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Abstract. We construct a Lipschitz truncation which approximates func-
tions of bounded variation in the area-strict metric. The Lipschitz truncation

changes the original function only on a small set similar to Lusin’s theorem.

Previous results could only give estimates on the Lebesgue measure of the set
where the Lipschitz approximations differ from the original function.

1. Introduction

It is a classical fact attributable to Lusin [Lus12] that any u ∈ Lp(Ω) with Ω ⊂
Rn a bounded, open set, 1 ≤ p <∞, can be approximated by continuous functions
uλ such that u is only changed on a small set, i.e.

‖u− uλ‖p → 0 and L n({u 6= uλ})→ 0(1.1)

as λ → ∞. Here, L n is the Lebesgue measure on Rn. This was extended by
Liu [Liu77] to Sobolev functions, showing that for any u ∈ W1,p(Ω) one can find
C1-appoximations uλ such that

‖u− uλ‖1,p → 0 and L n({u 6= uλ})→ 0(1.2)

as λ→∞. This is called Lusin property for Sobolev functions.
A qualitative version thereof has been introduced by Acerbi & Fusco: As

established in [AF84, AF88], for any u ∈ W1,p(Ω) with 1 ≤ p < ∞ and all λ > 0
there exist Lipschitz functions uλ such that

‖∇uλ‖∞ ≤ c λ, and L n({u 6= uλ}) ≤
c ‖u‖p1,p
λp

(1.3)

with c independent of u. It is possible to improve the second bound to

L n({u 6= uλ}) ≤
δu(λ) ‖u‖p1,p

λp
(1.4)

with δu(λ) → 0 (depending on u), cf. Evans & Gariepy [EG92, Chapter 6.6.3,
Thm. 3]. Again, this implies ‖u− uλ‖1,p → 0.

Since it is of class W1,∞ and coincides with u apart from a set of small Lebesgue-
measure, uλ is usually referred to as Lipschitz truncation. It is a core feature that
uλ differs from u only on a small set. This cannot be achieved by plain mollification.

The Lipschitz truncation has numerous applications in the calculus of varia-
tions [AF87, DLSV12], regularity theory [Lew93, CFM98, BDS16], existence of
weak solutions [FMS03, DMS08, BDF12, ST19, Zha88] just to name a few.

For Lipschitz domains it is possible to preserve zero boundary data of Sobolev
functions, see [Lan96]. It is possible to obtain additionally stability of the map-
ping u 7→ uλ in all Lebesgue spaces, see [BDF12, DKS13].
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The Lipschitz truncation has been extended partially to functions of bounded
variation u by Evans & Gariepy [EG92, Chapter. 6.6.2, Thm. 2], estabilishing
the existence of Lipschitz approximations uλ such (1.3) holds. However, the corre-
sponding substitute for (1.4)

L n({u 6= uλ}) ≤
δu(λ) ‖u‖BV(Ω)

λ
(1.5)

cannot be true for BV-functions. In fact, this and (1.3) would imply uλ → u
in BV(Ω) and thereby yield the contradictory denseness of Lipschitz functions
in BV(Ω) for the norm topology; note that the respective closure of Lipschitz
functions is W 1,1(Ω). In consequence, ‖u − uλ‖BV → 0 cannot hold for arbitrary
BV-functions.

The goal of this paper hence is to extend the Lipschitz truncation technique
to the setting of BV(Ω) with uλ → u in a useful metric, necessarily weaker than
the norm topology. One possibility is the notion of weak* convergence. However,
this notion is too weak for many aspects. A more useful concept is the one of
strict convergence, which requires that additionally the total variation converges,
i.e. |Duλ|(Ω)→ |Du|(Ω).

A slight but effective modification of strict convergence is the area-strict con-
vergence, since it is more flexible in the applications. This topology is somehow
the strongest one, for which approximation by smooth functions is still possible.
Moreover, the area-strict convergence (in contrast to weak* convergence) ensures
both continuity of convex functionals with linear growth [Reš68] and continuity of
the trace operator, cf. [EG92]. For these reasons we aim for area-strict convergence
of our Lipschitz truncation.

The heart of the Lipschitz truncation is the pointwise estimate

|u(x)− u(y)| ≤ c|x− y|(M(Du)(x) +M(Du)(y)) for L n-a.e. x, y ∈ Rn,(1.6)

where M denotes the usual Hardy-Littlewood maximal operator, being valid for
any Sobolev as well as any BV-function. As such, u is Lipschitz continuous on the
closed set O{

λ := {M(∇u) ≤ λ} (the good set) with Lipschitz constant uniformly
proportional to λ. Using a suitable extension theorem, it is possible to modify u
on the bad set Oλ := {M(∇u) > λ} such that its modification uλ is Lipschitz con-
tinuous. Among all other extensions1, the particular extension based on Whitney
coverings of Oλ has turned out most suitable. For this we pick a Whitney covering
(Qj)j∈N of the bad set Oλ with a corresponding partition of unity (ηj)j∈N. Let
(u)Qj denote the mean value of u over Qj . Then the Lipschitz truncation is usually
defined as

uλ := u−
∑
j∈N

ηj(u− (u)Qj ) =

{
u on O{

λ,∑
j ηj(u)Qj on Oλ.

