
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Then (2.3) follows from the theory of singular integrals on Orlicz spaces, cf. [22]. For the
following, let us remind the reader of the space of rigid deformations

R(Ω) :=
{
u : Ω→ Rn : u(x) = Ax+ b, A ∈ Rn×nscew, b ∈ Rn

}
(2.5)

which, for open and connected Ω, is precisely the nullspace of ε. Since elements of R(Ω)
are polynomials, we shall often identify R(Ω) with R(Rn).

Lemma 2.2 ([22, Thm. 3.3, Cor. 3.4, Ex. 3.11]). Let Ω ⊂ Rn be an open, bounded and
connected Lipschitz domain. Then the following holds:

(a) For each 1 < p <∞ there exists c = c(p, n,Ω) > 0 such that

inf
π∈R(Ω)

‖∇(v − π)‖Lp(Ω;Rn×n) ≤ c‖ε(v)‖Lp(Ω;Rn×nsym ) for all v ∈W1,p(Ω;Rn).

Moreover, for all v ∈W1,p(Ω;Rn) there holds

‖∇v − (∇v)Ω‖Lp(Ω;Rn×n) ≤ c‖ε(v)− (ε(v))Ω‖Lp(Ω;Rn×nsym ).

(b) For each β > 0 there exists c = c(β, n,Ω) > 0 such that

inf
π∈R(Ω)

‖∇(v − π)‖
exp L

β
β+1 (Ω;Rn×n)

≤ c‖ε(v)‖exp Lβ(Ω;Rn×nsym ) for all v ∈ E1 exp Lβ(Ω),

where exp Lβ(Ω) is the Orlicz space corresponding to A(t) := exp(tβ).

In the sequel, we gather some instrumental results on certain projection operators
and augment (2.4) by a decomposition result due to Reshetnyak [65]. Note that, since
R(B(0, 1)) is a finite dimensional vector space, all norms are equivalent on R(B(0, 1)).
Thus, by scaling, we find that for each 1 ≤ q < ∞ there exists a constant c(n, q) > 0
such that for all x0 ∈ Rn and r > 0 there holds( 

B(x0,r)

|π|q dx
) 1
q

+ r
( 

B(x0,r)

|∇π|q dx
) 1
q ≤ c(n, q)

 
B(x0,r)

|π|dx(2.6)

for all π ∈ R(B(x0, r)). The same inequality holds true with the obvious modifications
for if q = ∞ on the left-hand side. Moreover, there exists a bounded linear projection
operator ΠB(x0,r) : L1(B(x0, r);Rn) 3 u 7→ πu ∈ R(B(x0, r)) satisfying( 

B(x0,r)

|ΠB(x0,r)u|
q dx

) 1
q ≤ c(n, q)

( 
B(x0,r)

|u|q dx
) 1
q

(2.7)

for all u ∈ Lq(B(x0, r);Rn) and each 1 ≤ q < ∞; see the appendix, Section 9.1, for an
elementary proof. A similar result holds for cubes Q instead of balls, and we shall refer
to this property as Lq-stability of ΠB(x0,r) or ΠQ, respectively. In a routine manner,
the foregoing now yields the next lemma which should be well-known, but is hard to be
found in the following form:

Lemma 2.3 (Projections in Poincaré- and Korn-type inequalities). Let 1 ≤ p < ∞,
x0 ∈ Rn and r > 0. For each 1 ≤ q ≤ p there exists a constant c = c(n, q) > 0 such that
for all u ∈W1,p(B(x0, r);Rn) there exists πu ∈ R(B(x0, r)) such that 

B(x0,r)

|u− πu|q dx ≤ crq
 

B(x0,r)

|ε(u)|q dx.

In particular, the map ΠB(x0,r)u 7→ πu is independent of q. The same holds true if we

set q = 1 and replace W1,1(B(x0, r);Rn) by LD(B(x0, r)). Moreover, if 1 < q ≤ p, then
there exists a constant c = c(n, q) > 0 such that for all u ∈W1,p(B(x0, r);Rn) there holds
(with the same πu as above) 

B(x0,r)

|D(u− πu)|q dx ≤ c
 

B(x0,r)

|ε(u)|q dx.

Moreover, the map ΠB(x0,r) : u 7→ πu is Lq-stable for each 1 ≤ q ≤ p in the above sense.
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Clearly, a similar version holds for cubes. The foregoing lemma will not be sufficient
for all future applications, and so we record the following result due to Reshetnyak
[65]. As we will exclusively use it for cubes, we directly state it in the following form:

Lemma 2.4 (Reshetnyak, [65]). For any open, non-empty cube Q ⊂ Rn, there exists a

projection Π̃Q : C∞(Q;Rn)∩LD(Q)→ R(Q) and an operator TQ : (C∞ ∩L1)(Q;Rn×nsym )→
L1(Q;Rn) such that for any v ∈ LD(Q) there holds

v(x) = (Π̃Qv)(x) + TQ[ε(v)](x) for all x ∈ Q.(2.8)

Moreover, the operator TQ is of the form

TQ[ε(v)](x) =

ˆ
Q

RQ(x, y)ε(v)(y) dy,(2.9)

where RQ : Q × Q → L (Rn×nsym ;Rn) satisfies |RQ(x, y)| ≤ c/|x − y|n−1 for all x, y ∈ Q
with c = c(n) > 0.

2.2.3. Negative Sobolev spaces. The viscosity approximation strategy to be set up in
Section 4 shall require certain negative Sobolev spaces in a crucial manner. As shall
become clear later, we have to go beyond the space W−1,1 as introduced in [14]. Given

k ∈ N, we define the space W−k,1(Ω;Rn) as follows:

W−k,1(Ω;Rn) :=
{
T ∈ D ′(Ω;Rn) : T =

∑
α∈Nn0
|α|≤k

∂αTα, Tα ∈ L1(Ω;Rn) for all |α| ≤ k
}
.

The linear space W−k,1(Ω;Rn) is canonically endowed with the norm

‖T‖W−k,1(Ω;Rn) := inf
∑
|α|≤k

‖Tα‖L1(Ω;Rn),(2.10)

the infimum ranging over all representations T =
∑
|α|≤k ∂

αTα with Tα ∈ L1(Ω;Rn).

Similar as for W−1,1(Ω;Rn) as discussed in [14], W−k,1 is not approachable by duality.
We collect its most important properties in the following lemma.

Lemma 2.5. Let Ω ⊂ Rn be open and let k ∈ N be given. Then the following holds:

(a) (W−k,1(Ω;Rn), ‖ · ‖W−k,1(Ω;Rn)) is a Banach space.

(b) For every u ∈ L1(Ω;Rn) and every β ∈ Nn0 with |β| ≤ k there holds

‖∂βu‖W−k,1(Ω;Rn) ≤ ‖u‖W|β|−k,1(Ω;Rn).

Proof. In view of (a), we closely follow [14] and consider the mapping Φ: L1(Ω;Rn)N 3
(Tα)|α|≤k 7→

∑
|α|≤k ∂

αTα ∈ W−k,1(Ω;Rn), where N := #{α ∈ Nn0 : |α| ≤ k}. By

definition of W−k,1(Ω;Rn), Φ is a bounded linear operator and thus ker(Φ) is a Ba-
nach space in itself. By definition of the quotient norm, the canonical quotient map
Ψ: L1(Ω;Rn)N/ ker(Φ) → W−k,1(Ω;Rn) is surjective and isometric. Thus, as ker(Φ)
is Banach, so is L1(Ω;Rn)N/ ker(Φ) and eventually, as the isometric image of a Banach

space, (W−k,1(Ω;Rn), ‖·‖W−k,1(Ω;Rn)). For (b), let ε > 0 and choose (Tα)α ∈ L1(Ω;Rn)N

such that u =
∑
|α|≤k−|β| ∂

αTα and∑
|α|≤k−|β|

‖Tα‖L1(Ω;Rn) ≤ ‖u‖W|β|−k,1(Ω;Rn) + ε.

On the other hand, ∂βu =
∑
|α|≤k−|β| ∂

α+βTα =:
∑
|γ|≤k ∂

γSγ , where Sγ = Tα if γ =

α+ β for some α with |α| ≤ k − |β| and Sγ = 0 otherwise. Therefore,

‖∂βu‖W−k,1(Ω;Rn) ≤
∑
|γ|≤k

‖Sγ‖L1(Ω;Rn) ≤
∑

|α|≤k−|β|

‖Tα‖L1(Ω;Rn) ≤ ‖u‖W|β|−k,1(Ω;Rn) + ε,

and we then send ε↘ 0 to conclude the proof. �
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Next, a lower semicontinuity result in the spirit of [44, Lem. 3.2], [14, Lem. 2.6]:

Lemma 2.6. Let 1 < q < ∞, k ∈ N be given and let Ω be open and bounded with
Lipschitz boundary ∂Ω. Suppose that f : Rn×nsym → R is a convex function that satisfies

c−1|z|q − d ≤ f(z) ≤ c(1 + |z|q) for some c, d > 0 and all z ∈ Rn×nsym . Then, for every

u0 ∈W1,q(Ω;Rn), the functional

F [u] :=


ˆ

Ω

f(ε(u)) dx if u ∈ Du0
:= u0 + W1,q

0 (Ω;Rn),

+∞ if u ∈W−k,1(Ω;Rn) \Du0

is lower semicontinuous for the norm topology on W−k,1(Ω;Rn).

Proof. Let g, g1, g2, ... ∈ W−k,1(Ω;Rn) be such that gm → g with respect to the norm

topology on W−k,1(Ω;Rn). If lim infm→∞ F [gm] = +∞, there is nothing to prove. Hence
assume without loss of generality that limj→∞ F [gm(j)] = lim infm→∞ F [gm] <∞. Then

necessarily gm(j) ∈ Du0 for all sufficiently large indices j and, since c−1|z|q − d ≤ f(z) for

all z ∈ Rn×nsym , we obtain that (ε(gm(j))) is bounded in Lq(Ω;Rn×nsym ). Since gm(j) ∈ Du0

and q > 1, Korn’s inequality in W1,q
0 (Ω;Rn) implies that (gm(j)) is uniformly bounded

in W1,q(Ω;Rn). Since 1 < q < ∞, there exists a subsequence (gm(j(i))) ⊂ (gm(j))

which converges weakly in W1,q(Ω;Rn) to some g̃ ∈ Du0
(note that Du0

is weakly closed
in W1,q(Ω;Rn)). By the Rellich-Kondrachov theorem, we can moreover assume

that gm(j(i)) → g̃ strongly in Lq(Ω;Rn). Then, since Lq(Ω;Rn) ↪→ W−k,1(Ω;Rn) by
Lemma 2.5(b),

‖g − g̃‖W−k,1(Ω;Rn) ≤ ‖g − gm(j(i))‖W−k,1(Ω;Rn) + ‖g̃ − gm(j(i))‖L1(Ω;Rn) → 0, i→∞,

and thus g = g̃. By standard results on lower semicontinuity of convex variational
integrals of superlinear growth (or, alternatively, Reshetnyak’s lower semicontinuity

theorem, Theorem 2.9 below) ε(gm(j(i)))L
n ∗⇀ ε(g)L n as i→∞ thus yields

F [g] ≤ lim inf
i→∞

F [gm(j(i))] = lim inf
m→∞

F [gm].

The proof is complete. �

2.3. The Ekeland variational principle. In this section we recall a variant of the
Ekeland variational principle [30] that is suitable for our purposes. The version which
we state here is a merger of [41, Thm. 5.6, Rem. 5.5]:

Proposition 2.7. Let (V, d) be a complete metric space and let F : V → R ∪ {∞} be
a lower semicontinuous function (for the metric topology) which is bounded from below
and takes a finite value at some point. Suppose that, for some u ∈ V and some ε > 0,
there holds F [u] ≤ inf F [V ] + ε. Then there exists v ∈ V such that

(a) d(u, v) ≤
√
ε,

(b) F [v] ≤ F [u],
(c) for all w ∈ V there holds F [v] ≤ F [w] +

√
εd(v, w).

2.4. Functions of measures and convolutions. In this section we collect background
facts on linear growth integrands and functionals of the form (1.2). We begin with

Lemma 2.8. Suppose that f ∈ C2(Rn×nsym ) is convex and satisfies (LG) with c1, c2, γ > 0.
Then f is Lipschitz with Lip(f) ≤ c2.

The proof of the preceding lemma evolves in the same way as [41, Lem. 5.2]; the reader
might notice that for the conclusion of Lemma 2.8 it is sufficient that f is symmetric
rank-one convex – so convex with respect to directions a � b, a, b ∈ Rn – and satisfies
(LG). As to (lower semi)continuity, we shall mostly rely on the following theorem due
to Reshetnyak [64] (see [64, 8, 7] for more information on functions of measures):
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Theorem 2.9 (Reshetnyak (lower semi-)continuity). Let V be a finite dimensional real
vector space and let (νj) be a sequence in M (Ω;V ) that converges in the weak*-sense to
some ν ∈M (Ω;V ). Moreover, assume that all of ν, ν1, ν2, ... take values in some closed
convex cone K ⊂ V . Then the following holds:

(a) If g : K → R≥0 ∪ {+∞} is lower semicontinuous, convex and 1-homogeneous,
then there holdsˆ

Ω

g
( dν

d|ν|

)
d|ν| ≤ lim inf

j→∞

ˆ
Ω

g
( dνj

d|νj |

)
d|νj |.

(b) If g : K → R≥0 ∪ {+∞} is continuous, 1-homogeneous and if (νj) converges

strictly to ν (in the sense that νj
∗
⇀ ν and |νj |(Ω)→ |ν|(Ω)), then there holdsˆ

Ω

g
( dν

d|ν|

)
d|ν| = lim

j→∞

ˆ
Ω

g
( dνj

d|νj |

)
d|νj |.

Given a lower semicontinuous, convex function h : Rn×nsym → R≥0, we put V := R×Rn×nsym

and introduce the linear perspective integrand h# : R≥0 × Rn×nsym → R ∪ {+∞} by

h#(t, ξ) :=

{
th
(
ξ
t

)
, t > 0, ξ ∈ Rn×nsym ,

h∞(ξ) t = 0, ξ ∈ Rn×nsym ,
(2.11)

where h∞(ξ) = limt↘0 th( ξt ) so that h# is positively 1-homogeneous. Also, if h has

linear growth, then h# < ∞. We put K := R≥0 × Rn×nsym . For Ω ⊂ Rn open and

µ ∈M (Ω;Rn×nsym ), we put ν := (L n, µ) ∈M (Ω;K) and define for A ∈ B(Ω)

h[µ](A) :=

ˆ
A

h(µ) :=

ˆ
A

h#
( dν

d|ν|

)
d|ν| =

ˆ
A

h#
(dL n

d|ν|
,

dµ

d|ν|

)
d|ν|

=

ˆ
A

h
( dµ

dL n

)
dL n +

ˆ
A

h∞
( dµs

d|µs|

)
d|µs|.

In particular, if u, u1, u2, ... ∈ BD(Ω) are such that uj → u symmetric area-strictly in
BD(Ω) and f : Rn×nsym → R≥0 satisfies (LG), then f [Euj ](Ω)→ f [Eu](Ω).

For µ ∈M (Ω;Rn×nsym ) and ξ0 ∈ Rn×nsym , we use the convention

µ− ξ0 := µ− ξ0L n.

As for L1
loc-maps, we define the average of µ ∈M (Ω;Rn×nsym ) over B(x0, r) ⊂ Ω by

(µ)x0,r :=

 
B(x0,r)

µ :=
µ(B(x0, r))

L n(B(x0, r))
.(2.12)

By the Lebesgue differentiation theorem for Radon measures, L n-a.e. x0 ∈ Rn is a
Lebesgue point for µ in the sense that there exists ξ0 ∈ Rn×nsym such that

lim
r↘0

(|µ− ξ0|)x0,r = 0.(2.13)

The Jensen inequality here takes the following form, cf. [67, Lem. 4.12]: If h : Rn×nsym →
R≥0 is convex, then

h
(
(µ)x0,r

)
≤
(
h[µ]

)
x0,r

.(2.14)

For future applications in Section 5 and 6, we call a compactly supported, radial function
ρ : Rn → [0, 1] a standard mollifier provided ‖ρ‖L1(Rn) = 1, spt(ρ) ⊂ B(0, 1) and ρ is of
class C∞ in B(0, 1). Given ε > 0, we then define the ε-rescaled variant by ρε(x) :=
ε−nρ(xε ). As a consequence of (2.14), whenever µ ∈Mloc(Rn;Rn×nsym ) and ε > 0,

h
(
(ρε ∗ µ)

)
≤ (ρε ∗ h[µ]) in Rn.

Below, we shall particularly work with the following two choices ρ(1), ρ(2) : Rn → R:

ρ(1) := (L n(B(0, 1)))−1
1B(0,1) and ρ(2) := γn1B(0,1) exp

(
− 1

1− | · |2
)
,



REGULARITY FOR THE DIRICHLET PROBLEM ON BD 13

where γn is adjusted in a way such that ‖ρ(2)‖L1(Rn) = 1. Given u ∈ L1
loc(Ω;Rn) and

µ ∈Mloc(Ω;Rn×nsym ), we put

uε := ρ(1)
ε ∗ u and uε,ε := ρ(2)

ε ∗ uε,

µε := (ρ(1)
ε ∗ µ)L n and µε,ε := (ρ(2)

ε ∗ µε)L n
(2.15)

for ε > 0. Upon straightforward modification, the proof of [10, Lem. 5.2] then implies

Lemma 2.10. Let µ ∈Mloc(Ω;Rn×nsym ) and let x0 ∈ Ω, R > 0 be such that B(x0, R) b Ω.

Moreover, let ε > 0 satisfy ε < R
2 . Then for any convex integrand f ∈ C2(Rn×nsym ;R≥0)

with (LG) the following holds:

(a) If 0 < t1 < t2 < R− 2ε, then there exists t ∈ (t1, t2) such that

f [µε,ε](B(x0, t))− f [µ](B(x0, t)) ≤
4ε

t2 − t1
f [µ](B(x0, R)).

(b) If R/2 < t1 < t2 < R − 2ε and 0 < r < R/4, then there exist r′ ∈ (r, 2r) and
t′ ∈ (t1, t2) such that, adopting the annulus notation of Section 2.1,

f [µε,ε](A(x0, r
′, t′))− f [µ](A(x0, r

′, t′)) ≤ 4ε

(
1

t2 − t1
+

1

r

)
f [µ](B(x0, R)).

2.5. Estimates on V -functions and shifted integrands. We now collect estimates
on auxiliary V -functions to be dealt with later. To this end, we define for z ∈ Rm the
auxiliary reference integrand

V (z) :=
√

1 + |z|2 − 1, z ∈ Rm.

The functions V will help to define our excess quantity later on, and we record

Lemma 2.11. For every m ∈ N, all z, z′ ∈ Rm and t ≥ 0 the following holds:

(a) V (tz) ≤ 4 max{t, t2}V (z),
(b) V (z + z′) ≤ 2(V (z) + V (z′)),

(c) (
√

2− 1) min{|z|, |z|2} ≤ V (z) ≤ min{|z|, |z|2},
(d) and for every ` > 0 there exists a constant c = c(`) > 0 such that if |z| ≤ `, then

1
c |z|

2 ≤ V (z) ≤ c|z|2.

All assertions (b)–(d) are contained in [45, Sec. 2.4, Eq. (2.4)], [10, Prop. 2.5], easily
implying (a). We conclude this preliminary section with estimates on shifted integrands.
To this end, let f ∈ C2(Rn×nsym ) be an integrand satisfying (LG). Given a ∈ Rn×nsym , we

define the shifted or linearised integrands fa : Rn×nsym → R by

fa(ξ) := f(a+ ξ)− f(a)− 〈f ′(a), ξ〉, ξ ∈ Rn×nsym .(2.16)

We state the next lemma in a form that is directly applicable to our future objectives:

Lemma 2.12. Let f ∈ C2(Rn×nsym ;R≥0) be convex and satisfy (LG). Moreover, let ξ0 ∈
Rn×nsym and 0 < %ξ0 < 1 be such that

mξ0,%ξ0
:= min{λ(z) smallest eigenvalue of f ′′(z) : z ∈ B(ξ0, %ξ0)} > 0.(2.17)

Then for all matrices a ∈ Rn×nsym with B(a,
%ξ0
2 ) ⊂ B(ξ0, %ξ0) the following holds:

(a) fa is convex with fa(0) = 0 and f ′a(0) = 0. Moreover, fa ≥ 0.
(b) For all ξ ∈ Rn×nsym we have, with c(

%ξ0
2 ) > 0 as in Lemma 2.11(d)

mξ0,%ξ0

(%ξ0
2

)2

V (ξ) ≤ fa(ξ) ≤
(
c(
%ξ0
2 ) sup

B(ξ0,%ξ0 )

|f ′′|+ 16 Lip(f)

(
√

2− 1)%ξ0

)
V (ξ).

The elementary proof of the preceding lemma is deferred to the appendix, Section 9.2.
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3. Examples of integrands and limitations

In this quick intermediate section we present and discuss several sample integrands
that underline the applicability and limitations of the main results of the present paper.
Here, a scale of integrands (Φa)1<a<∞ is given by

Φa(ξ) :=

ˆ |ξ|
0

ˆ s

0

dt

(1 + t2)
a
2

ds, ξ ∈ Rn×nsym .