(1.7)

In particular, we replace u on the bad set locally by its mean values to obtain higher
regularity. To preserve zero boundary values one has to replace (u)Qj close to the
boundary by zero. However, as we will see in Remark 5, this truncation does not
give uλ → u in the strict sense, as can be seen from

u : (−1, 1)2 → R, x 7→ sgn(x2 − x1).

Here the chief issue is that the jump on the diagonal will turn into a zigzag isolines,
which increases the total variation, cf. Figure 1.

On the other hand, it is well-known that mollification leads to a area-strict
convergence approximation. However, this would change the function globally,

1For some steps the McShane and the Kirszbraun extension is sufficient, but both fail the useful
stability estimates, since constant functions are not necessarily extended as constant functions.
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which is undesired in the applications. Thus, to overcome the problems with the
classical Lipschitz truncation we propose a modified Lipschitz truncation based on
local corrections using mollification. To be precise, we define

uλ := Tλu := u−
∑
j∈N

(
ηj(u− (u)Qj )− ϕj ∗ (ηj(u− (u)Qj ))

)
.(1.8)

Here, for j ∈ N, ϕj denotes a suitable mollifier with regularisation radius being
adapted to the cube Qj .

The main feature of the operator Tλ is that it posses a nice (almost) dual oper-
ater Sλ with

Sλρ := ρ−
∑
j

ηj(ρ− ϕj ∗ ρ).(1.9)

The operator Sλ is non-expansive on L∞ and satisfies nice commutator type esti-
mates, see Lemma 9, i.e.∣∣〈DTλu, ρ〉 − 〈Du, Sλρ〉∣∣ ≤ c h(λ)|Du|(Oλ) ‖ρ‖∞,

where h(λ)→ 0 for λ→∞.
This technique allows us to construct a modified Lipschitz truncation with uλ →

u in the area-strict sense, simultaneously being able to preserve zero boundary data.
Our main theorem then reads as follows:

Theorem 1. Let Ω = Rn or let Ω ⊂ Rn be an open, bounded Lipschitz domain.
Let h : (0,∞) → (0, 1] be a non-increasing function with limλ→∞ h(λ) = 0. Then
there exists a constant c = c(n,Ω) > 0 such that for any u ∈ BV(Ω) and λ > 0
there is uλ : Ω→ R with the following properties:

(a) (Lipschitz property) uλ ∈W1,∞(Ω) together with ‖∇uλ‖L∞(Ω) ≤ c λ
h(λ)n+1 .

(b) (Small change) We have {uλ 6= u} ⊂ Oλ := {M(Du) > λ} and

L n(Oλ) ≤ c |Du|(Oλ)

λ
.

(c) (Stability) The mapping Tλ : u 7→ uλ is stable in the sense that for all
1 ≤ q ≤ n

n−1 there holds

‖uλ‖Lq(Ω) ≤ c‖u‖Lq(Ω),

‖∇uλ‖L1(Ω) ≤ c|Du|(Ω).

(d) (Convergence) uλ → u area-strictly in BV(Ω) as λ → ∞. More precisely,
if Du = Dau + Dsu = ∇uL n + Dsu is the Lebesgue-Radon-Nikodým de-
composition of Du, then

1O{
λ
∇uλ → ∇u in L1(Ω),

∇uλL n Oλ → Dsu Ω area strictly,
(1.10)

as λ→∞. Moreover,

〈DTλu〉(Rn) ≤ 〈Du〉(Rn) + ch(λ)|Du|(Oλ) +
c

λ
|Du|(Rn),(1.11)

|DTλu|(Rn) ≤ |Du|(Rn) + ch(λ)|Du|(Oλ).(1.12)

(e) (Zero boundary values) If u = 0 on Ω{, then uλ = 0 on Ω{ for all λ ≥ λ0,
where λ0 = λ0(n,Ω).

Property (d) tells us precisely where the single parts of the approximations uλ
converge to: Namely, the restriction of the gradients Duλ to the good set O{

λ

converge to the absolutely continuous part Dau, whereas the restrictions to the
bad set Oλ converge to the singular part Dsu.
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The function h with limλ→0 h(λ) = 0 as it appears in (1.11) and (1.12) ensures
the area strict convergence. However, in return it appears in the Lipschitz estimate
in (a) additionally in the denominator.

The outline of the paper is as follows. In Section 2 we collect the requisite
background facts on functions of bounded variation and maximal functions of Radon
measures. Then in Section 3 we present our Lipschitz truncation for BV-functions,
which concludes in Subsection 3.5 with the proof of Theorem 1.

2. Preliminaries

Throughout, Ω denotes an open subset of Rn with n ≥ 2. Given x ∈ Rn and
r > 0, we denote by Br(x) := {y ∈ Rn : |x−y| < r} the open ball of radius r centered
at x. Cubes Q ⊂ Rn are always understood to be non-degenerate and parallel to the
axes, and we denote `(Q) their sidelength. The n-dimensional Lebesgue measure
is denoted L n and the n− 1-dimensional Hausdorff measure is denoted by H n−1.
Sometimes we use the notation |U | := L n(U) for a measurable set U ⊂ Rn. We
use 1U for the indicator function of the set U .

2.1. Radon measures. The space of Rm-valued Radon measures on Ω with finite
total variation is denoted M (Ω;Rm), i.e., |µ|(Ω) < ∞. Given µ ∈ M (Ω;Rm) or
u ∈ L1

loc(Ω;Rm) and a measurable subset U ⊂ Ω with |U | ∈ (0,∞), we use the
notation

(µ)U := −
∫
U

dµ :=
µ(U)

|U |
, (u)U := −

∫
U

udx :=
1

|U |

∫
U

udx.

The space M (Ω;Rm) can be identified with the dual space of C0(Ω;Rm). We say
that µk converges weakly* to µ if µk converges weakly* in the sense of (C0(Ω;Rm))∗.

Let µ, µk ∈ M (Ω;Rm). We say that µk converges strictly to µ if µk converges
weakly* to µ and |µk|(Ω)→ |µ|(Ω).

The notions of weak* convergence and strict convergence are too weak for some
applications. Therefore, we introduce in the following the concepts of area-strict
and f -strict convergence.

Any µ ∈ M (Ω;Rm) can be decomposed as µ = µa + µs, where µa � L n and
µs⊥L n. We shall refer to this as Lebesgue-Radon-Nikodým decomposition of µ.

Let f : Rm → R be a convex function of linear growth, i.e., there exist cf , Cf > 0
such that cf |z| ≤ f(z) ≤ Cf (1 + |z|) holds for all z ∈ Rm. We define its recession
function f∞ : Rm → R by

f∞(z) := lim
t↘0

tf
(z
t

)
, z ∈ Rm.

Given a Radon measure µ ∈M(Ω;Rm) we define the Radon measure f(µ) by

f(µ) := f
( dµ

dL n

)
L n + f∞

( dµs

d|µs|

)
|µs|.(2.1)

Let µ, µk ∈ M (Ω;Rm). We say that µk converges f -strictly to µ if µk converges
weakly* to µ and

|f(µk)|(Ω)
k→∞−−−−→ |f(µ)|(Ω).

The case f(z) = |z| recovers the strict convergence.

For f(z) =
√
|z|2 + 1 we abbreviate 〈µ〉 := f(µ). We say µk converges area-

strictly to µ if 〈µk〉(Ω)→ 〈µ〉(Ω). Note that the area-strict convergence of µk to µ
is equivalent to the strict convergence of (µk,L n) to (µ,L n).
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2.2. Functions of bounded variation. We now collect the background defini-
tions and facts on BV-functions, all of which can be traced back to [EG92, Chpt. 5]
and [AFP00]. Let Ω be an open subset of Rn. A measurable function u : Ω→ R is
said to be of bounded variation (in which case we write u ∈ BV(Ω)) if and only if
u ∈ L1(Ω) and its total variation

|Du|(Ω) := sup

{∫
Ω

u div(ϕ) dx : ϕ ∈ C1
c(Ω;Rn), |ϕ| ≤ 1

}
is finite. The norm on BV(Ω) is given by ‖u‖BV(Ω) := ‖u‖L1(Ω) + |Du|(Ω). Con-
vergence with respect to the norm is referred to as strong convergence.

The Lebesgue-Radon-Nikodým decomposition of Du into its absolutely contin-
uous and singular parts for L n reads as

Du = Dau+Dsu = ∇uL n +
dDsu

d|Dsu|
|Dsu|,(2.2)

where ∇u is the approximate gradient.
Given u, uk ∈ BV(Ω), we say that uk converges weakly* in BV(Ω) provided

uk → u in L1(Ω) and Duk
∗
⇀ Du in M (Ω;Rn).

While weak* convergence is useful for compactness arguments, it is insufficient
for a variety of other applications. One often needs the stronger notion of strict or
area strict convergence, which we introduce in the following.

We say that uj converges stricly (resp. area strictly or f -strictly) to u if uj
converges to u in L1(Ω) and Duj converges strictly to Du (resp. area strictly or
f -strictly), see Subsection 2.1 for the assumptions on f .

Area-strict convergence implies f -strict convergence due to Goffman & Ser-
rin [GS64] and Reshetnyak [Reš68]. Therefore it suffices in this article to restrict
ourselves area strict convergence. Note that uk → u in L1(Ω) implies that

f(Du)(Ω) ≤ lim inf
k→∞

f(Duk)(Ω),(2.3)

with equality only if uk converges to u in the f -strict sense. Area-strict convergence
is in some sense the strongest topology still allowing for smooth approximation, yet
being weaker than the norm topology. The single convergences are linked as follows:

area-strict convergence =⇒ strict convergence =⇒ weak* convergence.(2.4)

2.3. The Hardy-Littlewood maximal operator for measures. Let us review
the properties of the maximal operator on Radon measures. For a Radon measure µ
on Rn we define

Mµ(x) := sup
Q3x
MQµ(x) := sup

Q3x

|µ|(Q)

`(Q)n
,(2.5)

where the supremum is taken over all cubes. By the Riesz representation theorem
for Radon measures, we may equivalently write

(Mµ)(x) = sup
Q3x

sup
ϕ∈C0(Q;Rm)\{0}

〈ϕ, µ〉
‖ϕ‖L∞`(Q)n

, x ∈ Rn.(2.6)

For future reference, we collect the most important results of the operator in

Lemma 2. The operator M as defined in (2.5) satisfies each of the following:

(a) For each µ ∈ M (Rn;Rm), Mµ : Rn → R is a lower semicontinuous func-
tion.