Then, essentially by [19, Ex. 3.9 and 4.17], Φa is a-elliptic and not b-elliptic for any
1 < b < a. Such integrands are covered by Theorem 1.1 for if 1 < a < 1 + 2

n , and by
Theorem 1.2 for all 1 < a < ∞. The latter theorem particularly includes the example
of the area integrand E(ξ) :=

√
1 + |ξ|2, being 3-elliptic; recall that we dispense with

3-elliptic integrands in the framework of Theorem 1.1 as we do not have justification of
generalised minima belonging to L∞loc for such integrands – a condition which is usually
required for Sobolev regularity in the full gradient situation, too.

An intermediate class of integrands is given by (Mp)1≤p<∞ defined by

Mp(ξ) :=
(
1 + (1 + |ξ|2)

p
2

) 1
p , ξ ∈ Rn×nsym .

These integrands are a = 3-elliptic for if p = 1, and a = p + 1-elliptic for if p > 1, cf.
[14, Sec. 3.1]. However, integrands that indeed fall outside the scope of the paper are

the linear growth integrands (mp)1<p<∞ given by mp(ξ) := (1 + |ξ|p)
1
p unless p = 2; cf.

Schmidt [67], [68, p. 7] for the proof. In fact, if 1 < p < 2, then m′′p(z) blows up as
|z| ↘ 0 and if 2 < p < ∞, then m′′p(0) = 0. In these situations, Theorem 1.2 applies
only if u ∈ GM(F ;u0) satisfies infΩ |ε(u)| > 0. Namely, if |z| ↘ 0, then mp exhibits the
behaviour of the p-Dirichlet energies and, as to partial regularity, forces to employ a p-
harmonic comparison strategy. Whereas this does work well in the full gradient case [67]
following the works of Duzaar & Mingione [28, 29], the requisite comparison estimates
in the symmetric gradient context seem to be not available at present.

4. Local W1,1-regularity and the proof of Theorem 1.1

In this section we establish the W1,1
loc–regularity result asserted by Theorem 1.1. Here

we employ a refined version of a vanishing viscosity approach, to be set up in Section 4.2,
with the ultimate objective to obtain suitable second order estimates in Section 4.4. In
Section 4.5 we then establish Theorem 1.1 and collect selected implications in Section 4.6,
thereby completing the lower three regularity assertions gathered in Figure 1.

4.1. Strategy and obstructions. We start by clarifying the underlying obstructions
first, thereby motivating the particular setup of the proof. For f is convex, the higher
Sobolev regularity of Theorem 1.1 is usually accessed through the Euler-Lagrange system
satisfied by u ∈ GM(F ;u0). On the other hand, as Eu is a finite Rn×nsym -valued Radon
measure, the relevant Euler-Lagrange system needs to be understood in the sense of
Anzellotti [8], containing the gradient of the positively homogeneous recession function
f∞. Note that f∞ essentially ignores the specific ellipticity of f (e.g., with the integrands
mp from the previous section, m∞p = | · | for all 1 ≤ p < ∞), and hence it is difficult to
extract the relevant higher integrability as long as the presence of Esu is not ruled out
per se. Equally, this also explains why directly working on the minima is in fact a useful
device for the partial regularity to be addressed in Section 6; we here essentially restrict
ourselves to neighbourhoods of points where Esu is assumed to vanish, cf. Theorem 1.2.

To overcome this issue in view of higher Sobolev regularity, one is led to consider
good minimising sequences, usually obtained by a vanishing viscosity approach, and
derive the requisite compactness estimates. As it is common in the case of degenerate
p-growth functionals with 1 < p < 2, the original functionals are stabilised by adding
quadratic Dirichlet energies 1

j ‖∇v‖
2
L2 . The minima vj of the correspondingly perturbed

functionals then are proven to converge (up to a subsequence) to a minimiser v of the
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original functional, and uniform regularity restimates on the vj ’s carry over to v. When
the p-growth integrand f (for p > 1) is strongly convex, hence strictly convex, minima
are unique and so this method in particular leads to the requisite regularity estimates
for all minima. In the linear growth setting, cf. (LG), the recession function f∞ is
positively 1-homogeneous and thus never strictly convex despite possible a-ellipticity
(and hereafter strict convexity) of f . Since, by the representation (1.3) of the weak*-
relaxed functional Fu0 [−; Ω], the recession function acts on the singular part Esu of u ∈
GM(F ;u0) exclusively, even strict convexity of f does not imply uniqueness of generalised
minima – which cannot be expected in general anyway, compare the counterexamples in
the more classical BV-case [34, 66]. A vanishing viscosity approach as outlined above
thus is only able to yield Sobolev regularity for at most one generalised minimiser as long
as generalised minima are not known to belong to LD(loc).

In particular, based on this approach, we cannot rule out the existence of other,
more irregular generalised minima. A similar issue has been encountered by Beck &
Schmidt [14] in the BV-setting and by Kristensen and the author [44]. To circumvent
this issue, we adapt and extend the modified vanishing viscosity approaches outlined
in [14, 44]. Effectively, we start from an arbitrary given generalised minimiser u ∈
GM(F ;u0) and construct a suitable minimising sequence (vj) that converges to u in the
weak*-sense in BD(Ω). To do so, we consider an extension of a perturbed version of F
to a suitable negative Sobolev space for whose topology the perturbed functional turns
out lower semicontinuous. Then Ekeland’s variational principle provides us with an
’almost minimiser’ of the perturbed functional, cf. Section 4.2. Such almost minimisers
satisfy Euler-Lagrange differential inequalities which make elliptic estimates available.
Finally, these almost minimisers are shown to converge in the weak*-sense to the given
generalised minimiser, and uniform regularity estimates will eventually inherit to the
latter.

In the setting of functionals on BV as considered in [14], perturbations in W−1,1 are
sufficient. This is due to the fact that the full gradients of generalised minima are a
priori known to exist as finite Radon measures. As discussed at length in [44, 42], the
implementation of the underlying difference quotient approach in the setup of functionals
(1.2) leads to terms of the form

T =

ˆ
Ω

ρ2 |∆s,huj |2

(1 + |ε(uj)|2)
1
2

dx,(4.1)

where ρ : Ω → [0, 1] is a localisation function and, given v : Rn → Rn, h 6= 0 and
s ∈ {1, ..., n},

∆s,hv(x) :=
1

h
(v(x+ hes)− v(x))

denotes the difference quotient of v. Here, (uj) is a suitable minimising sequence con-
verging to u in the weak*-sense. In the BV-setting (in which case the symmetric gradi-
ents in the definition of T are replaced by the full ones), the term T can be controlled
by ‖∇uj‖L1 . As T is a priori not controllable by Ornstein’s Non-Inequality in the
BD-situation, Kristensen and the author [44] employ fractional estimates in order

to avoid the appearance of T , simultaneously perturbing in the space (W1,∞
0 )∗(Ω;Rn).

The latter method, being based on the embedding BD(Ω) ↪→ Ws,n/(n−1+s)(Ω;Rn) for
0 < s < 1 then yields weighted Nikolskĭı estimates (and thus Wα,1-estimates for some
suitable 0 < α < 1) for the symmetric gradients of generalised minima. However, this
only yields the smaller range of ellipticities 1 < a < 1+ 1

n . Still, since f ∈ C2(Rn×nsym ), gen-
eralised minima should be expected to satisfy a differentiable Euler-Lagrange equation
and hence the use of fractional methods does not give the expected optimal ellipticity
range 1 < a < 1 + 2

n . In order to obtain the latter, it seems that we are bound to obtain
uniform weighted second order estimates in the spirit of Bildhauer [19, Lem. 4.19] or
Beck & Schmidt [14, Lem. 5.2]. Unlike the full gradient case, the requisite second
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estimates do not come out by a plain difference quotient approach but a fine analysis of
the identities provided by suitably weakly perturbed Euler-Lagrange systems, see Theo-
rem 4.3 below. In view of this aim, it turns out that the suitable perturbation space is
W−2,1(Ω;Rn) (cf. Section 2.2.3), and we can now turn to the precise implementation of
the approximation argument.

4.2. Viscosity approximations. We now set up the Ekeland-type viscosity approx-
imation scheme, and hereafter suppose that f ∈ C(Rn×nsym ) is convex with (LG) and

u0 ∈ LD(Ω). For ease of notation, we write F := Fu0
[−; Ω] in the sequel. Let

u ∈ GM(F ;u0) be arbitrary. By smooth approximation in the (symmetric) area-strict
topology, Lemma 2.1, we find a sequence (uj) ⊂ Du0

:= u0 + LD0(Ω) such that

uj → u in L1(Ω;Rn),√
1 + |Euj |2(Ω)→

√
1 + |Eu|2(Ω) +

ˆ
∂Ω

|Tr∂Ω(u0 − u)� ν∂Ω|dH n−1.
(4.2)

By Theorem 2.9 ff. and hereafter continuity of w 7→ f [Ew](Ω) for the symmetric area-
strict metric, (uj) is a minimising sequence for F , and we have F [uj ] = F [uj ]→ F [u] =

minF [BD(Ω)]. Passing to a non-relabeled subsequence, we may thus assume

minF [BD(Ω)] ≤ F [uj ] ≤ minF [BD(Ω)] +
1

8j2
for all j ∈ N.(4.3)

Since the trace operator Tr: LD(Rn \Ω)→ L1(∂Ω;Rn) is surjective, we find a compactly
supported extension u0 ∈ LD(Rn) of u0. After a routine mollification of u0, we obtain
u∂Ω
j ∈W1,2(Ω;Rn) such that

‖u∂Ω
j − u0‖LD(Ω) ≤

1

8 Lip(f)j2
,(4.4)

where Lip(f) is the Lipschitz constant of f (cf. Lemma 2.8). We then put Dj :=

u∂Ω
j + W1,2

0 (Ω;Rn) ⊂W1,2(Ω;Rn). Since uj − u0 ∈ LD0(Ω), we find ũj ∈ Dj such that

‖uj − u0 − (ũj − u∂Ω
j )‖LD(Ω) ≤

1

8 Lip(f)j2
,

from where it follows that

‖ũj − uj‖LD(Ω) ≤ ‖uj − u0 − (ũj − u∂Ω
j )‖LD(Ω) + ‖u0 − u∂Ω

j ‖LD(Ω) ≤
1

4 Lip(f)j2
.(4.5)

Since W1,2
0 (Ω;Rn) ⊂ LD0(Ω), we find for arbitrary ϕ ∈W1,2

0 (Ω;Rn):

inf F [Du0
] ≤ F [u0 + ϕ]

= F [u0 + ϕ]− F [u∂Ω
j + ϕ] + F [u∂Ω

j + ϕ]

≤ Lip(f)‖ε(u0 − u∂Ω
j )‖L1(Ω;Rn×nsym ) + F [u∂Ω

j + ϕ]

(4.4)

≤ 1

8j2
+ F [u∂Ω

j + ϕ].

At this stage, we infimise the previous overall inequality over all ϕ ∈ W1,2
0 (Ω;Rn) to

obtain

inf F [Du0 ] ≤ 1

8j2
+ inf F [Dj ].(4.6)
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Then, since minF [BD(Ω)] = inf F [Du0 ], we deduce that

F [ũj ] ≤ F [ũj ]− F [uj ] + F [uj ]

≤ Lip(f)‖ε(ũj)− ε(uj)‖L1(Ω;Rn×nsym ) + F [uj ]

(4.5)

≤ 1

4j2
+ F [uj ]

(4.3)

≤ 3

8j2
+ inf F [Du0 ]

(4.6)

≤ 1

2j2
+ inf F [Dj ].

(4.7)

We consequently introduce the quantities Aj and the integrands fj : Rn×nsym → R via

Aj := 1 +

ˆ
Ω

(1 + |ε(ũj)|2) dx and fj(ξ) := f(ξ) +
1

2Ajj2
(1 + |ξ|2)(4.8)

for ξ ∈ Rn×nsym . In order to employ the Ekeland variational principle with respect to
sufficiently weak perturbations, we extend the integral functionals corresponding to fj
to W−2,1(Ω;Rn) by

Fj [w] :=


ˆ

Ω

fj(ε(w)) dx if w ∈ Dj ,

+∞ if w ∈W−2,1(Ω;Rn) \Dj .
(4.9)

For each j ∈ N, the functional Fj is not identically +∞ on W−2,1(Ω;Rn). The latter
space is Banach by Lemma 2.5 (a) and, by Lemma 2.6 with f = fj , q = 2 and k = 2, Fj
is lower semicontinuous with respect to the norm topology on W−2,1(Ω;Rn). Moreover,
we record

Fj [ũj ] ≤ F [ũj ] +
1

2j2

(4.7)

≤ 1

j2
+ inf F [Dj ] ≤

1

j2
+ inf Fj [W

−2,1(Ω;Rn)],

having used the very definition of Fj in the ultimate step. Therefore, Ekeland’s varia-

tional principle, Proposition 2.7, provides us with vj ∈W−2,1(Ω;Rn) such that

‖vj − ũj‖W−2,1(Ω;Rn) ≤
1

j
,

Fj [vj ] ≤ Fj [w] +
1

j
‖vj − w‖W−2,1(Ω;Rn) for all w ∈W−2,1(Ω;Rn).

(4.10)

We extract from (4.10) some routine information by testing with w = ũj :

Fj [vj ]
(4.10)2
≤ Fj [ũj ] +

1

j
‖vj − ũj‖W−2,1(Ω;Rn)

(4.10)1
≤ F [ũj ] +

1

2Ajj2

ˆ
Ω

(1 + |ε(ũj)|2) dx+
1

j2

(4.7)

≤ inf F [Du0 ] +
2

j2
.

(4.11)

The latter quantity is finite and so, by the very definition of Fj , vj ∈ Dj ⊂W1,2(Ω;Rn).

Moreover, as vj − u∂Ω
j ∈W1,2

0 (Ω;Rn) ⊂ LD0(Ω),

inf F [Du0 ] ≤ F [u0 + (vj − u∂Ω
j )]− F [vj ] + F [vj ]

≤ Lip(f)‖u0 − u∂Ω
j ‖LD(Ω) + F [vj ]

(4.4)

≤ 1

8j2
+ Fj [vj ]

(4.11)

≤ 3

j2
+ inf F [Du0 ].

(4.12)

For latter purposes, we record the perturbed Euler-Lagrange equation∣∣∣∣ˆ
Ω

〈f ′j(ε(vj)), ε(ϕ)〉dx
∣∣∣∣ ≤ 1

j
‖ϕ‖W−2,1(Ω;Rn) for all ϕ ∈W1,2

c (Ω;Rn).(4.13)
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This inequality can be obtained by testing (4.10)2 with w = vj ± θϕ for θ > 0, ϕ ∈
W1,2
c (Ω;Rn), dividing the resulting inequalities by θ and then sending θ ↘ 0. Moreover,

by the linear growth hypothesis (LG) and 1
c = min{ 1

2 , c1}, we infer from (4.11) thatˆ
Ω

|ε(vj)|dx+
1

Ajj2

ˆ
Ω

(1 + |ε(vj)|2) dx ≤ c
(

inf F [Du0
] + γL n(Ω) +

2

j2

)
(4.14)

holds for all j ∈ N. Finally, we note that due to Poincaré’s inequality on LD0(Ω) we
obtain

sup
j∈N

ˆ
Ω

|vj |dx ≤ sup
j∈N

[ ˆ
Ω

|vj − u∂Ω
j |dx+

ˆ
Ω

|u∂Ω
j |dx

]
≤ C sup

j∈N

[ ˆ
Ω

|ε(vj)|dx+ ‖u∂Ω
j ‖LD(Ω)

] (4.4), (4.14)
< ∞,

(4.15)

where C > 0 is the constant appearing in the requisite Poincaré inequality. We finally
record

Lemma 4.1. The sequence (vj) as constructed in (4.10) possesses a subsequence (vj(l)) ⊂
(vj) such that

vj(l)
∗
⇀ u in BD(Ω) as l→∞,

where u ∈ GM(F ;u0) is the generalised minimiser fixed in the beginning of the section.

Proof. By (4.14) and (4.15) we conclude that (vj) is uniformly bounded in BD(Ω), and

thus possesses a subsequence (vj(l)) ⊂ (vj) such that vj(l)
∗
⇀ v in BD(Ω) as l → ∞

for some v ∈ BD(Ω). Since L1(Ω;Rn) ↪→ W−2,1(Ω;Rn) by Lemma 2.5(b), vj(l) → v

in W−2,1(Ω;Rn). On the other hand, (4.2), (4.5) and (4.10) imply that vj(l) → u in

W−2,1(Ω;Rn). Hence u = v, and the proof is complete. �

4.3. Preliminary regularity estimates. To justify the manipulations on the per-
turbed Euler-Lagrange equations satisfied by the vj ’s, we now derive non-uniform regu-
larity estimates. Since (4.13) do not display elliptic differential equations (but differential
inequalities), the corresponding higher differentiability assertions need to be approached
slightly more carefully than for plain viscosity methods:

Lemma 4.2. Let f ∈ C2(Rn×nsym ) satisfy (LG) and, for some Λ ∈ (0,∞), the bound

0 < 〈f ′′(z)ξ, ξ〉 ≤ Λ
|ξ|2

(1 + |z|2)
1
2

for all z, ξ ∈ Rn×nsym .(4.16)

Define vj for j ∈ N by (4.10). Then there holds vj ∈W2,2
loc(Ω;Rn).

Proof. Let x0 ∈ Ω and 0 < r < R < dist(x0, ∂Ω). Also, let s ∈ {1, ..., n}, 0 < h <
1
2 (dist(x0, ∂Ω) − R) and pick ρ ∈ C∞c (Ω; [0, 1]) be such that 1B(x0,r) ≤ ρ ≤ 1B(x0,R).

We test the perturbed Euler-Lagrange equation (4.13) with ϕ := ∆s,−h(ρ2∆s,hvj) ∈
W1,2
c (Ω;Rn). In consequence, integration by parts for difference quotients yields∣∣∣∣ˆ

Ω

〈∆s,hf
′
j(ε(vj)), ε(ρ

2∆s,hvj)〉dx
∣∣∣∣ ≤ 1

j
‖∆s,−h(ρ2∆s,hvj)‖W−2,1(Ω;Rn).(4.17)

We define for L n-a.e. x ∈ B(x0, R) bilinear forms Bj,s,h(x) : Rn×nsym × Rn×nsym → R by

Bj,s,h(x)[η, ξ] :=

ˆ 1

0

〈f ′′j (ε(vj)(x) + th∆s,hε(vj)(x))η, ξ〉dt, η, ξ ∈ Rn×nsym .

Then we note that, because of (4.16) and the definition of fj ,

(j2Aj)
−1|ξ|2 ≤ Bj,s,h(x)[ξ, ξ] ≤ (Λ + (j2Aj)

−1)|ξ|2 =: Cj |ξ|2(4.18)
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for all ξ ∈ Rn×nsym , independently from s, h and x. Thus each Bj,s,h(x) is an elliptic bilinear
form itself and a suitable version of Young’s inequality is available. With this notation,
we infer from (4.17) by expanding the terms on the left and regrouping

I :=

ˆ
Ω

Bj,s,h(x)[ρε(∆s,hvj), ρε(∆s,hvj)] dx ≤
ˆ

Ω

Bj,s,h(x)[ρε(∆s,hvj), 2∇ρ�∆s,hvj ] dx

+
1

j
‖∆s,−h(ρ2∆s,hvj)‖W−2,1(Ω;Rn)

≤ 1

2

ˆ
Ω

Bj,s,h(x)[ρε(∆s,hvj), ρε(∆s,hvj)] dx

+
1

2

ˆ
Ω

Bj,s,h(x)[2∇ρ�∆s,hvj , 2∇ρ�∆s,hvj ] dx

+
1

j
‖∆s,−h(ρ2∆s,hvj)‖W−2,1(Ω;Rn) =: II + III + IV.

Absorbing term II into I, we obtain

1

2j2Aj

ˆ
Ω

|ρε(∆s,hvj)|2 dx
(4.18)

≤ 1

2
I = I− II ≤ III + IV(4.19)

and thus need to give bounds on III and IV. As a consequence of (4.18), we immediately
obtain

III ≤ 4Cj sup
Ω
|∇ρ|2

ˆ
B(x0,R)

|∆s,hvj |2 dx ≤ 4Cj(sup
Ω
|∇ρ|2)‖vj‖2W1,2(Ω;Rn)

which is finite due to vj ∈W1,2(Ω;Rn). As to term IV, we use Lemma 2.5(b) to find by

Lq(Ω;Rn) ↪→W−2,1(Ω;Rn) for some 1 < q < 2:

IV ≤ c(Ω, q)

j
‖∂s(ρ2∆s,hvj)‖Lq(Ω;Rn) ≤

c(Ω, q, n)

j
‖ε(ρ2∆s,hvj)‖Lq(Ω;Rn×nsym )

≤ c(Ω, q, n)

j
‖∇ρ�∆s,hvj‖Lq(Ω;Rn×nsym ) +

c(Ω, q, n)

j
‖ρ2ε(∆s,hvj)‖Lq(Ω;Rn×nsym )

≤ c(Ω, q, n)

j
(sup

Ω
|∇ρ|)‖∇vj‖L2(Ω;Rn) +

( 1

4Ajj2

ˆ
Ω

|ρε(∆s,hvj)|2 dx+ c(Ω, n, j, q)
) 1
q

≤ c(Ω, q, n)

j
(sup

Ω
|∇ρ|)‖∇vj‖L2(Ω;Rn) +

1

4Ajj2

ˆ
Ω

|ρε(∆s,hvj)|2 dx+ c(Ω, n, j, q)

(4.20)

where c(Ω, n, j, q) ≥ 1 and c(Ω, q) > 0 are constants. Here we used Korn’s inequality in

W1,q
0 (Ω;Rn) in the second and Young’s inequality in the penultimate step. The second

term on the very right hand side of inequality (4.20) consequently is absorbed into the
very left hand side of (4.19), and then we obtain sup|h|< 1

2 (dist(x0,∂Ω)−R) I < ∞. Thus,

(∆s,hε(vj))h is uniformly bounded in L2(B(x0, r);Rn×nsym ) and hence ∂sε(vj) exists in

L2(B(x0, r);Rn×nsym ) for each s ∈ {1, ..., n}. As a consequence, ∂svj ∈ W1,2(B(x0, r);Rn)
by Korn’s inequality. By arbitrariness of s ∈ {1, ..., n}, x0 ∈ Ω and R > 0 sufficiently

small, we thus obtain vj ∈W2,2
loc(Ω;Rn). The proof is complete. �

4.4. Uniform second order estimates. We now turn to uniform estimates (in j ∈ N)
for the viscosity approximating sequence (vj). The following result is a key ingredient in
the proof of Theorem 1.1, and we single it out as a theorem on its own right:

Theorem 4.3. Let f ∈ C2(Rn×nsym ) satisfy (LG). Moreover, suppose that for some Λ > 0
there holds

0 < 〈f ′′(z)ξ, ξ〉 ≤ Λ
|ξ|2

(1 + |z|2)
1
2

for all z, ξ ∈ Rn×nsym .(4.21)
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Moreover, let (vj) be the viscosity approximation sequence constructed in the previous
subsection. Then there exists a constant c = c(Λ, c1, c2, γ, n) > 0 such that for every
x0 ∈ Ω, 0 < r < 1 with B(x0, 2r) b Ω and all j ∈ N there holds

n∑
k=1

ˆ
B(x0,r)

〈f ′′j (ε(vj))∂kε(vj), ∂kε(vj)〉dx ≤
c

r2

ˆ
B(x0,2r)

|ε(vj)|dx

+
c

Ajj2r3

ˆ
B(x0,2r)

(1 + |ε(vj)|2) dx+
c

jr

(
inf F [Du0

] + γL n(Ω) +
2

j2

)
.

(4.22)

In the following, it is customary to introduce the shorthand notation

σj := f ′j(ε(vj)) and Aj [ν; ξ, η] := 〈f ′′j (ν)ξ, η〉, ν, ξ, η ∈ Rn×nsym .

We begin by collecting the properties of σj :

Lemma 4.4. Let the integrand f ∈ C2(Rn×nsym ) satisfy (LG) and (4.21) and define vj by

(4.10). Then for all ` ∈ {1, ..., n} and ϕ ∈W1,2
c (Ω;Rn) there holds∣∣∣∣ˆ

Ω

〈∂`σj , ε(ϕ)〉dx
∣∣∣∣ ≤ 1

j
‖ϕ‖W−1,1(Ω;Rn).(4.23)

Proof. By Lemma 4.2, vj ∈ W2,2
loc(Ω;Rn). We note that ∂`σj = f ′′j (ε(vj))∂`ε(vj), and

since supz∈Rn×nsym
|f ′′j (z)| <∞, σj ∈W1,2

loc(Ω;Rn×nsym ). Let ϕ ∈ C∞c (Ω;Rn). Then ∂`ϕ is an

admissible competitor in (4.13) and so, since σj ∈W1,2
loc(Ω;Rn×nsym ),∣∣∣∣ˆ

Ω

〈∂`σj , ε(ϕ)〉dx
∣∣∣∣ =

∣∣∣∣ˆ
Ω

〈σj , ε(∂`ϕ)〉dx
∣∣∣∣ (4.13)

≤ 1

j
‖∂`ϕ‖W−2,1(Ω;Rn) ≤

1

j
‖ϕ‖W−1,1(Ω;Rn).

Here, the last estimate is valid by Lemma 2.5 (b). Then the case of general W1,2
c (Ω;Rn)-

maps ϕ follows by routine smooth approximation and W1,2(Ω;Rn) ↪→W−1,1(Ω;Rn). �

We now come to the

Proof of Theorem 4.3. We divide the proof into three steps, and fix j ∈ N throughout.
Step 1. Modified perturbed Euler-Lagrange equations. To establish (4.22), we shall

use the weak Euler–Lagrange equation (4.23) from Lemma 4.4 satisfied by σj . Let
k ∈ {1, ..., n} and let x0 ∈ Ω, 0 < r < 1 be such that B(x0, 2r) b Ω. We choose a

cut-off function ρ ∈ C∞c (Ω; [0, 1]) such that 1B(x0,r) ≤ ρ ≤ 1B(x0,2r) and |∇kρ| ≤
(

2
r

)k
for k ∈ {1, 2, 3}. Without loss of generality, the interior B′ of spt(ρ) is a ball, too.

Then, since vj ∈ W2,2
loc(Ω;Rn) by Lemma 4.2, we obtain that ϕ := ρ2∂k(vj − aj) =:

ρ2∂kwj belongs to W1,2
c (Ω;Rn) and hence qualifies as a competitor map in (4.23). Here,

aj ∈ R(Ω) is a rigid deformation to be specified later on, and wj is defined in the
obvious manner. We write A = (Aim)ni,m=1 for an (n×n)–matrix A and denote the l–th

component of a vector u ∈ Rn by u(l). Then applying (4.23) to ` = k and summing over
k ∈ {1, ..., n} yields by virtue of Lemma 2.5 (b)

∑
k,i,m

ˆ
Ω

(∂kσ
im
j )εim(ρ2∂kwj) dx ≤ 1

j

n∑
k=1

‖ρ2∂kwj‖W−1,1(Ω;Rn)

≤ 1

j

n∑
k=1

‖∂k(ρ2wj)− 2(ρ∂kρ)wj‖W−1,1(Ω;Rn)

≤ c(n)

jr
‖wj‖L1(B′;Rn),

(4.24)
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where the left-hand sum is taken over all indices k, i,m ∈ {1, ..., n}. Towards (4.22), we
note that

n∑
k=1

ˆ
B(x0,r)

〈f ′′j (ε(vj))∂kε(vj), ∂kε(vj)〉dx ≤
n∑
k=1

ˆ
Ω

Aj [ε(vj); ρ∂kε(vj), ρ∂kε(vj)] dx

=
∑
k,i,m

ˆ
Ω

(∂kσ
im
j )ρ2∂kε

im(vj) dx,

(4.25)

whereby it suffices to estimate the right hand side in view of (4.24). From (4.24) we
deduce

2
∑
k,i,m

ˆ
Ω

(∂kσ
im
j )(ρ2εim(∂kvj)) dx ≤ −

∑
k,i,m

ˆ
Ω

(∂kσ
im
j )((∂iρ

2)∂kw
(m)
j + (∂mρ

2)∂kw
(i)
j ) dx

+
c(n)

jr
‖wj‖L1(B′;Rn)

= −
∑
k,i,m

ˆ
Ω

(∂kσ
im
j )((∂iρ

2)∂kw
(m)
j + (∂iρ

2)∂mw
(k)
j ) dx

+
∑
k,i,m

ˆ
Ω

(∂kσ
im
j )((∂iρ

2)∂mw
(k)
j + (∂mρ

2)∂iw
(k)
j ) dx

−
∑
k,i,m

ˆ
Ω

(∂kσ
im
j )((∂mρ

2)∂kw
(i)
j + (∂mρ

2)∂iw
(k)
j ) dx

+
c(n)

jr
‖wj‖L1(B′;Rn) =: I + II + III +

c(n)

jr
‖wj‖L1(B′;Rn).

(4.26)

Step 2. Estimating the terms I, II and III. Ad I and III. Let us note that, since the
indices i,m run over all numbers 1, ..., n and σj(x) ∈ Rn×nsym for L n-a.e. x ∈ Ω, we
have I = III. Moreover, we note that the artificial terms leading to the appearance of
II are just introduced to have the symmetric gradient appearing, that is, terms which

are conveniently controllable. In consequence, defining jΘk := (jΘ
im
k )ni,m=1 and jΘ̃k :=

(jΘ̃
im
k )ni,m=1 with

jΘ
im
k := (∂mρ

2)εik(wj),

jΘ̃
im
k := 2(∂mρ)εik(wj), k, i,m ∈ {1, ..., n},

we find by σj(x) ∈ Rn×nsym for L n-a.e. x ∈ Ω and the definition of the Frobenius inner

product on Rn×n

|I + III| ≤ 2|III| ≤ 4

∣∣∣∣∣∣
∑
k,i,m

ˆ
Ω

(∂kσ
im
j )(∂mρ

2)εik(wj) dx

∣∣∣∣∣∣
= 4

∣∣∣∣∣
n∑
k=1

ˆ
Ω

〈∂kσj , jΘsym
k 〉dx

∣∣∣∣∣ =: IV.

We now employ the definition of σj and Aj [ε(vj); ·, ·]. Then we obtain, applying the
Cauchy-Schwarz inequality to the bilinear forms Aj [ε(vj); ·, ·]:

IV ≤ 1

2

n∑
k=1

ˆ
Ω

Aj [ε(vj); ρ∂kε(vj), ρ∂kε(vj)] dx+ 8

n∑
k=1

ˆ
Ω

Aj [ε(vj); jΘ̃sym
k , jΘ̃

sym
k ] dx =: IV′.
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Appealing to (4.21) and recalling |∇ρ| ≤ 2
r , we then further estimate

IV′ ≤ 1

2

n∑
k=1

ˆ
Ω

Aj [ε(vj); ρ∂kε(vj), ρ∂kε(vj)] dx

+
128Λn2

r2

ˆ
B(x0,2r)

|ε(vj)|dx+
128n2

r2Ajj2

ˆ
B(x0,2r)

|ε(vj)|2 dx

=: V1 + V2 + V3.

(4.27)

Ad II. By symmetry of σj , i.e., σimj (x) = σmij (x) for all i,m ∈ {1, ..., n}, j ∈ N and for
L n-a.e. x ∈ Ω, and a permutation of indices, it suffices to estimate the term

2|VI| := 2

∣∣∣∣∣∣
∑
k,i,m

ˆ
Ω

(∂kσ
im
j )(∂iρ

2)(∂mw
(k)
j ) dx

∣∣∣∣∣∣(4.28)

with an obvious definition of VI. Integrating by parts twice yields

VI =
∑
k,i,m

ˆ
Ω

∂kσ
im
j (∂iρ

2)∂mw
(k)
j dx = −

∑
k,i,m

ˆ
Ω

σimj ∂k((∂iρ
2)∂mw

(k)
j ) dx

= −
∑
k,i,m

ˆ
Ω

σimj ((∂ikρ
2)∂mw

(k)
j + (∂iρ

2)∂mkw
(k)
j ) dx

=
∑
k,i,m

ˆ
Ω

∂m(σimj ∂ikρ
2)w

(k)
j + ∂m(σimj ∂iρ

2)∂kw
(k)
j dx

=
∑
k,i,m

ˆ
Ω

(∂mσ
im
j )(∂ikρ

2)w
(k)
j + σimj (∂ikmρ

2)w
(k)
j dx

+
∑
k,i,m

ˆ
Ω

(∂mσ
im
j )(∂iρ

2)∂kw
(k)
j + σimj (∂imρ

2)∂kw
(k)
j dx

=: VI1 + ...+ VI4,

(4.29)

where VI1, ...,VI4 are defined in the obvious manner. Note that, by the W2,2
loc–regularity

of vj and the W1,2
loc-regularity of σj , this is a valid computation. The crucial point in this

calculation is that the only derivatives that apply to wj appear in the form ∂kw
(k)
j (and

are decoupled from the (i,m)–components), and summation over k ∈ {1, ..., n} corre-

sponds to taking the divergence of wj . We define ψj,k := (ψ
(i)
j,k)ni=1 := ((∂ikρ

2)w
(k)
j )ni=1 ∈

W1,2
c (Ω;Rn). Then, with div(σj) denoting the row-wise divergence, we obtain

|VI1| =

∣∣∣∣∣∣
∑
k,i

ˆ
Ω

div(σ
(i)
j )(∂ikρ

2)w
(k)
j dx

∣∣∣∣∣∣ =

∣∣∣∣∣∑
k

ˆ
Ω

〈div(σj), ψj,k〉dx

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=1

ˆ
Ω

〈σj , ε(ψj,k)〉dx

∣∣∣∣∣ (4.13)

≤ 1

j

n∑
k=1

‖ψj,k‖W−2,1(Ω;Rn)

≤ n

j
‖ |∇2ρ2|wj‖L1(Ω;Rn) ≤

c(n)

jr2
‖wj‖L1(B′;Rn) =: VII.

(4.30)

Here we used Lemma 2.5(b) in the penultimate inequality. The term VI3 is treated

similarly, now defining ψ̃j,k := ((∂iρ
2)∂kw

(k)
j )ni=1 ∈W1,2

c (Ω;Rn) as wj ∈W2,2
loc(Ω;Rn) by

Lemma 4.2. Then we estimate analogously

|VI3| ≤

∣∣∣∣∣∑
k

ˆ
Ω

〈div(σj), ψ̃j,k〉dx

∣∣∣∣∣
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≤ 1

j

n∑
k=1

‖((∂iρ2)∂kw
(k)
j )ni=1‖W−2,1(Ω;Rn)

≤ 1

j

n∑
k,i=1

‖(∂iρ2)∂kw
(k)
j ‖W−2,1(Ω) =

1

j

n∑
k,i=1

‖∂k((∂iρ
2)w

(k)
j )− (∂ikρ

2)w
(k)
j ‖W−2,1(Ω).

At this stage, note that by repeated use of Lemma 2.5(b),

‖∂k((∂iρ
2)w

(k)
j )− (∂ikρ

2)w
(k)
j ‖W−2,1(Ω;R) ≤ ‖(∂iρ2)w

(k)
j ‖L1(Ω) + ‖(∂ikρ2)w

(k)
j ‖L1(Ω).

Hence, we obtain (by possibly enlarging the constant c(n) > 0 from the estimation of
|VI1|)

|VI3| ≤
c(n)

jr2
‖wj‖L1(B′;Rn) = VII.(4.31)

We turn to the estimation of VI2 and VI4. We recall that we still have the freedom to
choose the rigid deformations aj as they appear in the definition of wj . As spt(ρ) = B′

is ball3, we find a constant C(B′) > 0 such that for every v ∈ W1,2(B′;Rn) there exists
a ∈ R(Rn) such thatˆ

B′
|v − a|dx ≤ cnr

ˆ
B′
|ε(v)|dx and

ˆ
B′
|v − a|2 dx ≤ cnr2

ˆ
B′
|ε(v)|2 dx.(4.32)

It is important that for each such v we can choose one rigid deformation a to make both
inequalities work, and by Lemma 2.3, this is in fact possible. Accordingly, we choose for
each j ∈ N some aj ∈ R(Rn) such that inequality (4.32) holds with v being replaced by
vj and with a being replaced by aj . Turning to VI2, we go back to the definition of σj
and thereby obtain by virtue of Young’s inequality and the above Poincaré inequalities
(4.32) that

|VI2| ≤
∑
k,i,m

ˆ
Ω

(|f ′(ε(vj))|+
1

Ajj2
|ε(vj)|) |(∂ikmρ2)| |w(k)

j |dx

≤ c(n)

r3

(
Lip(f)

ˆ
B′
|wj |dx+

1

2Ajj2

( ˆ
B′
|wj |2 dx+

ˆ
B′
|ε(wj)|2 dx

))
0<r<1
≤ c(n) max{Lip(f), 1}

r3

(
r

ˆ
B′
|ε(vj)|dx+

1 + r2

2Ajj2

ˆ
B′
|ε(vj)|2 dx

)
.

(4.33)

As to VI4, we note that since (ε(vj)) is uniformly bounded in L1(Ω;Rn×nsym ) by (4.14), so

is (div(vj)) in L1(Ω). We then estimate, using the pointwise bound4 |div(wj)| ≤ |ε(vj)|
and (4.14),

VI4 ≤
c(n)

r2

ˆ
Ω

|σj | |div(wj)|dx

≤ c(n) max{Lip(f), 1}
r2

(ˆ
B′
|ε(vj)|+

1

Ajj2
|ε(vj)|2 dx

)
.

(4.34)

By our choice of aj and (4.14), VII can now be estimated by

VII ≤ c(n)

jr2
‖wj‖L1(B′;Rn) ≤

c(n)

jr

(
inf F [Du0 ] + γL n(Ω) +

2

j2

)
.(4.35)

Step 3. Conclusion. We now gather estimates and start from (4.25) to find

n∑
k=1

ˆ
Ω

Aj [ε(vj); ρ∂kε(vj), ρ∂kε(vj)] dx
(4.25)

≤ I + II + III +
c(n)

jr
‖wj‖L1(B′;Rn)

3In view of Poincaré’s inequality, it would be sufficient to assume that spt(ρ) is a connected Lipschitz
domain.

4Note that rigid deformations have zero divergence.
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(4.27), (4.29)

≤ (V1 + V2 + V3) + VI1 + ...+ VI4 +
c(n)

j
‖ε(wj)‖L1(B′;Rn),

whence we absorb V1 into the left side of the previous inequality. We then succesively
combine (4.27), (4.30)–(4.35) with (4.14) to obtain via 0 < r < 1

n∑
k=1

ˆ
Ω

Aj [ε(vj); ρ∂kε(vj), ρ∂kε(vj)] dx ≤ c

r2

ˆ
B(x0,2r)

|ε(vj)|dx+
c

Ajj2r3
×

×
ˆ

B(x0,2r)

(1 + |ε(vj)|2) dx+
c

jr

(
inf F [Du0

] + γL n(Ω) +
2

j2

)
,

where we track constants to find that c = c(Lip(f),Λ, n, γ, c1) > 0. Since Lip(f) only
depends on c2, γ by Lemma 2.8, this immediately gives (4.22) by (4.25), and the proof
is hereby complete. �

4.5. Proof of Theorem 1.1. Based on Theorem 4.3, we can proceed to the proof of
Theorem 1.1. It needs to be noted that the second order estimate given in (4.22) is the
decisive ingredient which we lacked in [44], and in the following we demonstrate how
(4.22) leads to a Sobolev regularity improvement. Here, we are led by the ideas exposed
in [18, 14] for the gradient case.

Proof of Theorem 1.1. Let u ∈ GM(F ;u0) be given and let B(x0, 5r) ⊂ Ω be an open
ball. In this situation, u is a local generalised minimiser, which in particular implies
that Fu[u; B(x0, 5r)] ≤ Fu[v; B(x0, 5r)] for all v ∈ BD(B(x0, 5r)). We now denote (vj)
the specific Ekeland viscosity approximation sequence as constructed in (4.10)ff., with Ω
being replaced by B(x0, 5r) and u0 being replaced by u|B(x0,5r). Lemma 4.1 then implies

that there exists a subsequence (vj(l)) ⊂ (vj) such that vj(l)
∗
⇀ u in BD(B(x0, 5r)) as

l→∞.
We begin with n ≥ 3. Since in particular 1 < a < 2 in the present situation, we

introduce the auxiliary convex function Va(ξ) := (1 + |ξ|2)
2−a
4 , ξ ∈ Rn×nsym . Recalling

(vj(l)) ⊂W2,2
loc(B(x0, 5r);Rn) from Lemma 4.2 and differentiating Va(ε(vj(l))), we obtain

for all k ∈ {1, ..., n}

|∂kVa(ε(vj(l)))|2 ≤
(2− a

2

)2

|∂kε(vj(l))|2 |ε(vj(l))|2(1 + |ε(vj(l))|2)
−2−a

2

≤ c(a)
|∂kε(vj(l))|2

(1 + |ε(vj(l))|2)
a
2
.

Therefore, we find by the previous inequality, the lower bound in (1.4) and Theorem 4.3:

‖Va(ε(vj(l)))‖2
L

2n
n−2 (B(x0,r))

≤ c(n)
(
‖∇(Va(ε(vj(l))))‖2L2(B(x0,r))

+
1

r2

ˆ
B(x0,r)

|Va(ε(vj(l)))|2 dx
)

≤ c(n, a)
( ˆ

B(x0,r)

|∇(ε(vj(l)))|2

(1 + |ε(vj(l))|2)
a
2

dx

+
1

r2

ˆ
B(x0,r)

(1 + |ε(vj(l))|2)
1
2 dx

)
(4.22), (4.14)

≤ c

r2

ˆ
B(x0,2r)

|ε(vj(l))|dx

+
c

Aj(l)j(l)2r3
×
ˆ

B(x0,2r)

(1 + |ε(vj(l))|2) dx

+
c

j(l)r

(
Fu[u; B(x0, 5r)] + γL n(B(x0, 5r)) +

2

j(l)2

)
+ crn−2 =: Il + ...+ IVl,

(4.36)
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where c = c(n, a, λ,Λ, γ, c1, c2) > 0. Here, the first estimate is valid by the scaled Sobolev

inequality, whereas we have used
√

1 + t2 ≤ 1 + t for the ultimate one. As a consequence
of the definition of Va, we find

|z|
2−a
2 ≤ Va(z) for all z ∈ Rn×nsym .(4.37)

This yields local uniform boundedness of (ε(vj(i))) in Lq(B(x0, r);Rn×nsym ) for q = 2−a
n−2n,

and the latter number satisfies q > 1 if and only if 1 < a < 1 + 2
n , which is the standing

assumption of Theorem 1.1. Let us note in advance that (4.12) implies that liml→∞ IIl =
0, whereas liml→∞ IIIl = 0 holds trivially. Now consider the function Ψq(t) := |t|q for

q > 1. Then Ψ∞q (t) = ∞ for if |t| > 0. Since ε(vj(l))L
n B(x0, r)

∗
⇀ Eu B(x0, r),

we obtain as a consequence of Reshetnyak’s theorem, Lemma 2.9, and the notation
adopted in (2.11) afterwards with ν = (L n,Eu),ˆ

B(x0,r)

Ψq(E u) dx+

ˆ
B(x0,r)

Ψ∞q

( dEsu

d|Esu|

)
d|Esu| =

ˆ
B(x0,r)

Ψ#
q

( dν

d|ν|

)
d|ν|

≤ lim inf
l→∞

ˆ
B(x0,r)

Ψ#
q (1, ε(vj(l))) dx

(4.36)

≤ c
( |Eu|(B(x0, 5r))

r2
+ rn−2

) n
n−2

.