(b) There exists a constant c = c(n) > 0 such that L n({Mµ > λ}) ≤ c
λ |µ|(R

n)
for all µ ∈M (Rn;Rm) and all λ > 0.
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(c) There exists c = c(n) > 0 such that for any v ∈ BV(Rn) there holds

|v(x)− v(y)| ≤ c|x− y|
(
MDv(x) +MDv(y)

)
for L n-a.e. x, y ∈ Rn. Here, v(x) and v(y) are understood in the sense of
precise representatives.

Proof. Items (a) and (b) can be established completely analogous as for the well-
known case of L1-functions. By [DS84, Thm. 2.5], for any u ∈ L1

loc(Rn) there
holds

|u(x)− u(y)| ≤ c|x− y|
(

sup
Q3x

1

`(Q)
−
∫
Q

|u− (u)Q|dz + sup
Q3y

1

`(Q)
−
∫
Q

|u− (u)Q|dz
)

for L n-a.e. x, y ∈ Rn. Now it suffices to apply the Poincaré inequality for BV-
functions and the definition ofM to conclude the claim. The proof is complete. �

3. Lipschitz truncation in BV

In this section we present our Lipschitz truncation of BV–functions. Let u ∈
BV(Rn) be given. If we just have u ∈ BV(Ω) with H n−1(∂Ω) < ∞, then we can
extend it by zero to all of Rn using [EG92, Chapter 5.4, Theorem 1]. In this way,
we then obtain that u appears as a restriction of some element of BV(Rn).

3.1. Whitney decomposition of the bad set. For λ > 0 we define the bad set
Oλ := {M(Du) > λ}. We decompose this bad set in a standard way by means
of a Whitney cover. For this we use the version [DRW10, Lemma 3.1]. We can
decompose Oλ into a countable family of open cubes {Qj}, each Qj having side
length rj > 0, such that the following holds:

(W1)
⋃
j

1
2Qj = Oλ

(W2) For all j ∈ N we have 8Qj ⊂ Oλ and 16Qj ∩ (Rn \ Oλ) 6= ∅.
(W3) If Qj ∩Qk 6= ∅, then 1

2rk ≤ rj ≤ 2rk.

(W4) 1
4Qj ∩

1
4Qk = ∅ for all j 6= k.

(W5) At every point at most 120n of the sets 4Qj intersect.

Subject to the covering {Qj} there exists a partition of unity {ηj} ⊂ C∞c (Rn)
with

(P1) 1 1
2Qj
≤ ηj ≤ 1 3

4Qj
,

(P2) ‖ηj‖∞ + rj‖∇ηj‖∞ + r2
j‖∇2ηj‖∞ ≤ c.

For each k ∈ N we define Ak := {j : 3
4Qk ∩

3
4Qj 6= ∅}. Then

(P3)
∑
j∈Ak ηj = 1 on 3

4Qk.

Moreover, we have the following:

(W6) If j ∈ Ak, then |Qj ∩Qk| ≥ 16−n max {|Qj |, |Qk|}.
(W7) If j ∈ Ak, then | 34Qj ∩

3
4Qk| ≥ max {|Qj |, |Qk|}.

(W8) If j ∈ Ak, then 1
2rk ≤ rj < 2rk.

(W9) #Ak ≤ 120n.

Finally, we need the following geometric alternatives in the spirit of [DSSV17,
Lemma 3.2].

Lemma 3. Let Q be an open cube of side length r. Then one of the following
alternatives holds:

(A1) There exists k ∈ N such that Q ∩ 1
2Qk 6= ∅, 8r ≤ rk and Q ⊂ 3

4Qk.

(A2) For all j ∈ N with Q∩ 3
4Qj 6= ∅ there holds rj ≤ 16r and |Qj | ≤ 8n|Qj ∩Q|.

Moreover, 137Q ∩ O{
λ 6= ∅.
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Proof. If there exists k ∈ N such that Q∩ 1
2Qk 6= ∅ and 8r ≤ rk, then automatically

Q ⊂ Qk. Assume now that such a k does not exist. Then for every l ∈ N with
Q ∩ 1

2Ql 6= ∅, there holds rl ≤ 8r. Suppose that Q ∩ 3
4Qj 6= ∅. Now let x ∈

Q ∩ 3
4Qj , then by (W1) there exists m such that x ∈ 1

2Qm. In particular, we have

Q∩ 3
4Qj 6= ∅ due to (W2) and 1

2Qm∩
3
4Qj 6= ∅, since both sets contain x. Now, our

assumption and Q ∩ 3
4Qj 6= ∅ imply rm ≤ 8r. On the other hand, 1

2Qm ∩
3
4Qj 6= ∅

and (W3) imply rj ≤ 2rm. Thus, rj ≤ 16r. Moreover, it follows from 8r ≥ rm
that 137Q = (1 + 17 · 8)Q ⊃ 16Qm. Since 16Qm ∩ (Rn \ Oλ) 6= ∅, we also get
137Q ∩ (Rn \ Oλ) 6= ∅. It remains to prove |Qj | ≤ 8n|Qj ∩Q|. If r ≤ 1

8rj , then

Q ⊂ Qj and the claim follows. If r ≥ 1
8rj , then there exists an open cube Q′ with

side length 1
8rj such that Q′ ⊂ Qj ∩Q. So in this case |Qj ∩Q| ≥ |Q′| ≥ 8−n|Qj |.