(4.38)

Since the very right hand side is finite, we conclude that Esu vanishes on B(x0, r). By
arbitrariness of B(x0, r), we moreover infer that Esu ≡ 0 in Ω and so u ∈ LD(Ω) together
with ε(u) = E u. Moreover, by Korn’s inequality, ∇u ∈ Lq(B(x0, r);Rn×n). To obtain
the precise form of (1.7), we choose a rigid deformation πu ∈ R(B(x0, r)) such that

‖∇u‖Lq(B(x0,r);Rn×n) ≤ ‖∇(u− πu)‖Lq(B(x0,r);Rn×n) + ‖∇πu‖Lq(B(x0,r);Rn×n)

(2.6)

≤ c
(
‖ε(u)‖Lq(B(x0,r);Rn×nsym ) + r

n
q−1

 
B(x0,r)

|πu|dx
)

(2.7)

≤ c
(
‖ε(u)‖Lq(B(x0,r);Rn×nsym ) + r

n
q−1

 
B(x0,r)

|u|dx
)

(4.38)

≤ c
(( |Eu|(B(x0, 5r))

r2
+ rn−2

) 1
2−a

+ r
n
q−1

 
B(x0,r)

|u|dx
)
.

Dividing the previous inequality by r
n
q = r

n−2
2−a , we obtain( 

B(x0,r)

|∇u|q dx
) 1
q ≤ c

((
1 +

 
B(x0,5r)

|Eu|
) 1

2−a
+

1

r

 
B(x0,r)

|u|dx
)
.

This is (1.7) and the proof is complete for if n ≥ 3. Now let n = 2. As above, (Va(ε(vj(l))))

is locally uniformly bounded in W1,2(B(x0, 5r);Rn) and thus, using Trudinger’s em-

bedding W1,n(Ω) ↪→ exp L
n
n−1 (Ω), (4.36) equally yields

‖Va(ε(vj(l)))‖exp L
n
n−1 (B(x0,r))

≤
√

Il + ...+ IVl.

Working with Ψ(t) = exp(t
n
n−1

2−a
2 ) = exp(t2−a) instead of Ψq from above, we similarly

conclude that u ∈ E1 exp L2−a(B(x0, r)). We then employ Cianchi’s inequality from

Lemma 2.2(b) with β = 2− a(> 0) and hereafter β
β+1 = 2−a

3−a . In consequence,

‖∇u‖
exp L

2−a
3−a (B(x0,r))

≤ ‖∇(u− πu)‖
exp L

2−a
3−a (B(x0,r))

+ ‖∇πu‖
exp L

2−a
3−a (B(x0,r);Rn×n)

≤ c
(
‖ε(u)‖exp L2−a(B(x0,r);Rn×nsym ) +

1

r

 
B(x0,r)

|u|dx
)

≤ c
((

1 +

 
B(x0,5r)

|Eu|
) 1

2−a
+

1

r

 
B(x0,r)

|u|dx
)
,

and the proof is complete. �
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4.6. Selected implications. We now collect some consequences of the results estab-
lished above and particularly improve the results from [44]. We begin by strengthening
[44, Cor. 3.8], justifying the second arrow from below in Figure 1.

Corollary 4.5 (Existence of second derivatives). Let n ≥ 2 and suppose that f ∈
C2(Rn×nsym ) satisfies (LG) and (1.4) for some 1 < a < n

n−1 . Then there holds GMloc(F ) ⊂
W2,q

loc(Ω;Rn) for any 1 < q < n 2−a
n−a .

Proof. Let u ∈ GMloc(F ) and let B(x0, r) b Ω be an open ball. By Theorem 1.1

and its proof, we have GMloc(F ) ⊂ W1,p
loc(Ω;Rn) for any 1 < p < ∞ if n = 2 and

any 1 < p < 2−a
n−2n if n ≥ 3. Let (vj) be the Ekeland viscosity approximation sequence

constructed in (4.10) with Ω being replaced by B(x0, r) and u0 being replaced by u|B(x0,r).

Then we record, using Young’s inequality with exponents 2
q and 2

2−q for some 1 ≤ q < 2,

ˆ
B(x0,r)

|∇ε(vj)|q dx ≤ q

2

ˆ
B(x0,r)

|∇ε(vj)|2

(1 + |ε(vj)|2)
a
2

dx+
2− q

2

ˆ
B(x0,r)

(1 + |ε(vj)|2)
aq
4

2
2−q dx.

The first term is uniformly controlled by Theorem 4.3. If n = 2, then the second term is
uniformly bounded in j ∈ N regardless of 1 ≤ q < 2 as supj∈N ‖ε(vj)‖Lp(B(x0,r);Rn×nsym ) <∞
for all 1 < p < ∞ (see the proof of Theorem 1.1). If n ≥ 3 and 1 < a < n

n−1 , then

1 < a < 1 + 2
n , and again by the proof of Theorem 1.1, the second term is uniformly

bounded in j ∈ N if

a
q

2− q
<

2− a
n− 2

n that is, q < n
2− a
n− a

=: q̃(n).(4.39)

Note that q̃(n) > 1 if and only if 1 < a < n
n−1 . Hence, (vj) is locally uniformly bounded

in W2,q for 1 < q < n(2−a)
n−a . From here the result follows in the same way as in the proof

of Theorem 1.1, again using Korn’s inequality. �

Compared with [44], we have now established that for the ellipticity regime 1 < a <
n
n−1 , all generalised minima possess second derivatives in some Lqloc, q > 1. An easy

application of the measure density lemma [41, Prop. 2.7] yields the following

Corollary 4.6 (Singular set bounds). Let f ∈ C2(Rn×nsym ) satisfy (LG) and (1.4) for

some 1 < a < 1 + 2
n . For a given map v ∈ BDloc(Ω), put

Σv :=

{
x ∈ Ω: lim sup

R↘0

[ 
B(x,R)

|E v − z|dL n +
|Esv|(B(x,R))

L n(B(x,R))

]
> 0 for all z ∈ Rn×nsym

}
.

Then the following holds:

(a) If n = 2 and 1 < a < 2, then any u ∈ GMloc(F ) satisfies dimH (Σu) = 0.
(b) If n ≥ 3 and 1 < a < n

n−1 , then any u ∈ GMloc(F ) satisfies dimH (Σu) ≤ nn−2
n−a .

We conclude this section by describing the structure of GM(F ;u0) and begin with

Corollary 4.7 (Uniqueness modulo elements of R(Ω)). Let Ω ⊂ Rn be an open, bounded
and connected set with Lipschitz boundary and u0 ∈ LD(Ω). In the situation of Theo-
rem 1.1, generalised minimisers are unique up to rigid deformations, that is,

u, v ∈ GM(F ;u0) =⇒ ∃π ∈ R(Ω): u = v + π.

Proof. By Theorem 1.1, GM(F ;u0) ⊂ LD(Ω). Now suppose that u, v ∈ GM(F ;u0) are
two generalised minima such that ε(u) 6= ε(v) L n-a.e.. Then, by strict convexity of f
and convexity of f∞,

Fu0

[u+ v

2

]
<

∑
w∈{u,v}

1

2

ˆ
Ω

f(ε(w)) dx+
1

2

ˆ
∂Ω

f∞(Tr(u0 − w)� ν∂Ω) dH n−1.
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For u, v ∈ GM(F ;u0), the right-hand side equals minFu0 [BD(Ω)] which consequently
yields a contradiction. Hence, ε(u − v) = 0 L n-a.e., and since Ω is connected, this
implies that u = v + π for some π ∈ R(Ω). �

As in the BV-case, Corollary 4.7 cannot be improved to yield full uniqueness. To
this end, it is important to require a suitable variant of strict convexity on the recession
function f∞; note that f∞ is positively 1-homogeneous and hence not strictly convex.
In this respect, the relevant concept is as follows (also see [68, Sec. 4.5]): We say that
a function g : Rn×nsym → R has strictly convex sublevel sets provided for each t ∈ R the

set Γt(g) := {z ∈ Rn×nsym : g(z) < t} is bounded, convex and if z1, z2 ∈ ∂Γt(g), then
λz1 + (1− λ)z2 /∈ ∂Γt(g) for any 0 < λ < 1.

Corollary 4.8 (Uniqueness and structure of GM(F ;u0)). Let Ω ⊂ Rn be an open,
bounded, connected set with Lipschitz boundary such that for any fixed a ∈ R there holds

H n−1({x ∈ ∂Ω: xi = a}) = 0 for all i ∈ {1, ..., n}.

In the situation of Corollary 4.7, suppose that the map f∞ν : Rn 3 z 7→ f∞(z � ν) has
strictly convex sublevel sets for all ν ∈ Rn\{0}. Then there exists a generalised minimiser
u ∈ GM(F ;u0) and a rigid deformation π ∈ R(Ω) such that

GM(F ;u0) =
{
u+ λπ : λ ∈ [−1, 1]}.(4.40)

Finally, if there exists a generalised minimiser u which attains the boundary values
Tr∂Ω(u0) H n−1-a.e. on ∂Ω, then GM(F ;u0) = {u}.

The condition on f∞ν to have strictly convex sublevel sets is satisfied if, e.g., f is
spherically symmetric, ruling out that (f∞)−1({1}) contains any line segments of positive
length. Corollary 4.8 follows from Corollary 4.7 similarly as in the BV-case, cf. [14,
Thm. 1.16], but is technically more demanding; for the reader’s convenience, the appendix
A, Section 8, includes the precise reasoning with emphasis on the two-dimensional case.

5. A family of convolution-type Poincaré inequalities

Approaching Theorem 1.2, we pause to provide a family of convolution inequalities
to instrumentally enter the partial regularity proof below. We believe that the result
might be of independent interest, and thus state selected versions thereof in the end of
the section.

Proposition 5.1. Let λ > 1 and let V (z) :=
√

1 + |z|2 − 1 be the auxiliary reference
integrand as usual. Then there exists a constant c = c(n, λ) > 0 such that the following
holds: For every open and bounded Lipschitz domain Ω ⊂ Rn, u ∈ BDloc(Rn) and
numbers ε, L > 0 there holdsˆ

Ω

V (L(u− ρε ∗ u)) dx ≤ cmax{(Lε), (Lε)2}
ˆ

Ω+B(0,λ
√
nε)

V (Eu),(5.1)

where ρ : Rn → R≥0 is an arbitrary standard mollifier in the sense of Section 2.4.

Before passing to the proof of the preceding proposition, let us remark that (5.1)
cannot be established as in the full gradient case, cf. [10, Lemma 5.3]. Namely, if we
wish to obtain (5.1) for u ∈ BV(Rn;RN ) with the symmetric gradient on the right-hand
side being replaced by the full gradient, it suffices to invoke the fundamental theorem
of calculus in conjunction with Jensen’s inequality. In view of (5.1), Ornstein’s Non-
Inequality forces us to avoid the appearance of the full gradient on the right-hand side.
Upon localisation, a slightly weaker result can be readily obtained as follows: Invoking the
Smith representation formula (2.4) and then arguing as in the full gradient case, we may
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ελ
Γελ := ελZn

• • •

•
•
•

Q(1)Q(2)Q(3)

Q

Q̃

Nε(Q)

ε

(2`+ 1)ελ

Figure 2. Neighbouring cube notation.

conclude5 that for any 0 < β < 1 (but not for β = 1) there exists C = C(β,diam(Ω)) > 0
with

‖V (L(u− ρε))‖L1(Ω) ≤ C min{Lεβ , L2ε2β}|V (Eu)|(Ω + B(0, ε))(5.2)

for all u ∈ BD(Ω) and L > 0. However, this is neither optimal nor good enough for
deriving the requisite decay estimate in Section 6; see the proof of Proposition 6.4 and
Remark 6.6 afterwards.

Proof of Proposition 5.1. The proof consists in four main steps. After giving the geo-
metric setup in a first step, we establish a preliminary Poincaré-type inequality involving
the reference integrand V in the second step. Then we globalise by a covering argument
with respect to cubes having edgepoints contained in a certain lattice, depending on the
parameters ε and λ. Lastly, we smoothly approximate to conclude the full claim.

Step 1. Preliminaries. Let λ > 1 be given. Let Ω be as in the proposition and
denote, for t > 0, Nt(Ω) := {x ∈ Rn : dist(x,Ω) < t} the t-neighbourhood of Ω. We put
` := d 1

λ−1e+ 1 ∈ N so that 1
λ−1 < `, and define ελ := ε

` .
We now consider the lattice Γελ := ελZn and denote Qελ the collection of all open

cubes of sidelength ελ and edge points contained in Γελ . Given Q ∈ Qελ , we denote Q̃
the cube which has the same center as Q and sides parallel to those of Q but sidelength

(2`+1)ελ. Then Q̃ has all its edge points equally contained in Γελ , Nε(Q) = Q+B(0, ε) ⊂
Q̃, and can be written as the union of N = N (λ, n) ∈ N cubes from Qελ ; for notational
convenience, we denote these cubes Q(i), i = 1, ...,N , and arrange that for all Q ∈ Qελ ,
the relative positioning of Q(i) to Q is the same – see Figure 2 for this setup. Moreover,

if Q ∈ Qελ satisfies Q ∩ Ω 6= ∅, then we have Q̃ ⊂ Nλ
√
nε(Ω). In fact, in this case there

exists x0 ∈ Q∩Ω and thus for any z ∈ Q̃ we have dist(z,Ω) ≤ |x0− z|. By the geometry

of Q̃ (see Figure 2), it is clear that |x0 − z| does not exceed

√
nελ +

√
nε =

√
nε
(1

`
+ 1
)
< λ
√
nε

and hence dist(z,Ω) < λ
√
nε so that z ∈ Nλ√nε(Ω). Summarising, for every Q ∈ Qελ

with Q ∩ Ω 6= ∅, we have Q̃ =
⋃N
i=1Q

(j) ⊂ Nλ√nε(Ω).
Step 2. A Poincaré-type inequality for the reference integrand V . In a second step, we

claim that there exists a constant c = c(n) > 0 such that for every open cube Q ⊂ Rn,

5Namely, express the difference u− ρε ∗ u by the convolution integrals emerging from (2.4) and then

use the embedding of BD(Rn) into Wα,1
loc (Rn;Rn) or Ws,(n−1+s)(Rn;Rn) for 0 < s < 1 (cf. [45]). Since

suitable fractional potentials of Wα,1-maps can be controlled conveniently, this allows to arrive at the

claimed estimate for all 0 < β < 1.
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ελ

ελ

Γελ := ελZn

Ω
Q

Q̃

• • • • • •

• • • • • • •
••

λ
√
nε

Sλ
√
nε

Figure 3. Not-to-scale construction in the proof of Proposition 5.1. In
step 1, the lattice parameter ελ must be adjusted in a way such that for

any Q ∈ Qελ , Q̃ ⊂ Nλ
√
nε(Ω) = Ω ∪ Sλ√nε. Note that the correcting

rigid deformations required for the nonlinear Poincaré inequality of step

2 are taken over the enlarged cubes Q̃.

every L > 0 and every u ∈ C∞(Rn;Rn) there holdsˆ
Q

V (L(u− Π̃Qu)) dx ≤ C max{L`(Q), (L`(Q))2}
ˆ
Q

V (ε(u)) dx.(5.3)

Here, Π̃Qu denotes the rigid deformation determined by Proposition 2.4. It is crucial for
this inequality to be available in this very form, and so we provide the details. Thus let

u ∈ C∞(Rn;Rn) and employ the representation from Lemma 2.4: There exists Π̃Qu ∈
R(Q) such that for all x ∈ Q there holds

u(x) = Π̃Qu(x) + TQ[ε(u)](x) = Π̃Qu(x) +

ˆ
Q

RQ(x, y)ε(u)(y) dy,

where |RQ(x, y)| ≤ CR|x−y|1−n for all x, y ∈ Q, x 6= y, with a constant CR = CR(n) > 0.
Let x ∈ Q. We define a measure µx : B(Q) → R≥0 by putting µx(A) :=

´
A
CR|x −

y|1−n dy for A ∈ B(Q). Since |x− y| <
√
n`(Q) for all x, y ∈ Q,

µx(Q) = CR

ˆ
Q

dy

|x− y|n−1
≥ CR
√
n
n−1 `(Q).

We also need a remark on the upper bound. Namely, if x ∈ Q, then Q ⊂ B(x,
√
n`(Q))

independently of x. Thus, with ωn = L n(B(0, 1)),

µx(Q) ≤ CR
ˆ

B(x,
√
n`(Q))

dy

|x− y|n−1
= CR

ˆ
B(0,
√
n`(Q))

dy

|y|n−1
≤ CRωnn

√
n`(Q).

In conclusion, there exists c = c(n) > 0 such that

1

c
`(Q) ≤ µx(Q) ≤ c`(Q)(5.4)

for all cubes Q and x ∈ Q. Now, µx/µx(Q) is a probability measure on B(Q) for every

x ∈ Q. In consequence, as |u− Π̃Qu| ≤ |TQ[ε(u)]| pointwisely in Q and V : R≥0 → R≥0

is monotone, we estimate by Jensen’s inequality
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ˆ
Q

V (L(u− Π̃Qu)) dx ≤
ˆ
Q

V

(
L

ˆ
Q

RQ(x, y)ε(u)(y) dy

)
dx

≤
ˆ
Q

V

(
LCRµx(Q)

ˆ
Q

|ε(u)(y)|
|x− y|n−1

dy

µx(Q)

)
dx

Lemma 2.11(a), (5.4)

≤ cmax{(L`(Q)), (L`(Q))2}×

×
ˆ
Q

V

(ˆ
Q

|ε(u)(y)|
|x− y|n−1

CR dy

µx(Q)

)
dx

Jensen
≤ cmax{(L`(Q)), (L`(Q))2} ×

ˆ
Q

ˆ
Q

V (ε(u)(y))
dµx(y)

µx(Q)
dx

(5.4)

≤ cmax{(L`(Q)), (L`(Q))2} 1

`(Q)

ˆ
Q

ˆ
Q

V (ε(u)(y))

|x− y|n−1
dy dx

≤ cmax{(L`(Q)), (L`(Q))2} 1

`(Q)

ˆ
Q

V (ε(u)(y))µy(Q) dy

(5.4)

≤ cmax{(L`(Q)), (L`(Q))2}
ˆ
Q

V (ε(u)(y)) dy.

Tracking the dependencies of constants, c = c(n) > 0, thereby establishing (5.3).
Step 3. Inequality (5.1) for C∞-maps. As a main feature of the symmetric gradient

operator, let us note that as first order polynomials, all elements π ∈ R(Rn) of its
nullspace are harmonic. Thus they satisfy the mean value property and, as a consequence,
convolution with standard mollifiers locally turns out to be the identity on the rigid
deformations, cf. [33, Chpt. 2.2.3, Thm. 6]. For any Q ∈ Qελ , we recall the definition

of the cube Q̃ from step 1. Then (5.3) holds true with Q and Π̃Qu being replaced by Q̃

and Π̃Q̃u, respectively. We then obtain, using Lemma 2.11(i) in the third step

ˆ
Ω

V (L(u− ρε ∗ u)) dx ≤
∑

Q∈Qελ
Q∩Ω6=∅

ˆ
Q

V (L(u− ρε ∗ u)) dx

≤
∑

Q∈Qελ
Q∩Ω6=∅

ˆ
Q

V (L(u− Π̃Q̃u)− ρε ∗ L(u− Π̃Q̃u)) dx

Lemma 2.11(b)

≤ 2
∑

Q∈Qελ
Q∩Ω6=∅

ˆ
Q

V (L(u− Π̃Q̃u)) + V (ρε ∗ L(u− Π̃Q̃u)) dx.

At this stage, we use Jensen’s and Young’s inequalities to conclude that for any Q ∈ Qελ
there holdsˆ

Q

V (ρε ∗ L(u− Π̃Q̃u)) dx ≤
ˆ
Q

ρε ∗ V (|u− Π̃Q̃u|) dx

≤
ˆ
Nε(Q)

V (|L(u− Π̃Q̃u)|) dx

Nε(Q)⊂Q̃
≤

ˆ
Q̃

V (|L(u− Π̃Q̃u)|) dx

(5.3)

≤ cmax{L`(Q̃), (L`(Q̃))2}
ˆ
Q̃

V (ε(u)) dx

`(Q̃)= 2`+1
` ε

≤ cmax{Lε, (Lε)2}
N∑
j=1

ˆ
Q(j)

V (ε(u)) dx,

(5.5)
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where c = c(λ, n) (note that ` only depends on λ). Note that, for any fixed j ∈ {1, ...,N }
and all Q,Q′ ∈ Qελ with Q 6= Q′, Q(j)∩Q′(j) = ∅. On the other hand, by step 1, for any

fixed j ∈ {1, ..., n},
⋃
Q∈Qελ , Q∩Ω6=∅Q

(j) ⊂
⋃
Q∈Qελ , Q∩Ω6=∅ Q̃ ⊂ Nλ√nε(Ω). Therefore,∑

Q∈Qελ
Q∩Ω6=∅

ˆ
Q(j)

V (ε(u)) dx ≤
ˆ
Nλ
√
nε(Ω)

V (ε(u)) dx.(5.6)

Consequently, we obtain by Q ⊂ Q̃ and (5.5) in the first step:( ∑
Q∈Qελ
Q∩Ω6=∅

ˆ
Q

V (L(u− Π̃Q̃u)))
)

+
( ∑
Q∈Qελ
Q∩Ω6=∅

ˆ
Q

V (ρε ∗ L(u− Π̃Q̃)) dx
)

(5.5)

≤ cmax{(Lε), (Lε)2}
∑

Q∈Qελ
Q∩Ω6=∅

N∑
j=1

ˆ
Q(j)

V (ε(u)) dx

= cmax{(Lε), (Lε)2}
N∑
j=1

∑
Q∈Qελ
Q∩Ω6=∅

ˆ
Q(j)

V (ε(u)) dx

(5.6)

≤ cmax{(Lε), (Lε)2}
ˆ
Nλ
√
nε(Ω)

V (ε(u)) dx.

Since N = N (λ, n), c = c(λ, n) in the previous estimation, and (5.1) follows for u ∈
C∞(Rn;Rn).

Step 4. Passage to the general case. Let u ∈ BDloc(Rn). By localisation, it is no loss
of generality to assume u ∈ BD(Rn). Let η ∈ C∞c (B(0, 1); [0, 1]) be a standard mollifier.
We put uk := η1/k ∗ u, so that, by passing to a non-relabeled subsequence, uk → u
L n-a.e. in Rn. This yields by Fatou’s lemma for all ε > 0ˆ

Ω

V (L(u− ρε ∗ u)) dx ≤ lim inf
k→∞

ˆ
Ω

V (L(uk − ρε ∗ uk)) dx

≤ cmax{(Lε), (Lε)2} lim inf
k→∞

ˆ
Nλ
√
nε(Ω)

V (ε(uk)) dy

≤ cmax{(Lε), (Lε)2} lim inf
k→∞

ˆ
N
λ
√
nε+ 1

k
(Ω)

V (Eu)

≤ cmax{(Lε), (Lε)2}
ˆ
Nλ
√
nε(Ω)

V (Eu),

where we used inequality (5.1) for smooth maps in the second and Jensen’s inequality in
the third step. This is the inequality claimed in the proposition and the proof of (5.1)
for u ∈ BDloc(Rn) is hereby complete. �

For consistency, let us note that if the right hand side of (5.1) is zero, then u must
coincide with a rigid deformation on each of the connected components of U+B(0, λ

√
nε)

and so on those of U ; in consequence, it must coincide with its mollification on each of
these connected components and hence the left hand side is zero indeed.

Corollary 5.2. Let λ > 1 and let V (z) :=
√

1 + |z|2 − 1 be the auxiliary reference
integrand as usual. Then there exists a constant c = c(n, λ) > 0 such that the following
holds: For every open and bounded Lipschitz domain Ω ⊂ Rn, u ∈ BDloc(Rn) and
numbers ε, L > 0 there holdsˆ

Ω

V (L(u− ηε ∗ (ρε ∗ u))) dx ≤ cmax{(Lε), (Lε)2}
ˆ

Ω+B(0,2λ
√
nε)

V (Eu),(5.7)
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where ρ, η : Rn → R≥0 are arbitrary standard mollifiers in the sense of Section 2.4.

Proof. Denote the left-hand side of (5.7) by I. We use Lemma 2.11(b) and Jensen’s
inequality to obtain

I ≤ 2

ˆ
Ω

V (L(u− (ρε ∗ u))) dx+ 2

ˆ
Ω

V (L(ρε ∗ u− ηε ∗ (ρε ∗ u))) dx

Prop. 5.1

≤ cmax{(Lε), (Lε)2}
(ˆ

Ω+B(0,λ
√
nε)

V (Eu) +

ˆ
Ω+B(0,λ

√
nε)

V (E(ρε ∗ u))
)

λ
√
n>1

≤ cmax{(Lε), (Lε)2}
ˆ

Ω+B(0,2λ
√
nε)

V (Eu),

where again c = c(λ, n). The proof is complete. �

We conclude this section by discussing a particular borderline case in the spirit of
(5.1), for simplicity stated on the entire Rn:

Corollary 5.3 (Sobolev-Poincaré inequality in convolution form). For any 1 ≤ p ≤ n
n−1

there exists a constant c = c(n, p) > 0 with the following property: For every u ∈ BD(Rn)
and ε > 0 there holds(ˆ

Rn
|u− ρε ∗ u|p dx

) 1
p ≤ c ε1−n+n

p

ˆ
Rn
|Eu|,(5.8)

where ρ : Rn → R≥0 is an arbitrary standard mollifier in the sense of Section 2.4.

Proof. Let u ∈ LD(Rn). By the Strauss inequality [76] and Poincaré’s Inequality,

Lemma 2.3, there exists a constant c = c(n, p) > 0 such that ‖u − Π̃Qu‖Lp(Q;Rn) ≤
c`(Q)

p−pn+n
p ‖ε(u)‖L1(Q;Rn×nsym ) for all u ∈ LD(Rn) and cubes Q ⊂ Rn. We argue as in the

proof of Proposition 5.1, but now work with the lattice Γε = εZn and, for Q ∈ Qε, define

Q̃ to be the cube with the same center as Q but (2n+1)-times its sidelength. This yields

ˆ
Rn
|u− ρε ∗ u|p dx ≤ c

N (n)∑
j=1

∑
Q∈Qε

`(Q̃)p−pn+n
( ˆ

Q(j)

|ε(u)|dx
)p

`1(Zn)↪→`p(Zn)

≤ cεp−pn+n

N (n)∑
j=1

( ∑
Q∈Qε

ˆ
Q(j)

|ε(u)|dx
)p

≤ cεp−pn+n
(ˆ

Rn
|ε(u)|dx

)p
,

and from here the conclusion follows by smooth approximation as above. �

Following the scheme of proof, other inequalities can equally be obtained, so, e.g.,
by replacing the Lp-norm on the left-hand side of (5.8) by Sobolev-Slobodeckjĭı (use

BD(Rn) ↪→Ws, n
n−1+s (Rn;Rn), 0 < s < 1, cf. [44]) or Triebel-Lizorkin seminorms.

6. Partial C1,α-regularity and the proof of Theorem 1.2

In this section we provide the proof of the second main result of this paper, Theo-
rem 1.2, allowing for possibly very degenerate ellipticities.

6.1. Outline of the proof and setup. In order to reach the full degenerate ellip-
tic regime which Theorem 1.2 applies to, we employ a direct comparison strategy that
uses mollifications of generalised minima as comparison maps. A direct strategy here
is suggested by both the very weak compactness properties of BD and the general lack
of higher integrability of generalised minima in the very degenerate ellipticity regime
(e.g., if 1 + 2

n ≤ a < ∞). Comparison methods of this type, originally employed in [10]
for the full gradient case, consequently require to control V -function-type distances of
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generalised minima to their mollifications. This is where the convolution-type Poincaré
inequalities of the previous section enter crucially. More precisely, we proceed as follows:

(i) Section 6.2.1: Estimates for comparison maps. By linearisation, Proposition 6.1
establishes that if a C1,α-Hölder continuous function satisfies a certain smallness
condition and has symmetric gradient close to some carefully chosen reference
point, then it almost enjoys the typical decay for linear systems. For the linearised
integrands, full gradient estimates are available by Korn’s inequality in L2.

(ii) Section 6.2.2: Smoothing and selection of good radii. To construct the requi-
site C1,α-comparison maps for step (i), we carefully mollify the given generalised
minimiser and demonstrate that, under suitable smallness assumptions, the mol-
lification parameters can be chosen such that the comparison estimates from (i)
become available, cf. Lemma 6.2 and Corollary 6.3.

(iii) Section 6.2.3: Comparison estimates and decay. Here we give the aforementioned
comparison argument and employ minimality to deduce a preliminary decay esti-
mate for generalised minima, cf. Proposition 6.4. To control the emerging terms,
the comparison will be essentially reduced to good annuli where the relevant dif-
ferences can be dealt with conveniently. The construction of such annuli hinges on
Lemma 2.10, giving control over the symmetric gradients, whereas Corollary 5.2
allows to suitably bound lower order terms.

These steps lead to an ε-regularity result, Corollary 6.7, finally implying Theorem 1.2;
cf. Section 6.3. We now introduce the requisite terminology for the proof below: Given
x0 ∈ Ω and R > 0 such that B(x0, R) b Ω, we define for u ∈ BDloc(Ω) two excess
quantities by

Φ(u;x0, R) :=

ˆ
B(x0,R)

V (Eu− (Eu)x0,R) and Φ̃(u;x0, R) :=
Φ(u;x0, R)

L n(B(x0, R))
,(6.1)

where the mean values in the definition of Φ, Φ̃ are taken with respect to L n, cf. (2.12).

6.2. Preliminary decay estimates. After the preparations of the previous section, we
now carry out the steps (i), (ii) and (iii) as outlined in Section 6.1 above.

6.2.1. Estimates for comparison maps. Let f ∈ C2(Rn×nsym ) satisfy (LG) and let 0 < α < 1.

Throughout this paragraph, we fix ξ0 ∈ Rn×nsym , a radius 0 < %ξ0 < 1 and assume that

f ∈ C2(Rn×nsym ) satisfies

λ|ξ|2 ≤ 〈f ′′(ξ0)ξ, ξ〉 ≤ Λ|ξ|2 for all ξ ∈ Rn×nsym(6.2)

for some 0 < λ ≤ Λ < ∞. Moreover, we suppose that there exists a bounded and
non-decreasing function ωξ0,%ξ0 : R≥0 → R≥0 with limt↘0 ωξ0,%ξ0 (t) = 0 such that

|f ′′(ξ)− f ′′(ξ0)| ≤ ωξ0,%ξ0 (|ξ − ξ0|) for all ξ ∈ B(ξ0, %ξ0).(6.3)

Finally, for 0 < r < R and x0 ∈ Ω with B(x0, R) b Ω and v ∈ C1,α(B(x0, r);Rn) we put

devα(v;x0, r) :=

ˆ
B(x0,r)

f(ε(v)) dx− inf

{ˆ
B(x0,r)

f(ε(w)) dx :
w ∈ C1,α(B(x0, r);Rn)
w = v on ∂B(x0, r)

}
,

tα,ξ0(v;x0, r) := sup
B(x0,r)

|ε(v)− ξ0|+ 2αrα[ε(v)]
C0,α(B(x0,r);Rn×nsym )

The deviation devα captures how far v is away from minimising F on C1,α(B(x0, r);Rn)
for its own boundary values. Conversely, tα,ξ0 will prove instrumental to find the men-
tioned smallness condition which is necessary to infer the decay estimate of the Hölder
continuous comparison maps. We have

Proposition 6.1. Let f, α, ξ0, %ξ0 , λ,Λ and ωξ0,%ξ0 be as above. Then there exists 1 ≤
ccomp = ccomp(n, λ,Λ) < ∞ such that the following holds: If v ∈ C1,α(B(x0, R/2);Rn)
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satisfies tα,ξ0(v;x0, R/2) < %ξ0/ccomp, then there exists a bounded, non-decreasing func-
tion ϑ : R≥0 → R≥0 with limt↘0 ϑ(t) = 0, only depending on n, λ,Λ and ωξ0,%ξ0 , and a

constant c = c(n, λ,Λ) > 0 such that for all 0 < r < R/2 we haveˆ
B(x0,r)

|ε(v)− (ε(v))x0,r|2 dx ≤ c
(( r

R

)n+2
ˆ

B(x0,R/2)

|ε(v)− (ε(v))x0,R/2|
2 dx

+ ϑ(tα,ξ0(v;x0, R/2))

ˆ
B(x0,R/2)

|ε(v)− ξ0|2 dx

+ devα(v;x0, R/2)
)
.

(6.4)

The preceding proposition essentially follows by reduction to the full gradient case as
a consequence of Korn’s inequality. For the reader’s convenience, it is established in the
Appendix, Section 9.3, together with the requisite estimates for linear systems.

6.2.2. Smoothing and selection of good radii. In this section we concentrate on step (ii)
and establish the required adjusting of the smoothing parameters. The following lemma
and its corollary closely follow [10, Lem. 4.2] but with a slight change in the relevant
constants. Here and in all of what follows, we choose and fix a constant λcon > 1
for latter application of the convolution inequality from Proposition 5.1; for instance,
λcon := 1 + 1

1000 will do.

Lemma 6.2. Let u ∈ BDloc(Rn), x0 ∈ Rn, r > 0 and put ξ0 := (Eu)x0,r. Moreover,

suppose that Φ̃(u;x0, r) < 1, where Φ̃ is defined by (6.1). Then for each 0 < α < 1 there
exists c = c(n, α) > 0 such that if

ε =
1

48
√
nλcon

rΦ̃(u;x0, r)
1

n+4α ,(6.5)

then the mollification uε,ε of u (cf. (2.15)) satisfies

tα,ξ0(uε,ε;x0,
r
2 ) ≤ c(n, α)Φ̃(u;x0, r)

α
n+4α .(6.6)

Proof. First observe that, as a consequence of elementary estimates for convolutions, we
obtain with a constant c = c(n) > 0

tα,ξ0

(
uε,ε;x0,

r

2

)
≤ c

(
1 +

(r
ε

)α)
sup

B(x0,
r
2 +ε)

|ε(uε)− ξ0|.(6.7)

In fact, for x ∈ B(x0,
r
2 ) we have |ε(uε,ε)(x)− ξ0| = |ρ(2)

ε ∗ (ε(uε)− ξ0)(x)| and thus

sup
x∈B(x0,r/2)

|ε(uε,ε)(x)− ξ0| ≤ sup
x∈B(x0,r/2+ε)

|ε(uε)(x)− ξ0|.(6.8)

On the other hand, for any radially symmetric standard mollifier η : B(0, 1)→ [0, 1] there
exists a constant cη > 0 such that for all g ∈ L1(Rn;Rn×nsym ) and δ > 0 there holds

[ηδ ∗ g]
C0,α(B(x0,r/2);Rn×nsym )

≤ cη
δα

sup
B(x0,r/2+δ)

|g − ξ| for all ξ ∈ Rn×nsym ,(6.9)

which can be established by straightforward computation. Therefore, with c = c(n) > 0,

rα[ε(uε,ε)]C0,α(B(x0,r/2);Rn×nsym ) ≤ c
(r
ε

)α
sup

B(x0,r/2+ε)

|ε(uε)− ξ0|.(6.10)

In consequence, adding (6.8) and (6.10) yields (6.7), and in order to arrive at the claimed
estimate, we must give an estimate for supB(x0,r/2+ε) |ε(uε) − ξ0|. As ε is adjusted by

(6.5) and thus B(x, ε) ⊂ B(x0, r) for all x ∈ B(x0,
r
2 +ε), we obtain by Jensen’s inequality

V (ε(uε)(x)− ξ0) ≤
 

B(x,ε)

V (Eu− ξ0)

≤
(r
ε

)n
Φ̃(u;x0, r) ≤ ˜̀̃Φ(u;x0, r)

4α
n+4α ≤ ˜̀(6.11)
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for all such x, where ˜̀= (48
√
nλcon)n. Here, the ultimate estimate is due to our assump-

tion Φ̃(u;x0, r) < 1. By Lemma 2.11(d) with ` =
√˜̀2 + 2˜̀ and using (6.11), we obtain

for all x ∈ B(x0,
r
2 + ε) with a constant c(n) > 0 (as our choice of ` only depends on n)

|ε(uε)(x)− ξ0|2 ≤ c(n)V (ε(uε)(x)− ξ0) ≤ c(n)Φ̃(u;x0, r)
4α

n+4α .(6.12)

Now, by (6.7), the specific choice of ε by (6.5), (6.12) and since Φ̃(u;x0, r) < 1,

tα,ξ0(uε,ε;x0, r/2) ≤ c(n, α)

(
1 +

(
Φ̃(u;x0, r)

)− α
n+4α

)
Φ̃(u;x0, r)

2α
n+4α

≤ c(n, α)Φ̃(u;x0, r)
α

n+4α .

This is (6.6), and the proof is complete. �

Working from (6.6), Jensen’s inequality in conjunction with Lemma 2.11(d) then yields

Corollary 6.3. In the situation and adopting the terminology of Lemma 6.2, we haveˆ
B(x0,r/2)

|ε(uε,ε)− ξ0|2 dx ≤ c(n, α)Φ(u;x0, r), and

ˆ
B(x0,r/2)

|ε(uε,ε)− (ε(uε,ε))x0,r/2|
2 dx ≤ c(n, α)Φ(u;x0, r).

(6.13)

6.2.3. Comparison estimates and decay. In this section, we let u ∈ GM(F ;u0) be a
generalised minimiser, where f satisfies the requirements of Theorem 1.2. Throughout,
let x0 ∈ Ω and R > 0 with B(x0, R) b Ω be given. We put ξ0 := (Eu)x0,R and let
%ξ0 > 0. For a ∈ B(ξ0, %ξ0) we recall from (2.16) the shifted integrand fa : Rn×nsym → R
defined by

fa(ξ) := f(a+ ξ)− f(a)− 〈f ′(a), ξ〉, ξ ∈ Rn×nsym .

Given a map w : B(x0, R)→ Rn, we then define w̃a : B(x0, R)→ Rn by

w̃a(x) := w(x)−Ax0
(x) := w(x)− a(x− x0).(6.14)

Proposition 6.4 (Preliminary decay estimate). Let f ∈ C2(Rn×nsym ) be a convex function

with (LG). Also, suppose that ξ0 ∈ Rn×nsym , 0 < %ξ0 < 1 are such that the following hold:

(a) There exists a bounded and non-decreasing function ωξ0,%ξ0 : R≥0 → R≥0 with

lim
t↘0

ωξ0,%ξ0 (t) = 0,

|f ′′(ξ)− f ′′(ξ0)| ≤ ωξ0,%ξ0 (|ξ − ξ0|) for all ξ ∈ B(ξ0, %ξ0).
(6.15)

(b) mξ0,%ξ0
:= min{λ(z) smallest eigenvalue of f ′′(z) : z ∈ B(ξ0, %ξ0)} > 0.

Then there exist constants Θ = Θ(%ξ0 , n, α) ∈ (0, 1) and

c = c(n, λcon, %ξ0 ,mξ0,%ξ0
,Lip(f), sup

B(ξ0,%ξ0 )

|f ′′|) > 0

such that

(Eu)x0,R = ξ0 and Φ̃(u;x0, R) < Θ(6.16)

imply that

Φ(u;x0, r) ≤ c
(

Φ(v;x0, 2r) +
(

1 +

(
R

r

)n+1 )
(Φ̃(u;x0, R))

1
2n+8αΦ(u;x0, R)

)
(6.17)

holds for all 0 < r < R/4. Here we have set v := uε,ε (cf. (2.15)) where

ε :=
1

48
√
nλcon

RΦ̃(u;x0, R)
1

n+4α .(6.18)
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Proof. The comparison argument underlying the proof consists of three ingredients:
Lemma 2.10 and Proposition 5.1, both expressing properties of (the symmetric gradi-
ents of) generic BDloc-maps, and generalised local minimality of u.

Step 1. Preliminaries. Let 0 < r < R/4 and put a := (ε(v))x0,r. By (6.18) and since
t 7→ tα,ξ0(v;x0, t) is non-decreasing, we have by Lemma 6.2 and ξ0 = (Eu)x0,R

tα,ξ0(v;x0, r) ≤ tα,ξ0(v;x0,
R
2 ) ≤ c(n, α)Φ̃(u;x0, R)

n
n+4α ,

where we can assume without loss of generality that c(n, α) > 1. From here we deduce

|ξ0 − a| ≤
 

B(x0,r)

|ε(v)− ξ0|dx ≤ tα,ξ0(v;x0, r) ≤ c(n, α)Φ̃(u;x0, R)
n

n+4α ,(6.19)

and put, with c(n, α) > 0 as in the preceding inequality,

Θ :=

(
%ξ0

4c(n, α)

)1+ 4α
n
(

1

10

)2(n+4α)

.(6.20)

With this choice of Θ, Φ̃(u;x0, R) < Θ implies |ξ0−a| < %ξ0/2 by virtue of (6.19). Hence

B(a,
%ξ0
2 ) ⊂ B(ξ0, %ξ0), and so (6.15)2 continues to hold in B(a,

%ξ0
2 ). Lemma 2.12(b)

moreover implies that there exists c0 = c0(ξ0, %ξ0 ,mξ0,%ξ0
,Lip(f), supB(ξ0,%ξ0 ) |f ′′|)) > 1

such that

1
c0
V (ξ) ≤ fa(ξ) ≤ c0V (ξ) for all ξ ∈ Rn×nsym .(6.21)

Step 2. Selection of good radii. For this proof, we put for w ∈ BDloc(Ω) with slight abuse
of notation

F a[w;ω] :=

ˆ
ω

fa(Ew)

whenever ω b Ω has Lipschitz boundary ∂ω. By Lemma 2.12(a), fa ≥ 0 and so F a ≥ 0.
To employ the comparison argument in step 3 from below, we require a suitable bound

on the difference F a[ṽa;A]− F a[ũa;A] in terms of the excess Φ̃(u;x0, R), A ⊂ B(x0, R)
denoting an annulus. This task can, in general, only be achieved on certain annuli A,
and we proceed by constructing the latter. We define an exit index

N :=

⌊
125

8(Φ̃(u;x0, R))
1

2n+8α

⌋
.(6.22)

Then, by (6.16) and (6.20), N ≥ 15/(Φ̃(u;x0, R))
1

2n+8α . We then put, for k ∈ {1, ..., 8N},

κk :=
5

8
R+ k

R

500
(Φ̃(u;x0, R))

1
2n+8α(6.23)

so that κk ∈ [ 5
8R,

7
8R]. By our choice (6.18) of ε, we have R − 2ε > 7

8R. Also, by

Lemma 2.12(b), fa ∈ C2(Rn×nsym ) is of linear growth. Since moreover r < R
4 , Lemma

2.10(b) is applicable and yields that for any k ∈ {1, ..., N} there exist tk ∈ (κ8k−1, κ8k)
and rk ∈ (r, 2r) with

ˆ
A(x0;rk,tk)

fa(Eṽa)− fa(Eũa)
Lemma 2.10
≤ 4ε

( 1

κ8k − κ8k−1
+

1

r

)ˆ
B(x0,R)

fa(Eũa)

(6.23), (6.18)

≤ 50

λcon
√
n

(
(Φ̃(u;x0, R))

1
2n+8α

+ (Φ̃(u;x0, R))
1

n+4α

(R
r

)) ˆ
B(x0,R)

fa(Eũa).