The proof is complete. �

For each j ∈ N define

uj :=

{
(u)Qj = −

∫
Qj
udx if 3

4Qj ⊂ Ω

0 otherwise.
(3.1)

Note that the uj depend implicitly on λ. However, for the sake of readability we
avoid an extra index.

Similar to [DKS13, Lem. 23] we obtain the following estimates for u on the
Whitney cubes.

Lemma 4. There exists a constant c = c(n,Ω) > 0 such that for all λ > 0 and all
j ∈ N the following holds:

(a) We have

−
∫
Qj

∣∣∣∣u− ujrj

∣∣∣∣ dx ≤ c |Du|(Qj)
|Qj |

≤ c λ.

(b) If k ∈ N is such that 3
4Qj ∩

3
4Qk 6= ∅, then

|uk − uj | ≤ c −
∫
Qj

|u− uj |dx+ c −
∫
Qk

|u− uk|dx.

(c) If k ∈ N is such that 3
4Qj ∩

3
4Qk 6= ∅, then |uj − uk| ≤ crjλ.

Proof. Ad (a). By definition of the uj ’s, cf. (3.1), either 3
4Qj ⊂ Ω, in which case

we have

−
∫
Qj

∣∣∣∣u− ujrj

∣∣∣∣ dx ≤ c |Du|(Qj)
|Qj |

by Poincaré’s inequality. If 3
4Qj * Ω we deduce that |Qj ∩ Ω{| ≥ c|Qj | since Ω

has Lipschitz boundary. Therefore, by the variant of Poincaré’s inequality given in
[EG92, Prop. 5.4.1],

−
∫
Qj

∣∣∣∣u− ujrj

∣∣∣∣ dx = −
∫
Qj

∣∣∣∣ urj
∣∣∣∣ dx ≤ c |Du|(Qj)

|Qj |
.

By (W2), we have 16Qj ∩ O{
λ 6= ∅ and thus find z ∈ O{

λ as well as r ≤ 32rj such
that 16Qj ⊂ Br(z). Therefore,

|Du|(Qj)
|Qj |

≤ c |Du|(16Qj)

|16Qj |
≤ c
|Du|(Br(z))
|Br(z)|

≤ c (M|Du|)(z) ≤ cλ.



8 D. BREIT, L. DIENING, AND F. GMEINEDER

Ad (b). Under the assumptions of (b), we deduce from (W7) that cmax{| 34Qj |, |
3
4Qk|} ≤

|Qj ∩Qk|. Thus,

|uj − uk| ≤ −
∫
Qj∩Qk

|u− uj |dx+ −
∫
Qj∩Qk

|u− uk|dx

≤ c

(
−
∫
Qj

|u− uj |dx+ −
∫
Qk

|u− uk|dx

)
which implies the claim. Ad (c). By (W8), this is an immediate consequence of (a)
and (b). The proof is complete. �

3.2. Definition of the Lipschitz truncation. In this subsection we introduce a
modified Lipschitz truncation. Toward Theorem 1, we begin by showing that the
standard Lipschitz truncation for W 1,p-functions cannot be employed as it does not
yield strict convergence in BV. This is the content of the following remark.

Remark 5 (Failure of the standard Lipschitz truncation). Let us explain why the
standard Lipschitz truncation cannot yield strict convergence. Consider the the
function u : Ω→ R with Ω = (−1, 1)2 and

u(x) := sgn(x2 − x1).

Then u ∈ BV(Ω) and |Du|(Ω) = 2
√

2. Let Oλ = {M(Du) > λ} denote the bad
set. Then for large λ, the set Oλ and its Whitney decomposition looks roughly as
in Figure 1. The standard Lipschitz truncation is defined as

uλ := u+
∑
j

ηj((u)Qj − u) =

{
u on O{

λ,∑
j ηj(u)Qj on Oλ.

The dyadic structure of the Whitney cubes forces the isolines of uλ (for large λ)
to form a zigzag pattern, thereby increasing the length of the isolines. Hence, the
co-area formula

|Du|(Ω) =

∫ ∞
−∞

H n−1(u−1({t})) dt

shows that |Duλ|(Ω) ≥ (1 + δ)|Du|(Ω) for some fixed δ > 0. Thus, uλ cannot
strictly converge to u in BV(Ω).

On the other hand, it is well-known that mollification of a BV function yields
a strictly convergent approximation. However, this approximation would differ in
general from the original function almost everywhere. Therefore, we combine the
standard Lipschitz truncation with a local mollification to obtain our new Lipschitz
truncation converging even in the area-strict sense.