(6.24)

Now, recalling the choice (6.18) of ε, for k = 1, ..., N the annuli

Ak := A(x0; tk − 2λcon

√
nε, sk + 2λcon

√
nε), sk := tk + R

500 (Φ̃(u;x0, R))
1

2n+8α(6.25)
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are pairwise disjoint and contained in B(x0, R). Let us address this point in detail: By
our choice of ε, disjointness of Ak and Ak+1 is equivalent to

Ak+1 ∩ Ak = ∅ (6.25)⇔ tk+1 − 2λcon

√
nε > sk + 2λcon

√
nε

(6.25),(6.18)⇔ tk+1 − tk >
R

500
(Φ̃(u;x0, R))

1
2n+8α +

R

12
(Φ̃(u;x0, R))

1
n+4α .

(6.26)

Now note that by construction, tk+1 − tk > κ8k+7 − κ8k = 7
500R(Φ̃(u;x0, R))

1
2n+8α , and

so the last inequality of (6.26) is certainly satisfied provided 72
500 > (Φ̃(u;x0, R))

1
2n+8α ,

which in turn follows from (6.20). Now, succesively employing (6.25), tN ≤ κ8N ≤ 7
8R,

(6.18) and (6.20), we similarly arrive at sN + 2λcon
√
nε < R. Thus, Ak ⊂ B(x0, R) for

all k ∈ {1, ..., N}.
By pairwise disjointness of the Ak’s and Ak ⊂ B(x0, R), we can therefore conclude

that there exists k′ ∈ {1, ..., N} such that

N

ˆ
Ak′

fa(Eũa) ≤
ˆ
A1

fa(Eũa) + ...+

ˆ
AN

fa(Eũa) ≤
ˆ

B(x0,R)

fa(Eũa).

To extract information from this estimate, we employ the lower bound on N , cf. (6.22)ff.,
to obtain ˆ

Ak′
fa(Eũa) ≤ 1

15
(Φ̃(u;x0, R))

1
2n+8α

ˆ
B(x0,R)

fa(Eũa),(6.27)

For future purposes, let us particularly remark that

ε

sk′ − tk′
=

500

R(Φ̃(u;x0, R))
1

2n+8α

R(Φ̃(u;x0, R))
1

n+4α

48λcon
√
n

(6.20)

≤ 1

λcon
√
n

11

10
< 1

because of
√
n ≥
√

2 and hence

max

{(
ε

sk′ − tk′

)
,

(
ε

sk′ − tk′

)2
}
≤ 10(Φ̃(u;x0, R))

1
2n+8α .(6.28)

Step 3. Comparison estimates. Let now rk′ , tk′ , sk′ be defined as in step 2 so that
r < rk′ <

R
2 < tk′ < sk′ < R. We define a Lipschitz function ρ : B(x0, R)→ [0, 1] by

ρ(x) :=
2

sk′ − tk′
(|x| − tk′)1{tk′≤|x|≤(sk′+tk′ )/2}(x) + 1{|x|>(sk′+tk′ )/2}(x)(6.29)

for x ∈ B(x0, R). Then we have ψ := ṽa + ρ(ũa − ṽa) ∈ BD(B(x0, R)) and, in particular,
ψ|∂B(x0,sk′ )

= ũa|∂B(x0,sk′ )
. Since thus u|∂B(x0,sk′ )

= (ψ + Ax0
)|∂B(x0,sk′ )

H n−1-a.e. on
∂B(x0, sk′), generalised local minimality of u for F implies by virtue of the integration
by parts formula (2.2)ˆ

B(x0,sk′ )

fa(Eũa) =

ˆ
B(x0,sk′ )

f(Eu)− f(a)− 〈f ′(a),Eũa〉

≤
ˆ

B(x0,sk′ )

f(E(ψ +Ax0
))− f(a)− 〈f ′(a),Eψ〉 =

ˆ
B(x0,sk′ )

fa(Eψ).

Splitting B(x0, sk′) according to the definition of ρ, we consequently arrive at

F a[ũa; B(x0, rk′)] + F a[ũa; B(x0, tk′) \ B(x0, rk′)] + F a[ũa; B(x0, sk′) \ B(x0, tk′)]

≤ F a[ṽa; B(x0, rk′)] + F a[ṽa; B(x0, tk′) \ B(x0, rk′)]

+ F a[(ṽa + ρ(ũa − ṽa)); B(x0, sk′) \ B(x0, tk′)].

Regrouping terms and employing (6.30), we consequently arrive at

I := F a[ũa; B(x0, rk′)] ≤
[
F a[ṽa; B(x0, rk′)]
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+
(
F a[ṽa; B(x0, tk′) \ B(x0, rk′)]− F a[ũa; B(x0, tk′) \ B(x0, rk′)]

)
+
(
F a[(ṽa + ρ(ũa − ṽa)); B(x0, sk′) \ B(x0, tk′)]− F a[ũa; B(x0, sk′) \ B(x0, tk′)

)]
=: II + III + IV.

Ad I. By Jensen’s inequality and Lemma 2.11(b) in the first and (6.21), r ≤ rk′ in the
second step, we find

Φ(u;x0, r) ≤ 4

ˆ
B(x0,r)

V (Eu− a) ≤ 4c0F a[ũa; B(x0, rk′)] = 4c0I.(6.30)

Ad II. In a similar vein as in the estimation of (6.30), we recall a = (ε(v))x0,r to obtain

II =

ˆ
B(x0,rk′ )

fa(ε(v)− a) dx ≤ c0 Φ(v;x0, 2r).(6.31)

Ad III. By our choice of rk′ , tk′ in step 2, cf. (6.24), we use Φ(u;x0, R) < 1 to bound III
by

III ≤ 50

λcon
√
n

(
1 +

R

r

)
(Φ̃(u;x0, R))

1
2n+8α

ˆ
B(x0,R)

fa(Eũa).(6.32)

Ad IV. This step of the proof crucially utilises the convolution inequality from Section 5,
and to this end, we employ Corollary 5.2 with L = 1

sk′−tk′
. In combination with (6.28),

we hereafter obtainˆ
A(x0;tk′ ,sk′ )

V
( ũa − ṽa
sk′ − tk′

)
dx ≤ c(n, λcon)Φ̃(u;x0, R)

1
2n+8α×

×
ˆ
A(x0;tk′−2λcon

√
nε,sk′+2λcon

√
nε)

V (Eũa).

(6.33)

We then arrive at the following string of inequalities:

IV
Lemma 2.11(b), (6.21)

≤ 4c0

( ˆ
A(x0;tk′ ,sk′ )

V (Eṽa) + V (Eũa) +

ˆ
A(x0;tk′ ,sk′ )

V
( ũa − ṽa
sk′ − tk′

)
dx
)

≤ 8c0

(ˆ
A(x0;tk′−2ε,sk′+2ε)

V (Eũa) +

ˆ
A(x0;tk′ ,sk′ )

V
( ũa − ṽa
sk′ − tk′

)
dx
)

(6.33)

≤ 8c0

( ˆ
A(x0;tk′−2ε,sk′+2ε)

V (Eũa)

+ c(n, λcon)Φ̃(u;x0, R)
1

2n+8α

ˆ
A(x0;tk′−2λcon

√
nε,sk′+2λcon

√
nε)

V (Eũa)
)

(6.21)

≤ 8c20

( ˆ
A(x0;tk′−2λcon

√
nε,sk′+2λcon

√
nε)

fa(Eũa)

+ c(n, λcon)Φ̃(u;x0, R)
1

2n+8α

ˆ
B(x0,R)

fa(Eũa)
)

(6.27)

≤ c(n, λcon, c0)Φ̃(u;x0, R)
1

2n+8α

ˆ
B(x0,R)

fa(Eũa)

where, in the final two steps, we have used that sk′ + 2λcon
√
nε < R as established

in step 2. We may now gather the estimates for I, ..., IV to obtain with a constant
c = c(n, λcon, c0) > 0

Φ(u;x0, r) ≤ c
(

Φ(v;x0, 2r) +
(

1 +

(
R

r

))
(Φ̃(u;x0, R))

1
2n+8α

ˆ
B(x0,R)

fa(Eũa)
)
.(6.34)
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Step 4. Conclusion. In order to arrive at the requisite form of the preliminary decay
estimate (6.17), we estimate by succesive application of Jensen’s inequality and (6.21):ˆ

B(x0,R)

fa(Eũa) ≤ c0
ˆ

B(x0,R)

V (Eu− a)

≤ 2c0

(ˆ
B(x0,R)

V (Eu− ξ0) + L n(B(x0, R))V (ξ0 − a)
)

≤ c(n, c0)
( ˆ

B(x0,R)

V (Eu− ξ0) +Rn
 

B(x0,r)

V (ε(v)− ξ0) dx
)

≤ c(n, c0)
( ˆ

B(x0,R)

V (Eu− ξ0) +

(
R

r

)n ˆ
B(x0,r)

V (|Euε,ε − ξ0|)
)

≤ c(n, c0)
(

1 +

(
R

r

)n )
Φ(u;x0, R),

(6.35)

the ultimate estimate being valid due to our choice ξ0 = (Eu)x0,R and r + 2ε < R.
Combining this estimate with (6.34), we obtain (6.17), and the proof is complete. �

Proposition 6.5. In the situation of Proposition 6.4 we have

devα(v;x0,
R
2 ) ≤ c

(
1 +

(R
r

)n)
Φ̃(u;x0, R)

1
2n+8αΦ(u;x0, R).(6.36)

Proof. Adopting the terminology of step 1 of the previous proof, we leave the setting
unchanged up to formula (6.23). Instead of Lemma 2.10(b) we use Lemma 2.10(a) to
find, for each k ∈ {1, ..., N}, a number tk ∈ (κ8k−1, κ8k) such that

ˆ
B(x0,tk′ )

fa(Eṽa)−
ˆ

B(x0,tk′ )

fa(Eũa) ≤ 50

λcon
√
n

Φ̃(u;x0, R)
1

2n+8α

ˆ
B(x0,R)

fa(Eũa),

(6.37)

providing the requisite substitute for formula (6.24). Equally, we find sk′ = tk′ +
R

500 Φ̃(u;x0, R)
1

2n+8α such thatˆ
Ak′

fa(Eũa) ≤ 1

15
(Φ̃(u;x0, R))

1
2n+8α

ˆ
B(x0,R)

fa(Eũa),(6.38)

the annulus Ak′ now being defined as in (6.25) with the obvious change of tk′ and sk′ .
Let θ > 0 be arbitrary. We then put

C1 := {ϕ ∈W1,∞(B(x0, tk′);Rn) : ϕ = ṽa on ∂B(x0, tk′)}
C2 := {ϕ ∈W1,∞(A(x0; tk′ , sk′);Rn) : ϕ = ṽa on ∂A(x0; tk′ , sk′)}

and find ϕ1 ∈ C1, ϕ2 ∈ C2 such thatˆ
B(x0,tk′ )

fa(ε(ϕ1)) dx ≤ inf
ϕ∈C1

ˆ
B(x0,tk′ )

fa(ε(ϕ)) dx+
θ

2ˆ
A(x0;tk′ ,sk′ )

fa(ε(ϕ2)) dx ≤ inf
ϕ∈C2

ˆ
A(x0;tk′ ,sk′ )

fa(ε(ϕ)) dx+
θ

2
.

(6.39)

Let us note that, employing an integration by parts, for all ϕ ∈ C1 there holdsˆ
B(x0,tk′ )

fa(ε(ṽa))− fa(ε(ϕ)) dx =

ˆ
B(x0,tk′ )

f(ε(v))− f(ε(ϕ) + a) dx.

By definition of fa, we then obtain

devα(v;x0, tk′) =

ˆ
B(x0,tk′ )

fa(ε(ṽa)) dx

− inf

{ˆ
B(x0,tk′ )

fa(ε(ψ)) dx :
ψ ∈ C1,α(B(x0, tk′);Rn)
ψ = ṽa on ∂B(x0, tk′)

}
.

(6.40)
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Since ϕ1, ϕ2 are Lipschitz and coincide on ∂B(x0, tk′), we deduce that the glued map
ϕ3 := 1

B(x0,tk′ )
ϕ1 + 1A(x0;tk′ ,sk′ )

ϕ2 belongs to W1,∞(B(x0, sk′);Rn). We then obtain,

using that t 7→ devα(v;x0, t) is non-decreasing in the first inequality,

devα(v;x0,
R
2 ) ≤ devα(v;x0, tk′)

(6.40),C1,α⊂W1,∞, (6.39)1
≤

ˆ
B(x0,tk′ )

fa(ε(ṽa)) dx−
ˆ

B(x0,tk′ )

fa(ε(ϕ1)) dx+
θ

2

(6.39)2
≤

ˆ
B(x0,sk′ )

fa(ε(ṽa)) dx−
ˆ

B(x0,sk′ )

fa(ε(ϕ3)) dx+ θ

=
( ˆ

B(x0,sk′ )

(
fa(ε(ṽa)L n)− fa(Eũa)

))
+
(ˆ

B(x0,sk′ )

(
fa(Eũa)− fa(ε(ϕ3)L n)

))
+ θ

=: V + VI + θ.

Ad V. Splitting B(x0, sk′) = B(x0, tk′) ∪ A(x0; sk′ , tk′) and employing (6.38), we obtain

V
(6.38)

≤
(ˆ
A(x0;tk′ ,sk′ )

fa(Eṽa)− fa(Eũa)
)

+
1

15
Φ̃(u;x0, R)

1
2n+8α

ˆ
B(x0,R)

fa(Eũa)

(6.37)

≤ c(c0, n, λcon)Φ̃(u;x0, R)
1

2n+8α

ˆ
B(x0,R)

fa(Eũa).

Ad VI. Different from step 3 of the proof of Proposition 6.4, we now use the comparison
map ψ := ϕ3 + ρ(ũa − ṽa), ρ still being defined by (6.29) but now with the new choices
of tk′ and sk′ . In advance, we note that ψ = ũa H n−1-a.e. on ∂B(x0, sk′). Sinceˆ

A(x0;tk′ ,sk′ )

V (ε(ϕ3)L n)
(6.21)

≤ c0

ˆ
A(x0;tk′ ,sk′ )

fa(Eϕ3) dx

(6.39)2
≤ c0

(ˆ
A(x0;tk′ ,sk′ )

fa(Eṽa) dx+
θ

2

) Jensen
≤ c0

( ˆ
Ak′

fa(Eũa) +
θ

2

)(6.41)

Generalised local minimality of u for F and ρ|B(x0,tk′ )
= 0 yields

VI ≤
ˆ
A(x0,tk′ ,sk′ )

fa(E(ϕ3 + ρ(ũa − ṽa)))− fa(ε(ϕ3)L n)

≤ 4c0

( ˆ
A(x0,tk′ ,sk′ )

V (ε(ϕ3)L n) + V (Eũa) + V (ε(ṽa)L n)
)

+ 4c0

ˆ
A(x0,tk′ ,sk′ )

V

(
ũa − ṽa
sk′ − tk′

)
dx

(6.41),Cor. 5.2, (6.38)

≤ c(c0, n, λcon)
(ˆ
Ak′

fa(Eũa) + Φ̃(u;x0, R)
1

2n+8α

ˆ
Ak′

fa(Eũa) +
θ

2

)
(6.38)

≤ c(c0, n, λcon)
(

(Φ̃(u;x0, R))
1

2n+8α

ˆ
B(x0,R)

fa(Eũa) +
θ

2

)
Combining the estimates for V and VI yields

devα(v;x0,
R

2
) ≤ c(c0, n, λcon)

(
(Φ̃(u;x0, R))

1
2n+8α

ˆ
B(x0,R)

fa(Eũa) + θ
)
.

Now we employ (6.35) and send θ ↘ 0 to conclude. The proof is complete. �

Remark 6.6. As mentioned after Proposition 5.1, the crude but easier obtainable es-
timate (5.2) is not sufficient for applications in the proof of Propositions 6.4 and 6.5.
In fact, by the above proof we are bound to set L = 1

sk′−tk′
. With the particular choice
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of ε by (6.18), we then find that Lεβ cannot be suitably bounded to still arrive at the
requisite decay estimate. On the other hand, one might redefine ε, but then estimates
of the remaining proof cannot be obtained in the requisite form and the decay estimate
cannot be inferred.

Corollary 6.7 (ε-regularity). Let f ∈ C2(Rn×nsym ) be a convex integrand with (LG) and

suppose that there exist z0 ∈ Rn×nsym and %z0 > 0 such that the following hold:

(C1) mz0,%z0
> 0,

(C2) For all ξ, ξ′ ∈ B(z0, %z0) there holds |f ′′(ξ)− f ′′(ξ′)| ≤ ω(|ξ − ξ′|) with a bounded
and non-decreasing function ω : R≥0 → R≥0 such that limt↘0 ω(t) = 0.

For any α ∈ (0, 1) there exist ε0 ∈ (0, 1] and σ ∈ (0, 1) such that the following holds for
all u ∈ GMloc(F ): If x ∈ Ω and R > 0 are such that B(x,R) b Ω and

(a) |(Eu)x,R − z0| < %z0/3,

(b) Φ̃(u;x,R) < ε0,

then there holds Φ̃(u;x, σjR) ≤ σ2αjΦ̃(u;x,R) for all j ∈ N0. In particular, ε0 and σ
only depend on n, λcon, %z0 ,mz0,%z0

, ω, c1, c2 and supB(z0,%z0 ) |f ′′|.

Proof. Let α ∈ (0, 1), x ∈ Ω and R > 0 be such that B(x,R) ⊂ Ω. Note that, if
ξ0 ∈ B(z0, 2%ξ0) with %ξ0 := %z0/3, then mξ0,%ξ0

> 0 and |f ′′(ξ)−f ′′(ξ0)| ≤ ωξ0,%ξ0 (|ξ−ξ0|)
for all ξ ∈ B(ξ0, %ξ0) with ωξ0,%ξ0 = ω. We put ξ0 := (Eu)x,R.

We pick the constants Θ, c > 0 from Proposition 6.4 with x0 = x, fix the mollification
parameter ε as in (6.18) and let ε0 ∈ (0,Θ) to be fixed later on. Thus, for all 0 <
r < R

4 , (6.17) is in action with v = uε,ε. From Lemma 6.2 applied to the radius R,

we obtain tα,ξ0(v;x, R2 ) ≤ c(n, α)Φ̃(u;x,R)
α

n+4α , c(n, α) > 0 denoting the constant from

Lemma 6.2. Thus, diminishing ε0, we may assume that c(n, α)ε
α

n+4α

0 < min{ %ξ0
ccomp

, 1
2},

ccomp > 0 being the constant from Proposition 6.1. This entails tα,ξ0(v;x, R2 ) < 1
2 and

thus |ε(v)(y)− (ε(v))x,r| ≤ 1 for all 0 < r < R
4 and y ∈ B(x, r). Therefore, a consecutive

application of Proposition 6.1, Lemma 2.11(c), Corollary 6.3 and Proposition 6.5 yields

Φ(v;x, 2r) ≤ c
(( r

R

)n+2

+
(

1 +
(R
r

)n+1)
×

×
(
ϑ(c(n, α)Φ̃(u;x,R)

α
n+4α ) + Φ̃(u;x,R)

1
2n+8α

))
× Φ(u;x,R).

for all 0 < r < R
4 . In conclusion, (6.17) yields the existence of ε

(1)
0 ∈ (0, 1] and cdec > 0

such that there holds

Φ̃(u;x, r) ≤ cdec

( r
R

)2(
1 +

(R
r

)2n+3

H(Φ̃(u;x,R))
)

Φ̃(u;x,R)(6.42)

for all 0 < r < R
4 , the non-negative function H : R≥0 → R≥0 being given by

H(t) := ϑ(c(n, α)t
α

n+4α ) + t
1

2n+8α ,

cf. Proposition 6.1 for the introduction of ϑ. Tracking dependencies, ε
(1)
0 , cdec and H

only depend on n, λcon, %z0 ,mz0,%z0
, ω,Lip(f) and supB(z0,%z0 ) |f ′′|. We now define

σ := min

{
α

√√√
3(
√

2−1)

2
√

12
,
%z0
6 , 2(1−α)

√
1

2cdec

}
(6.43)

and, using that limt↘0H(t) = 0, choose ε
(2)
0 > 0 such that there holds

ε
(2)
0 < σn+2 and sup{H(t) : 0 < t < ε

(2)
0 } ≤ σ2n+3.(6.44)

We now define ε0 := min{ε(1)
0 , ε

(2)
0 } and claim that, if x ∈ Ω and R > 0 are such

that B(x,R) b Ω with |(Eu)x,R − z0| < %z0/3 and Φ̃(u;x,R) < ε0, then there holds
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Φ̃(u;x, σjR) ≤ σαjΦ̃(u;x,R) for all j ∈ N0. To conclude the proof by iteration, we put

ξ
(j)
0 :=

Eu(B(x, σjR))

L n(B(x, σjR))
, j ∈ N0,

and establish validity of

Φ̃(u;x, σjR) ≤ σ2αjΦ̃(u;x,R) and |z0 − ξ(j)
0 | ≤

1

3
%z0

j∑
i=0

1

2i
(Decj)

for all j ∈ N0. This is trivial for j = 0. Now assume validity of (Decj) for some j ∈ N0,

the second part of which implies ξ
(j)
0 ∈ B(z0,

2
3%z0) so that (C1) and (C2) continue to hold

in B(ξ
(j)
0 , 1

3%z0). Moreover, the first part of (Decj) yields Φ̃(u;x, σjR) < ε
(1)
0 . Therefore,

Φ̃(u;x, σj+1R)
(6.42)

≤ σ2α(cdecσ
2−2α)

(
1 +

H(Φ̃(u;x, σjR))

σ2n+3

)
Φ̃(u;x, σjR)

(6.44)

≤ σ2α(2cdecσ
2−2α)Φ̃(u;x, σjR)

(6.43), (Decj)

≤ σ2α(j+1)Φ̃(u;x,R).

Toward the second part of (Decj), it suffices to establish |ξ(j+1)
0 − ξ(j)

0 | ≤ 1
3%z02−j−1.

Observe that

V (|ξ(j+1)
0 − ξ(j)

0 |) ≤
 

B(x,σj+1R)

V (|Eu− ξ(j)
0 |)

≤ 1

σn

 
B(x,σjR)

V (|Eu− ξ(j)
0 |)

(Decj)

≤ σ2αj−nΦ̃(u;x,R) ≤ σ2αj+2 ε0

σn+2

(6.44), 0<σ<1
< 1,

(6.45)

which, by definition of V , entails |ξ(j+1)
0 − ξ(j)

0 | <
√

3. Therefore, by Lemma 2.11(a), (c),

|ξ(j+1)
0 − ξ(j)

0 | ≤
√

12√
3(
√

2− 1)

√
V (|ξ(j+1)

0 − ξ(j)
0 |)

(6.45)

≤
√

12√
3(
√

2− 1)
σαj+1

(6.43)

≤ 1

3
ρz02−j−1.

The proof of the corollary is thereby complete. �

6.3. Proof of Theorem 1.2. We can now proceed to the

Proof of Theorem 1.2. Let u ∈ GM(F ;u0) and (x0, z0) ∈ Ω× Rn×nsym be such that f ′′(z0)
is positive definite and (1.8) is satisfied. Since f ′′ is continuous, there exists %z0 > 0 such
that (C1) and (C2) from Corollary 6.7 are satisfied. Let ε0 > 0 be as in Corollary 6.7.
By (1.8), limR↘0(|E u− z0|)x0,R + |(Esu)x0,R| = 0, and since V (·) ≤ | · |,

Φ̃(u;x0, R) ≤ 2
( 

B(x0,R)

|E u− z0|dL n +
|Eu|(B(x0, R))

L n(B(x0, R))

)
(1.8)−→ 0, R↘ 0.

By (1.8) and E u ∈ L1
loc(Ω;Rn×nsym ), we conclude that there exists some R0 > 0 and an

open neighbourhood U1 of x0 such that B(x0, 2R0) b Ω and∣∣∣∣∣
 

B(x,R0)

E udL n − z0

∣∣∣∣∣ < min
{ε0

4
,
%z0
6

}
,
|Esu|(B(x0, 2R0))

L n(B(x0, 2R0))
<

1

2n+1
min

{ε0

4
,
%z0
3

}
hold for all x ∈ U1. Diminishing U1 if necessary, we can assume that U1 ⊂ B(x0, R0).
Let x ∈ U1, so that B(x,R0) ⊂ B(x0, 2R0). Thus,∣∣∣∣ Eu(B(x,R0))

L n(B(x,R0))
− z0

∣∣∣∣ ≤
∣∣∣∣∣
 

B(x,R0)

E udL n − z0

∣∣∣∣∣+ 2n
|Esu|(B(x0, 2R0))

L n(B(x0, 2R0))
<
%z0
3
.
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On the other hand, since V (·) ≤ | · | and V∞(·) = | · |,

Φ̃(u;x,R0) ≤ 2

 
B(x,R0)

|E u− z0|dL n + 2n+1 |Esu|(B(x0, 2R0))

L n(B(x0, 2R0))
< ε0.

As a conclusion, conditions (a) and (b) from Corollary 6.7 are satisfied for all x ∈ U1

and R = R0. Therefore, there exists C > 0 such that Φ̃(u;x, r) ≤ C(r/R0)2αΦ̃(u;x,R0)

holds for all x ∈ U1 and 0 < r < R0/4. By definition of Φ̃, this implies Esu ≡ 0 in U1

and hence Eu U1 = ε(u)L n U1. Now, for all such x and r,

V
(  

B(x,r)

|ε(u)− (ε(u))x,r|dL n
)
≤
 

B(x,r)

V (ε(u)− (ε(u))x,r) dL n ≤ C(R0, ε0)r2α

and so, Lemma 2.11(d) yields a constant c(R0, ε0) > 0 such that 
B(x,r)

|ε(u)− (ε(u))x,r|dL n ≤
(
c

 
B(x,r)

V (ε(u)− (ε(u))x,r) dL n
) 1

2 ≤ crα < 1.

Now, the usual Campanato-Meyers characterisation of Hölder continuity [41, Thm. 2.9]

implies that ε(u) is of class C0,α and hence L2 in a neighbourhood Ũ of x0. Thus, by
Lemma 2.2 (a), 

B(x,r)

|∇u− (∇u)x,r|2 dL n ≤ c
 

B(x,r)

|ε(u)− (ε(u))x,r|2 dL n ≤ cr2α.

We again invoke the Campanato-Meyers characterisation of Hölder continuity to con-
clude that u is of class C1,α in an open neighbourhood of x0. Finally, by the Lebesgue
differentiation theorem for Radon measures, cf. (2.13), L n-a.e. x0 ∈ Ω satisfies (1.8),
and the proof of the theorem is complete. �

7. Remarks and extensions

We conclude the paper with some remarks on possible generalisations of Theorems 1.1
and 1.2 with focus on non-autonomous problems. First, by the very nature of the proofs,
Theorem 1.1 and 1.2 straightforwardly generalise to local generalised minima. Second,
in analogy with [10, Sec. 6], if f : Ω× Rn×nsym → R and g : Ω× Rn → R are such that

z 7→ f(x, z) is of class C2 for all x ∈ Ω,

c1|z| − γ ≤ f(x, z) ≤ c2(1 + |z|) for all x ∈ Ω, z ∈ Rn×nsym ,

|f(x1, z)− f(x2, z)| ≤ c3|x1 − x2|µ(1 + |z|) for all x1, x2 ∈ Ω, z ∈ Rn×nsym ,

|g(x1, y1)− g(x2, y2)| ≤ c4||x1 − x2|+ |y1 − y2||µ for all x1, x2 ∈ Ω, y1, y2 ∈ Rn,
for some c1, ..., c4 > 0, γ > 0 and 0 < µ < 1, then Theorem 1.2 generalises to functionals

F [u] :=

ˆ
Ω

f(x, ε(u)) dx+

ˆ
Ω

g(x, u) dx.(7.1)

More precisely, let u ∈ GMloc(F ) and suppose that (x0, z0) ∈ Ω × Rn×nsym is such that z0

is the Lebesgue value of Eu at x0, Moreover, assume that there exists λ > 0 such that
λ|z|2 ≤ 〈D2

z f(x, z0)z, z〉 holds for all z ∈ Rn×nsym uniformly in an open neighbourhood of
x0. Then there exists an open neighbourhood U of x0 such that u has Hölder continuous
full gradients in U . Let us, however, note that a corresponding result is far from clear if
the overall variational integrand (x, y, z) 7→ f(x, z)+g(x, y) does not possess the splitting
structure but is of the general form (x, y, z) 7→ f(x, y, z).

Namely, here one usually invokes Caccioppoli’s inequality in conjunction with Gehring’s
lemma on higher integrability to conclude that minima of elliptic problems belong to
some W1,r

loc, p > r, where p is the Lebesgue exponent of the natural energy space W1,p.
As explained in [45], there exist linear growth integrands and generalised minimisers
u ∈ BV \W1,1 which do satisfy a Caccioppoli type inequality. This easily carries over
to the BD-situation, and hereby rules out any integrability boost by virtue of Gehring.
On the other hand, even for semiautonomous integrands (x, z) 7→ f(x, z), a well-known
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counterexample due to Bildhauer [18, Thm. 4.39] asserts that if f ∈ C2(Ω × RN×n)
satisfies a uniform variant of (1.4) for a > 3, then generalised minima might in fact
belong to BV \W1,1. In particular, the Caccioppoli inequality itself cannot yield higher
integrability results in the linear growth setting.

On the other hand, the approach of Section 6 is robust enough to apply to integrands
(x, y, z) 7→ f(x, y, z) indeed if suitable superlinear growth in the last variable is imposed
and thus the Gehring-type improvement is available (cf. [10, Thm. 6.1]):

Remark 7.1 (p-growth functionals: Partial regularity). Let 1 < p <∞, 0 < µ < 1 and
let f : Ω× Rn × Rn×nsym → R be a variational integrand that satisfies

z 7→ f(x, y, z) is of class C2,

|Dz f(x, y, z)| ≤ c1(1 + |z|)p−1,

c2|z|p − γ ≤ f(x, y, z) ≤ c3(1 + |z|p),
|f(x1, y1, z)− f(x2, y2, z)| ≤ c4|y1|µ(|x1 − x2|+ |y1 − y2|)µ(1 + |z|p)

for all x, x1, x2 ∈ Ω, y, y1, y2 ∈ Rn and z ∈ Rn×nsym and constants c1, ..., c4 > 0, γ > 0.

Let u ∈W1,p
loc(Ω;Rn) be a local minimiser of the variational integral corresponding to f .

Moreover, let (x0, y0, z0) ∈ Ω × Rn × Rn×nsym is such that x0 is a Lebesgue point for both
u and ε(u), with Lebesgue values y0 or z0, respectively. If there exists λ > 0 such that
λ|z|2 ≤ 〈D2

z f(x, y, z0)z, z〉 holds for all z ∈ Rn×nsym uniformly in an open neighbourhood of
(x0, y0), then u has Hölder continuous gradients in an open neighbourhood of x0.

In view of partial regularity, we have omitted symmetric quasiconvex functionals
throughout. In fact, at present it is not known how to modify the method exposed
in Section 6 even in the full gradient case (also see the discussion in [10, 67]). The
only result available in the BV-full gradient, strongly quasiconvex case is due to Kris-
tensen and the author [45], and the case of strongly symmetric-quasiconvex functionals
on BD is due to the author [43]. If the condition of strong symmetric quasiconvexity pro
forma is introduced for convex C2-integrands, then it translates to 3-elliptic integrands
in the sense of (1.4) and does not apply to the very degenerate ellipticity regime covered
by Theorem 1.2. Whereas the main obstructions in [45, 43] stem from the weakened
convexity notion, they moreover require higher regularity of the variational integrands,
namely, C2,µ

loc for some µ > 1− 2
n . In this sense, the results of [43] and Theorem 1.2 are

independent.
As to Sobolev regularity, the case of non-autonomous integrands (x, z) 7→ f(x, z)

which satisfy the obvious modification of (1.4) uniformly in x, however, is more intricate.
Even if f is of class C2 in the joint variable and satisfies the estimates corresponding to
[19, Ass. 4.22], it is not fully clear to arrive at the decoupling estimates that eliminate
the divergence as done in the proof of Theorem 4.3. Whereas for partial regularity
C0,α-Hölder continuous x-dependence of Dz f still suffices, the corresponding Sobolev
regularity theory is far from clear when aiming at an ellipticity regime beyond 1 <
a < 1 + 1

n (also see Baroni, Colombo & Mingione [12] for the related borderline
case q

p = 1 + α
n in the superlinear growth regime). Namely, in this case the Euler-

Lagrange equations satisfied by (generalised) minima cannot be differentiated. In the
full gradient, superlinear growth regime, this setting has been extensively studied by
Mingione [59, 61, 62] and Kristensen & Mingione [52, 53, 54]. Here, Nikolskĭı
estimates are employed but – as a matter of fact – do not use any information apart
from the Euler-Lagrange equation itself and the continuity properties of f with respect
to its first variable. Such a strategy has been pursued in [44] for autonomous functionals
(in the regime 1 < a < 1 + 1

n ). However, if we wish to amplify the ellipticity regime as is
done in Theorem 1.1, then we ought to use the instrumental identities for the minimisers
that come out as a byproduct of second order estimates, cf. Theorem 4.3. As the latter are
essentially obtained by differentiating the first variation-style perturbed Euler-Lagrange
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equation, the approach presented in Section 4 requires modification, an objective which
we intend to deal with in the future.

Lastly, let A[D] be a first order, constant-coefficient differential operator A[D] on
Rn between the two finite dimensional vector spaces V,W . Then the canonical Dirichlet
problem (1.2) has a relaxed minimiser in BVA(Ω) := {v ∈ L1(Ω;V ) : A[D]u ∈M (Ω;W )}
if A is C-elliptic (and hence L1-traces of BVA-maps are definable), cf. [20, Thm. 5.3].
By means of Hilbert-Nullstellensatz-techniques [74, 46], the splitting strategy underlying
Theorem 4.3 – yet being technically more demanding – is likely to work as well. On
the other hand, based on the Poincaré-type inequalities from [20], the partial regularity
result from Theorem 1.2 hinges on the existence of a mollifier ρ such that ρ ∗ π = π for
all π ∈ ker(A[D]). This is a consequence of the Bramble-Hilbert lemma, and we shall
pursue this elsewhere.

8. Appendix A: On uniqueness and the structure of GM(F ;u0)

In Section 4.6 we addressed some uniqueness assertions and the structure of the set
of generalised minimisers. Working from the assumption that generalised minima are
unique up to rigid deformations, we here complete the proof of Corollary 4.8 with

Proposition 8.1. Let Ω ⊂ Rn be open and bounded with Lipschitz boundary ∂Ω and
let u0 ∈ LD(Ω). Moreover, suppose that f : Rn×nsym → R is convex integrand with (LG)
such that for each ν ∈ Rn \ {0} the map f∞ν : Rn 3 z 7→ f∞(z � ν) has strictly convex
sublevel sets (in the sense of Section 4.6) and every two generalised minima differ by a
rigid deformation. Then the following hold:

(a) If there exists one generalised minimiser u ∈ GM(F ;u0) with u = u0 H n−1-a.e.
on ∂Ω, then GM(F ;u0) = {u}.

(b) If ∂Ω moreover satisfies for all a ∈ R

H n−1({x ∈ ∂Ω: xi = a}) = 0 for all i ∈ {1, ..., n},(8.1)

then there exists u ∈ GM(F ;u0) and π ∈ R(Ω) such that

GM(F ;u0) = {u+ λπ : λ ∈ [−1, 1]}.(8.2)

Note that, the hypotheses of Corollary 4.7 imply those of the preceding proposition.
For the rest of this section, we tacitly assume that the hypotheses of Proposition 8.1 are
in action.

We begin with some preliminary considerations. Given u0 ∈ LD(Ω) and a convex
integrand with (LG), we start by noting that for any u ∈ GM(F ;u0), the set

Ru :=
{
π ∈ R(Ω): u+ π ∈ GM(F ;u0)

}
is convex, closed and bounded in R(Ω).

(8.3)

Convexity of Ru is a direct consequence of convexity of Fu0 [−; Ω] on BD(Ω). If (πj) ⊂
Ru satisfies πj → π in R(Ω), then Lipschitz continuity6 of f∞ readily implies that

Fu0 [u + π; Ω] = limj→∞ Fu0 [u + πj ; Ω] = minFu0 [BD(Ω); Ω] and hence π ∈ Ru, too.
Lastly, ifRu were not bounded, we would find (πj) ⊂ Ru with ‖πj‖ → ∞ for an arbitrary
norm ‖ · ‖ on R(Ω). There exists a constant c = cn > 0 such that c|a| |b| ≤ |a� b| for all
a, b ∈ Rn. Since, by (LG), c1|z| ≤ f∞(z) for all z ∈ Rn×nsym , we find

C

ˆ
Ω

|Tr∂Ω(u− u0 − πj)|dH n−1 ≤
ˆ

Ω

f∞(Tr∂Ω(u0 − u− πj)� ν∂Ω) dH n−1

≤ (minFu0 [BD(Ω)])− f [Eu](Ω) <∞,

so that the triangle inequality and equivalence of all norms on R(Ω) yields the contra-
dictory supj∈N ‖πj‖ <∞. In consequence, (8.3) follows.

6The recession function is convex and of linear growth, thus Lipschitz, too.
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As an adaptation of [14, Lem. 6.2], we now establish that whenever π ∈ R(Ω) is such
that u+π ∈ GM(F ;u0), then there exists a H n−1-measurable function β : ∂Ω→ R\(0, 1)
such that Tr∂Ω(u0)(x) = Tr∂Ω(u)(x) + β(x)π(x) for H n−1-a.e. x ∈ ∂Ω.

In fact, if u+ π ∈ GM(F ;u0), then by (8.3), u+ βπ ∈ GM(F ;u0) for all β ∈ [0, 1]. In
particular, we find

2f [Eu](Ω) +

ˆ
∂Ω

f∞(Tr∂Ω(u0 − u− π)� ν∂Ω) dH n−1

+

ˆ
∂Ω

f∞(Tr∂Ω(u0 − u)� ν∂Ω) dH n−1 = 2 minFu0
[BD(Ω)]

≤ 2f [Eu](Ω) + 2

ˆ
∂Ω

f∞
((

Tr∂Ω(u0 − u−
π

2
)
)
� ν∂Ω

)
dH n−1,

and since

2f∞(Tr∂Ω(u0 − u−
π

2
)� ν∂Ω) ≤ f∞(Tr∂Ω(u0 − u)� ν∂Ω)

+ f∞(Tr∂Ω(u0 − u− π))� ν∂Ω) H n−1-a.e. on ∂Ω,
(8.4)

we deduce that we have equality in (8.4) H n−1-a.e. on ∂Ω. Because the map z 7→
f∞(z � ν∂Ω(x)) has strictly convex level sets for H n−1-a.e. x ∈ ∂Ω, by [68, Lem. 4.8],
for H n−1-a.e. x ∈ ∂Ω there exists R(x) ≥ 0 such that

Tr∂Ω(u0(x)− u(x)− π(x)) = R(x) Tr∂Ω(u0(x)− u(x)) for H n−1-a.e. x ∈ ∂Ω.

Clearly, on {x ∈ ∂Ω: π(x) = 0} we must have R = 1. Conversely, on {x ∈ ∂Ω: π(x) 6=
0}, we have R 6= 1, Tr∂Ω((1−R)(u0−u)−π) = 0 and hence Tr∂Ω(u0−u) = 1

1−R Tr∂Ω(π).
We may thus define

β(x) :=

{
1 where π(x) = 0,

1
1−R(x) otherwise,

so that β(x) ∈ R \ (0, 1), and it is easily seen that β has the required properties.

Proof of Proposition 8.1 (a). In [44] this has been established for convex domains, and
we here give the general case. Suppose that v ∈ GM(F ;u0) is a generalised minimiser.
Then v = u + π, and generalised minimality of v together with Tr∂Ω(u) = Tr∂Ω(u0)
H n−1-a.e. on ∂Ω yieldsˆ

∂Ω

f∞(π(x)� ν∂Ω(x)) dH n−1(x) = 0.

Since f∞(a� b) ≥ C|a| |b| for some C > 0 and all a, b ∈ Rn, π = 0 H n−1-a.e. (and thus,
by continuity, everywhere) on ∂Ω. Write π(x) = Ax + b with A ∈ Rn×nscew and b ∈ Rn.
Clearly, for Ω is open and bounded, ∂Ω cannot be contained in an (n − 1)-dimensional
affine hyperplane. If dim(ker(A)) ≤ n − 1, then ker(A) is contained in an (n − 1)-
dimensional hyperplane H. We have, for some x0 ∈ ∂Ω, {y : Ay = −b} = x0 + ker(A).
Since ∂Ω 6⊂ x0 + ker(A), we find x1 ∈ ∂Ω ∩ (x0 + ker(A))c. Then, however, π(x1) = 0
implies Ax1 = −b and so x1 ∈ x0 + ker(A), a contradiction. In consequence, necessarily
dim(ker(A)) = n, in which case A = 0 so that, because of π ≡ 0 on ∂Ω, b = 0 and hence
π ≡ 0 on Rn. In conclusion, u = v and hence GM(F ;u0) = {u}. �

We now establish Proposition 8.1(b) for n = 2; the higher dimensional case is similar
and is left to the reader.