For this purpose, let h : (0,∞) → (0, 1] be a non-increasing function with
limλ→∞ h(λ) = 0. Let ϕ be a smooth, non-negative, radially symmetric mollifier
with support in the unit ball. For j ∈ N let

ϕj(x) := (εj)
−nϕ(x/εj) with εj := h(λ) 1

4 rj .(3.2)

In particular, the supports of the ϕj shrink faster than the cubes Qj by the factor
of h(λ). Furthermore, we define

Bju := ηj(u− uj)− ϕj ∗ (ηj(u− uj)).(3.3)

Then we have supp(Bj) ⊂ Qj due to supp(ηj) ⊂ 3
4Qj and the choice of εj . We now

define our truncation operator Tλ by

Tλu := uλ := u−
∑
j

Bju.(3.4)
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Figure 1. Example of Remark 5. Left: The picture shows a zoom
of the Whitney cover at the diagonal. The numbers indicate the
mean values (u)Qj . The function uλ is locally constant outside the
shaded region. Right: The picture shows the resulting isolines
of uλ.

The special choice of this truncation operator will become clear later when we
consider its (almost) dual operator in Lemma 9. As we will see, the map Tλu
defines an element in BV(Rn), cf. Lemma 6.

3.3. Properties of the Lipschitz truncation. In this subsection we study im-
portant properties of the Lipschitz truncation Tλu. We begin with the stability
estimates.

Lemma 6 (Stability). There exists a constant c = c(n) > 0 such that we have the
following L1- and BV-stability estimates for all 1 ≤ q ≤ n

n−1 and all j ∈ N:

‖Bju‖q ≤ c
∫
Qj

|u|dx and |D(Bju)|(Rn) ≤ c |Du|(Qj).(3.5)

The sum Bλu :=
∑
j Bju converges unconditionally in BV(Rn) together with

‖Bλu‖qq ≤ c
∫
Oλ
|u|q dx and |D(Bλu)|(Rn) ≤ c |Du|(Oλ).(3.6)

As a consequence, we have

‖Tλu‖q ≤ c ‖u‖q and |D(Tλu)|(Rn) ≤ c |Du|(Rn).(3.7)

Proof. Recall that BV(Rn) ↪→ L
n
n−1 (Rn). Since, supp(ϕj ∗ (ηj(u− uj))) ⊂ Qj , we

directly find by Young’s convolution inequality:∫
Rn
|Bju|q dx =

∫
3
4Qj

|ηj(u− uj)− ϕj ∗ (ηj(u− uj))|q dx ≤ c

∫
Qj

|u|q dx.

Moreover, for each j ∈ N we obtain

|D(Bju)|(Rn) =
∣∣D(ηj(u− uj)− ϕj ∗ (ηj(u− uj))

)∣∣(Rn)

≤ 2 |D(ηj(u− uj))|(Rn)

≤ c |Du|( 3
4Qj) + c

∫
Qj

|u− uj |
rj

dx

≤ c |Du|(Qj),
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where we used Poincaré’s inequality in the last step. This yields (3.5). Now, (3.6)
follows by summing over j and using the finite intersection property of the Qj ,
cf. (W5). Finally, (3.7) is a straightforward consequence of (3.4) and (3.6). The
proof is complete. �

We will now show that Tλu is in fact a Lipschitz continuous function.

Lemma 7. There exists a constant c = c(n) > 0 such that for all λ > 0 there holds

M(DTλu) ≤ c λ

h(λ)n+1
.(3.8)

Proof. Let Q be an open cube with side length r. We use the alternatives of
Lemma 3. We begin with alternative (A1). In this case, there exists k ∈ N such that
Q∩ 1

2Qk 6= ∅, 8r ≤ rk and Q ⊂ 3
4Qk. Then Tλu =

∑
j∈Ak(ηjuj +ϕj ∗ (ηj(u− uj)))

on Q by (W2) and therefore

DTλu =
∑
j∈Ak

∇
(
ηj(uj − uk) + ϕj ∗ (ηj(u− uj))

)
=
∑
j∈Ak

(
∇ηj(uj − uk)

)
+
∑
j∈Ak

∇ϕj ∗
(
ηj(u− uj)

)
.

Thus, by (P2) and MQf ≤ |f | for all f ∈ L∞(Rn),

MQ(DTλu) ≤
∑
j∈Ak

MQ

(
(uj − uk)∇ηj

)
+
∑
j∈Ak

MQ

(
∇ϕj ∗

(
ηj(u− uj)

))
≤
∑
j∈Ak

MQ

(
(uj − uk)∇ηj

)
+
∑
j∈Ak

∥∥∇ϕj ∗ (ηj(u− uj))∥∥∞
≤ c

∑
j∈Ak

|uj − uk|
rk

+
∑
j∈Ak

‖∇ϕj‖∞
∫
Qj

|u− uj | dx

≤ c
∑
j∈Ak

|uj − uk|
rk

+ c
∑
j∈Ak

ε−n−1
j

∫
Qj

|u− uj | dx

using that supp(ηj) ⊂ 3
4Qj , εj ≤

1
4rj , and the properties of ϕj . Now, Lemma 4,

εj = h(λ) 1
4rj and h(λ) ≤ 1 imply

MQ(DTλu) ≤ c λh(λ)−n−1.(3.9)