Proof of Proposition 8.1 (b). By assumption, GM(F ;u0) = u + Ru, Ru being defined
as in (8.3). Suppose that Ru contains two linearly independent elements π1, π2. Then,
by the above discussion, we may write Tr∂Ω(u0) = Tr∂Ω(u) + β1π1 = Tr∂Ω(u) + β2π2
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H 1-a.e. on ∂Ω for some suitable β1,2 : ∂Ω → R \ (0, 1). Therefore, β1π1 − β2π2 = 0
H 1-a.e. on ∂Ω. We write π1(x) = A1x+ b1, π2(x) = A2x+ b2, where

A1 =

(
0 λ
−λ 0

)
, b1 =

(
b11

b12

)
and A2 =

(
0 µ
−µ 0

)
, b2 =

(
b21

b22

)
for some suitable λ, µ ∈ R, b1, b2 ∈ R2; in two dimensions, every rigid deformation is of
this form. Now suppose that β1π1 − β2π2 = 0 H 1-a.e. on ∂Ω, and denote Θ ⊂ ∂Ω the
set where equality holds; hence, H 1(∂Ω \Θ) = 0. Then for any x = (x1, x2) ∈ Θ,

β1(x)

(
λx2 + b11

−λx1 + b12

)
= β2(x)

(
µx2 + b21

−µx1 + b22

)
.(8.5)

Denote Γ := {x ∈ Θ: β1(x) 6= 0}. Our aim is to establish H 1(Γ) = 0. We split

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4

:= {x ∈ Γ: µx2 + b21 = 0 and − µx1 + b22 = 0}
∪ {x ∈ Γ: µx2 + b21 = 0 and − µx1 + b22 6= 0}
∪ {x ∈ Γ: µx2 + b21 6= 0 and − µx1 + b22 = 0}
∪ {x ∈ Γ: µx2 + b21 6= 0 and − µx1 + b22 6= 0}.

For Γ1, note that if µ 6= 0, then Γ1 consists at most of one single point and hence
H 1(Γ1) = 0. If µ = 0 and H 1(Γ1) > 0, then Γ1 6= ∅ implies b21 = b22 = 0 and hence,
in total, by µ = 0, π2 ≡ 0, which is ruled out by linear independence of π1, π2. Hence,
H 1(Γ1) = 0.

Now, for x ∈ Γ, we may put γ(x) := β2(x)
β1(x) and obtain from (8.5)(

λx2 + b11

−λx1 + b12

)
= γ(x)

(
µx2 + b21

−µx1 + b22

)
.(8.6)

• The treatment of Γ2 and Γ3 is symmetric (interchange the roles of x1 and x2).
So suppose that H 1(Γ2) > 0. If µ 6= 0, then Γ2 ⊂ {x ∈ Γ: x2 = b21

µ } and hence

H 1(Γ2) = 0 by (8.1), a contradiction. Thus µ = 0. From (8.6) we deduce that
λx2 + b11 = 0 for all x ∈ Γ2. Again, if λ 6= 0, then Γ2 ⊂ {x ∈ Γ: x2 = −b11

λ }
and hence H 1(Γ2) = 0 by (8.1). Hence λ = 0, and so π1 = b1, π2 = b2. In
this situation, linear independence of π1, π2 and hereafter of b1, b2 implies that
β1 = β2 = 0 H 1-a.e. on Γ, a contradiction to β1 6= 0 H 1-a.e. on Γ. As
a conclusion, H 1(Γ2) = 0, and similarly, now invoking the first part of (8.1),
H 1(Γ3) = 0.

• Suppose that H 1(Γ4) > 0. For x ∈ Γ4, we have µx2 +b21 6= 0 and −µx1 +b22 6=
0. From here we deduce

λx2 + b11

µx2 + b21
= γ(x) =

λx1 − b12

µx1 − b22
for all x ∈ Γ4.(8.7)

Therefore, γ(x) must be independent of x1, x2 and thus is constant. Hence,
there exists a ∈ R such that π1 = aπ2 on Γ4. The affine-linear map π1−aπ2 thus
vanishes on a set of positive H 1-measure. Therefore, it necessarily vanishes on
a line ` ⊂ R2. In other words,

(A1 − aA2)x = a(b2 − b1) for x ∈ `.(8.8)

There are three options: If A1−aA2 is invertible, then (A1−aA2)x = a(b2− b1)
has a unique solution and thus contradicts (8.8) for all x ∈ `. Thus, A1 − aA2 is
not invertible, and by the structure of A1, A2, this implies λ = aµ. Either a = 0,
in which case (8.7) yields b11 = b12 = 0. Then π1 ≡ 0, contradicting the linear
independence of π1, π2. If a 6= 0, then (8.6) yields b11 = ab21 and b12 = ab22.
In conclusion, π1 = aπ2, again contradicting the linear independence of π1 and
π2. Therefore, H 1(Γ4) = 0.
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In conclusion, H 1(Γ) = 0 so that β1 = 0 H 1-a.e. on ∂Ω. Then we obtain from
Tr∂Ω(u0) = Tr∂Ω(u) + β1π1 = Tr∂Ω(u) H 1-a.e. on ∂Ω that u ∈ GM(F ;u0) is a gener-
alised minimiser which attains the correct boundary data u0 H 1-a.e.. In this situation,
Proposition 8.1(a) yields GM(F ;u0) = {u}. In total, GM(F ;u0) ⊂ u + Rπ for some
suitable π ∈ R(Ω). Since in this situation GM(F ;u0) is a closed and bounded interval
by (8.3), the statement of Proposition 8.1 for n = 2 follows. �

Proposition 8.1 rises the question under which minimal geometric assumptions on ∂Ω
the representation (8.2) continues to hold, an issue that we intend to pursue elsewhere.

9. Appendix B: Proofs of auxiliary results

We now collect here the proofs of some minor auxiliary results used in the main part
of the paper.

9.1. On the Lq-stability (2.7). We start by justifying (2.7). Let x0 ∈ Rn and r > 0.
Pick an L2-orthonormal basis {π1, ..., πN} of R(B(0, 1)) and consider the orthonormal

projection ΠB(0,1) : L2(B(0, 1);Rn)→ R(B(0, 1)) given by ΠB(0,1)v :=
∑N
k=1〈v, πk〉L2πk.

For R(B(0, 1)) consists of polynomials, it is clear that we may also admit v ∈ L1(B(0, 1);Rn)
in the last formula. By (2.6), this yields the estimate

‖ΠB(0,1)v‖L1(B(0,1);Rn) ≤ c(n)‖v‖L1(B(0,1);Rn)

for v ∈ L1(B(0, 1);Rn) so that ΠB(0,1) extends to a bounded linear operator from

L1(B(0, 1);Rn) to R(B(0, 1)). Now (2.7) follows by rescaling.

9.2. Proof of Lemma 2.12. Let a ∈ Rn×nsym be fixed and let ξ ∈ Rn×nsym be arbitrary.
Assertion (a) follows by differentiation, and fa ≥ 0 is a consequence of convexity of f .
As to (b), since f is Lipschitz by Lemma 2.8 and because of B(a,

%ξ0
2 ) ⊂ B(ξ0, %ξ0),

fa(ξ) =

ˆ 1

0

〈f ′(a+ tξ)− f ′(a), ξ〉dt ≤

{
(supB(ξ0,%ξ0 ) |f ′′|)|ξ|2 for |ξ| ≤ %ξ0

2 ,

2 Lip(f)|ξ| for |ξ| > %ξ0
2 .

Therefore, if |ξ| > %ξ0
2 , we may successively apply Lemma 2.11(c) and (a) to find

|ξ| = %ξ0
2

∣∣∣∣ 2

%ξ0
ξ

∣∣∣∣ ≤ %ξ0
2

1√
2− 1

V
( 2

%ξ0
ξ
)
≤ 8√

2− 1

1

%ξ0
V (ξ).

Thus, by Lemma 2.11(d) with ` =
%ξ0
2 and the corresponding constant c = c(`) = c(

%ξ0
2 )

fa(ξ) ≤
(
c(
%ξ0
2 ) sup

B(ξ0,%ξ0 )

|f ′′|+ 16 Lip(f)

(
√

2− 1)%ξ0

)
V (ξ).

For the lower bound, we observe that by (2.17) and B(a,
%ξ0
2 ) ⊂ B(ξ0, %ξ0),

fa(ξ) =

ˆ 1

0

ˆ 1

0

〈f ′′(a+ stξ)ξ, ξ〉dsdt ≥ mξ0,%ξ0
|ξ|2 for all ξ ∈ B(0,

%ξ0
2 ).

Similarly, if
%ξ0
2 ≤ |ξ|, then positive definiteness of f ′′ on Rn×nsym yields

fa(ξ) = fa(ξ)− fa(0) ≥
ˆ √

%ξ0
2|ξ|

0

ˆ √
%ξ0
2|ξ|

0

〈f ′′(a+ stξ)ξ, ξ〉dtds ≥ mξ0,%ξ0

%ξ0
2|ξ|
|ξ|2.

Hence, we obtain for all ξ ∈ Rn×nsym by Lemma 2.11(c) and monotonicity of R 3 t 7→ V (t),

fa(ξ) ≥ mξ0,%ξ0
V (ξ)1{|ξ|<%ξ0/2}(ξ) +mξ0,%ξ0

(%ξ0
2

)2

V
( 2ξ

%ξ0

)
1{|ξ|≥%ξ0/2}(ξ)

≥ mξ0,%ξ0

(%ξ0
2

)2

V (ξ).

The proof is complete.
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9.3. Linear comparison estimates and the proof of Proposition 6.1. Let Ω ⊂ Rn
be an open and bounded domain with smooth boundary. For w ∈W1,2(Ω;Rn), consider
the variational principle

to minimise G[v] :=

ˆ
Ω

g(ε(v)) dx over v ∈ w + W1,2
0 (Ω;Rn),(9.1)

where g(z) := A [z, z]+〈b, z〉+c is a polynomial of degree two on Rn×nsym with a symmetric

bilinear form A : Rn×nsym × Rn×nsym → R, b ∈ Rn×nsym and c ∈ R. We moreover assume that

A is elliptic in the sense that there exists `1, `2 > 0 such that `1|z|2 ≤ A [z, z] ≤ `2|z|2
holds for all z ∈ Rn×nsym .

Lemma 9.1. There exists a unique solution u ∈ w + W1,2
0 (Ω;Rn) of (9.1). Moreover,

this solution satisfies the following:

(a) There exists a constant c = c(n, `1, `2) > 0 such that if B(x0, R) b Ω, then for
all 0 < r < R/2 there holdsˆ

B(x0,r)

|ε(u)− (ε(u))x0,r|2 dx ≤ c
( r
R

)n+2
ˆ

B(x0,R/2)

|ε(u)− (ε(u))x0,R/2|
2 dx.

(b) If Ω = B(x0, R) for some x0 ∈ Rn and R > 0, then for any α ∈ (0, 1) there exists

a constant c = c(n, α, `1, `2) > 0 such that if w ∈ C1,α(B(x0, R);Rn), then

[ε(u)]
C0,α(B(x0,R);Rn×nsym )

≤ c[ε(w)]
C0,α(B(x0,R);Rn×nsym )

.

Proof. Korn’s inequality ‖∇ϕ‖L2(Ω;Rn×n) ≤ c‖ε(ϕ)‖L2(Ω;Rn×n) for all ϕ ∈ W1,2
0 (Ω;Rn)

implies that minimising sequences are bounded in W1,2(Ω;Rn) (as the Dirichlet datum
w is fixed). From here, the existence of minima is standard by convexity of g, and
uniqueness follows from strict convexity of g. The proof of (a) follows along the lines of
[37, Lem. 3.0.5]. For (b), consider the symmetric bilinear form B : Rn×n × Rn×n → R
defined by B[z, ξ] := A [zsym, ξsym] for z, ξ ∈ Rn×n. Then B is strongly elliptic in the
sense of Legendre-Hadamard: For all a, b ∈ Rn there holds

B[a⊗ b, a⊗ b] = A [a� b, a� b] ≥ c(n, `1, `2)|a|2|b|2,

and since trivially |B[z, ξ]| ≤ c(n, `1, `2)|z||ξ| for all z, ξ ∈ Rn×n, B is a strongly elliptic
bilinear form on Rn×n. By minimality of u for G, u satisfies the Euler-Lagrange equation{

−div(B[∇u, ·]) = 0 in Ω,

u = w on ∂Ω.
(9.2)

Therefore, by the classical Schauder estimates for strongly elliptic systems and scaling,
there exists a constant c = c(n, `1, `2) > 0 such that

[∇u]
C0,α(B(x0,R);Rn×n)

≤ c[∇w]
C0,α(B(x0,R);Rn×n)

.

Trivially, [ε(u)]
C0,α(B(x0,R);Rn×nsym )

≤ [∇u]
C0,α(B(x0,R);Rn×n)

. By the simple geometry of

B(x0, R), L2,n+2α(B(x0, R);Rn×nsym ) ' C0,α(B(x0, R);Rn×nsym ) with the Campanato spaces

Lp,λ. We then estimate, using Lemma 2.2(a) in the third step and scaling,

[∇w]
C0,α(B(x0,R);Rn×n)

≤ c[∇w]L2,n+2α(B(x0,R);Rn×n)

= c sup
x∈Ω

sup
0<r<2R

( 1

rn+2α

ˆ
B(x,r)∩B(x0,R)

|∇w − (∇w)B(x,r)∩B(x0,R)|2 dL n
) 1

2

≤ c sup
x∈Ω

sup
0<r<2R

( 1

rn+2α

ˆ
B(x,r)∩B(x0,R)

|ε(w)− (ε(w))B(x,r)∩B(x0,R)|2 dL n
) 1

2

≤ c[ε(u)]
C0,α(B(x0,R);Rn×nsym )

,

where still c = c(n, `1, `2). This yields (b), and the proof is complete. �
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The key in the above proof is that an easy reduction to the strongly elliptic bilinear
forms applied to the full gradients is possible. This is not the case for elliptic bilinear
forms. Clearly, in (b) we could have allowed for more general domains, but this is not
needed for the

Proof of Proposition 6.1. We split the proof into two steps, linearisation and comparison
estimates.

Step 1. Linearisation. We begin by defining the auxiliary integrand g : Rn×nsym → R by

g(ξ) := f(ξ0) + 〈f ′(ξ0), (ξ − ξ0)〉+ 1
2 〈f
′′(ξ0)(ξ − ξ0), (ξ − ξ0)〉, ξ ∈ Rn×nsym .

Using a Taylor expansion of f up to order two around ξ0, we deduce by (6.3) that

|f(ξ)− g(ξ)| ≤ ωξ0,%ξ0 (|ξ − ξ0|)|ξ − ξ0|2, ξ ∈ B(ξ0, %ξ0).(9.3)

By Lemma 9.1, the unique solution h of the auxiliary variational principle

to minimise

ˆ
B(x0,R/2)

g(ε(w)) dx over all w ∈ v + W1,2
0 (B(x0,

R
2 );Rn),(9.4)

belongs to C1,α(B(x0, R/2);Rn). By Lemma 9.1 (a), there exists c = c(n, λ,Λ) > 0 such
that ˆ

B(x0,r)

|ε(h)− (ε(h))x0,r|2 dx ≤ c
( r
R

)n+2
ˆ

B(x0,R/2)

|ε(h)− (ε(h))x0,R/2|
2 dx(9.5)

for all 0 < r < R/2. Moreover, enlarging c > 0 if necessary, Lemma 9.1 (b) gives

[ε(h)]
C0,α(B(x0,R/2);Rn×nsym )

≤ c[ε(v)]
C0,α(B(x0,R/2);Rn×nsym )

.(9.6)

Since h is a solution of the variational principle (9.4), the bounds of (6.2) yield that

‖ε(h)− ξ0‖L2(B(x0,R/2);Rn×nsym ) ≤ c‖ε(v)− ξ0‖L2(B(x0,R/2);Rn×nsym ),(9.7)

where still c = c(n, λ,Λ) > 0. Therefore we deduce for every x ∈ B(x0,
R
2 ) that

|ε(h)(x)− ξ0| ≤ sup
B(x0,R/2)

|ε(h)− (ε(h))x0,R/2|+ |(ε(h))x0,R/2 − ξ0|

(9.6),(9.7)

≤ cRα[ε(v)]
C0,α(B(x0,R/2);Rn×nsym )

+
( 

B(x0,R/2)

|ε(v)− ξ0|2 dx
) 1

2

≤ cRα[ε(v)]
C0,α(B(x0,R/2);Rn×nsym )

+ sup
B(x0,R/2)

|ε(v)− ξ0|

=: ccomptα,ξ0(v;x0,
R
2 ),

where ccomp = ccomp(λ,Λ, n) > 1 shall be the constant claimed in the proposition, and
so

sup
B(x0,R/2)

|ε(h)− ξ0| ≤ ccomptα,ξ0(v;x0,
R
2 ).(9.8)

Step 2. Comparison estimates. We will now compare v with h. To this end, we first
notice that by Jensen’s inequality, (9.5) and 0 < r < R

2 ,ˆ
B(x0,r)

|ε(v)− (ε(v))x0,r|2 dx ≤ c
(ˆ

B(x0,r)

|ε(v)− ε(h)|2 dx

+

ˆ
B(x0,r)

|ε(h)− (ε(h))x0,r|2 dx
)

≤ c
(ˆ

B(x0,r)

|ε(v)− ε(h)|2 dx

+
( r
R

)n+2
ˆ

B(x0,R/2)

|ε(h)− (ε(h))x0,R/2|
2 dx

)
≤ c
(ˆ

B(x0,R/2)

|ε(v)− ε(h)|2 dx
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+
( r
R

)n+2
ˆ

B(x0,R/2)

|ε(v)− (ε(v))x0,R/2|
2 dx

)
,

where c = c(n, λ,Λ) > 0. In view of (6.4), we thus need to control the first term on
the very right hand side of the previous inequality. Since h solves (9.4) and v − h ∈
W1,2

0 (B(x0,
R
2 );Rn), an elementary integration by parts establishes

1

2

ˆ
B(x0,R/2)

〈f ′′(ξ0)(ε(v)− ε(h)), (ε(v)− ε(h))〉dx =

ˆ
B(x0,R/2)

g(ε(v))− g(ε(h)) dx.

Using this equality in the second step, we then deduceˆ
B(x0,R/2)

|ε(v)− ε(h)|2 dx
(6.2)

≤ 1

λ

ˆ
B(x0,R/2)

〈f ′′(ξ0)(ε(v)− ε(h)), (ε(v)− ε(h))〉dx

=
2

λ

ˆ
B(x0,R/2)

g(ε(v))− g(ε(h)) dx

=
2

λ

(ˆ
B(x0,R/2)

g(ε(v))− f(ε(v)) dx

+

ˆ
B(x0,R/2)

f(ε(v))− f(ε(h)) dx

+

ˆ
B(x0,R/2)

f(ε(h))− g(ε(h)) dx
)

=:
2

λ

(
I1 + I2 + I3

)
,

the single terms I1, I2, I3 being defined in the obvious manner.
Ad I1. Since ccomp > 1 and by virtue of our assumption tα,ξ0(v;x0, R/2) < %ξ0/ccomp,

we obtain ε(v)(x) ∈ B(ξ0, %ξ0) for all x ∈ B(x0, R/2). In consequence, by (9.3), the
definition of tα,ξ0 and because ωξ0,%ξ0 is non-decreasing,

I1 =

ˆ
B(x0,R/2)

g(ε(v))− f(ε(v)) dx ≤ ωξ0,%ξ0 (tα,ξ0(v;x0, R/2))

ˆ
B(x0,R/2)

|ε(v)− ξ0|2 dx.

Ad I2. Here we invoke the definition of devα and minimality of h for (9.4), yielding
I2 ≤ devα(v;x0, R/2).

Ad I3. By our choice (9.8) of ccomp > 1 and tα,ξ0(v;x0, R/2) < %ξ0/ccomp(< 1), (9.8)
implies that ε(h)(x) ∈ B(ξ0, %ξ0) for all x ∈ B(x0, R/2). Hence, by (9.3),

|f(ε(h)(x))− g(ε(h)(x))| ≤ ωξ0,%ξ0 (|ε(h)(x)− ξ0|)|ε(h)(x)− ξ0|2

for all x ∈ B(x0, R/2). Now, because ωξ0,%ξ0 is non-decreasing, (9.8) and (9.7) imply

I3 =

ˆ
B(x0,R/2)

f(ε(h))− g(ε(h)) dx

≤ ωξ0,%ξ0 (ccomptα,ξ0(v;x0, R/2))

ˆ
B(x0,R/2)

|ε(h)− ξ0|2 dx

≤ cωξ0,%ξ0 (ccomptα,ξ0(v;x0, R/2))

ˆ
B(x0,R/2)

|ε(v)− ξ0|2 dx,

where c = c(n, λ,Λ) > 0. In conclusion, we find with some constant c = c(n, λ,Λ) > 0ˆ
B(x0,r)

|ε(v)− (ε(v))x0,r|2 dx ≤ c
(( r

R

)n+2
ˆ

B(x0,R/2)

|ε(v)− (ε(v))z,R/2|2 dx

+ devα(v;x0, R/2) + ϑ(tα,ξ0(v;x0, R/2))

ˆ
B(x0,R/2)

|ε(v)− ξ0|2 dx
)
,

where ϑ(t) := ωξ0,%ξ0 (t) + ωξ0,%ξ0 (ccompt) meets the required properties. This is (6.4),
and the proof is complete. �
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