We turn to alternative (A2). In particular, for all j ∈ N with Q ∩ 3
4Qj 6= ∅, there

holds rj ≤ 16r and |Qj | ≤ 8n|Qj ∩Q|. Moreover, 137Q∩(Rn\Oλ) 6= ∅. Recall that
Tλu = u−

∑
j Bju with convergence of the sum in the norm topology on BV(Rn),

see Lemma 6. Thus,

MQ(DTλu) ≤MQ(Du) +
∑

j :Q∩ 3
4Qj 6=∅

MQ(DBju).(3.10)

We address the estimation of the single termsMQ(DBju) first. We start by noting
that for any v ∈W1,1(Rn) with support in 3

4Qj there holds

MQj

(
ϕj ∗Dv

)
≤ 1

|Qj |

∫
Qj

∫
Rn
|ϕj(y)| |Dv(x− y)|dy dx

=
1

|Qj |

∫
Rn
|ϕj(y)|

∫
Qj

|Dv(x− y)|dxdy

≤ −
∫
Qj

|Dv|dx =MQj (Dv)
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since supp(ηj) + supp(ϕj) b Qj . If v ∈ BV(Rn) has support in 3
4Qj , choose

a sequence (vk) ⊂ W1,1(Rn) such that supp(vk) ⊂ 3
4Qj and vk → v strictly in

BV(Rn). Clearly, ϕj ∗ vk → ϕj ∗ v in L1
loc(Rn) and since D(ϕj ∗ v) = ϕj ∗Dv, lower

semicontinuity of the total variation with respect to L1
loc-convergence implies

MQj (ϕj ∗Dv) ≤MQj (D(ϕj ∗ v))

≤ lim inf
k→∞

MQj (D(ϕj ∗ vk))

= lim inf
k→∞

MQj (ϕj ∗Dvk) ≤ lim inf
k→∞

MQj (Dvk) ≤MQj (Dv)

provided supp(Dv) is a closed subset of Qj . Applying the previous inequality to
v = ηj(u− uj), we estimate

MQ(DBju) ≤MQ

(
D(ηj(u− uj)

)
+MQ

(
ϕj ∗D(ηj(u− uj))

)
≤
( |Qj |
|Q|

(
MQj

(
D(ηj(u− uj))

)
+MQj

(
ϕj ∗D(ηj(u− uj))

))
≤ c
( |Qj ∩Q|
|Q|

(
MQj

(
D(ηj(u− uj))

))
,

(3.11)

the geometric alternative (A2) having entered in the last step only. By Lemma 4(a),
we thus obtain

MQj

(
D(ηj(u− uj)

)
≤ c −

∫
Qj

|u− uj |
rj

dx+ cMQj (Du) ≤ c λ.(3.12)

Thus, combining (3.10), (3.11) and (3.12), (A2) and the finite intersection of the
Qj ’s, cf. (W5), imply

MQ(∇Tλu) ≤M137Q(Du) + c
∑

j :Q∩ 3
4Qj 6=∅

|Qj ∩Q|
|Q|

λ ≤ c λ.

Recalling (3.9) and that h : (0,∞)→ (0, 1], the proof is hereby complete. �

The following corollary justifies the name Lipschitz truncation.

Corollary 8. For each λ > 0 we have Tλu ∈ W 1,∞(Rn). More precisely, there
exists c = c(n) > 0 such that for all λ > 0 there holds ‖∇Tλu‖∞ ≤ c

λ
h(λ)n+1 .

Proof. This is a direct consequence of Lemma 7 and Lemma 2(c). �

We now turn to the convergence properties of Tλu → u as λ → ∞. The core
feature of our truncation operator Tλ is that it possesses a nice (almost) dual
operator Sλ which satisfies DTλ ≈ S∗λD, see (3.14). Let us define for ρ ∈ Cc(Ω;Rn)

Sλρ := ρ−
∑
j

ηj(ρ− ϕj ∗ ρ) = ρ1O{
λ

+
∑
j

ηj(ϕj ∗ ρ).(3.13)

Lemma 9 (Commutator type estimate). The operator Sλ as given in (3.13) sat-
isfies the following:

(a) Sλ is non-expansive for the L∞-norm in the sense that for all ρ ∈ Cc(Ω;Rn)
there holds

‖Sλρ‖∞ ≤ ‖ρ‖∞,

(b) For all ρ ∈ Cc(Ω;Rn) and u ∈ BV(Rn) we have the commutator-type
estimate ∣∣〈DTλu, ρ〉 − 〈Du, Sλρ〉∣∣ ≤ c h(λ)|Du|(Oλ) ‖ρ‖∞.(3.14)
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Proof. The claim of (a) follows by the pointwise estimate

|Sρ| ≤ |ρ|1O{
λ

+
∑
j

ηj |ϕj ∗ ρ| ≤ ‖ρ‖∞1O{
λ

+
∑
j

ηj‖ρ‖∞ ≤ ‖ρ‖∞.

Let us turn to the proof of (b). By a routine approximation argument, it suffices
to consider ρ ∈ C1

c(Ω;Rn) with ‖ρ‖∞ ≤ 1. Then

〈DTλu, ρ〉 − 〈Du, Sλρ〉
= −〈Tλu,div(ρ)〉 − 〈Du, Sλρ〉

= −
〈
u−

∑
j

(
ηj(u− uj)− ϕj ∗ (ηj(u− uj))

)
,div ρ

〉
− 〈Du, ρ−

∑
j

ηj(ρ− ϕj ∗ ρ)〉

= −
〈∑

j

D
(
ηj(u−uj)− ϕj ∗ (ηj(u−uj))

)
, ρ
〉

+ 〈Du,
∑
j

ηj(ρ−ϕj ∗ ρ)〉

= −
〈∑

j

(
ηjDu− ϕj ∗ (ηjDu)

)
, ρ
〉

+ 〈Du,
∑
j

ηj(ρ− ϕj ∗ ρ)〉

−
〈∑

j

(
∇ηj(u− uj)− ϕj ∗ (∇ηj(u− uj))

)
, ρ
〉

= −
〈∑

j

(
∇ηj(u− uj)− ϕj ∗ (∇ηj(u− uj))

)
, ρ
〉
.

(3.15)

In particular,∣∣〈DTλu, ρ〉 − 〈Du, Sλρ〉∣∣ ≤∑
j

∫
3
4Qj

|((u− uj)∇ηj)− ϕj ∗ ((u− uj)∇ηj)| dx.

Now, we use the well known mollifier estimate

‖v − ϕj ∗ v‖1 ≤ c εj |Dv|(R
n).(3.16)

Indeed, the W 1,1-case can be found in [MZ97], while the BV case follows by ap-
proximation in the strict topology. Hence,∣∣〈DTλu, ρ〉 − 〈Du, Sλρ〉∣∣ (3.16)

.
∑
j

εj
∣∣D(∇ηj(u− uj))

∣∣(Qj)
.
∑
j

εj
rj

(∫
Q∗j

|u− uj |
rj

dx+ |Du|(Qj)
)

≤ h(λ)
∑
j

|Du|(Qj)

≤ h(λ)|Du|(Oλ).

This is (b), and the proof is complete. �

We are now able to characterize to prove area-strict convergence.

Lemma 10 (Area-strict convergence). We have Tλu→ u in the area-strict sense of
BV(Rn) as λ→∞. In particular, DTλu→ Du area strictly for λ→∞. Moreover,

〈DTλu〉(Rn) ≤ 〈Du〉(Rn) + ch(λ)|Du|(Oλ) +
c

λ
|Du|(Rn),(3.17)

|DTλu|(Rn) ≤ |Du|(Rn) + ch(λ)|Du|(Oλ).(3.18)
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Proof. We start with the L1 convergence. Lemma 6, BV(Rn) ↪→ L
n
n−1 (Rn) and

|Oλ| ≤ c
λ |Du|(R

n) (which follows from Lemma 2 (b)) imply

‖u− Tλu‖1 = ‖Bλu‖1 ≤ c
∫
Oλ
|u|dx ≤ c‖u‖ n

n−1

( |Du|(Rn)

λ

) 1
n → 0, λ→∞.

Next, recall that the area-strict convergence of DTλu to Du is equivalent to strict
convergence of (DTλu,L n) to (Du,L n). To prove the latter, let ρ1 ∈ C1

c(Rn,Rn)

and ρ2 ∈ C1
c(Rn) be such that

√
|ρ1|2 + |ρ2|2 ≤ 1. We estimate∣∣〈(DTλu,L n), (ρ1, ρ2)〉

∣∣ =
∣∣〈DTλu, ρ1〉+ 〈L n, ρ2〉

∣∣
=
∣∣〈Du, Sλρ1〉+

(
〈DTλu, ρ1〉 − 〈Du, Sλρ1〉

)
+ 〈L n, ρ2〉

∣∣
=
∣∣〈(Du,L n), (Sλρ1, Sλρ2)〉+

(
〈DTλu, ρ1〉 − 〈Du, Sλρ1〉

)
+ 〈L n, ρ2 − Sλρ2〉

∣∣
≤
∣∣〈(Du,L n), (Sλρ1, Sλρ2〉)

∣∣+
∣∣(〈DTλu, ρ1〉 − 〈Du, Sλρ1〉

)∣∣+
∣∣〈L n, ρ2 − Sλρ2〉

∣∣
=: I + II + III.

By Lemma 9(a), Sλ is non-expansive for the L∞-norm and thus

|(Sλρ1, Sλρ2)| ≤
√
‖ρ1‖2∞ + ‖ρ2‖2∞ ≤ 1.

Hence, I ≤ 〈Du〉(Rn). For II, we utilise Lemma 9(b) to find

II ≤ ch(λ)|Du|(Oλ)‖ρ1‖∞ ≤ ch(λ)|Du|(Oλ)
λ→∞−→ 0

using h(λ) → 0 and |Du|(Oλ) ≤ |Du|(Rn) < ∞. Ad III. Using ρ2 = Sλρ2 ≤ 1 on

O{
λ, ‖Sλρ2‖∞ ≤ ‖ρ2‖∞ and |Oλ| ≤ c

λ |Du|(R
n),∣∣〈L n, ρ2 − Sλρ2〉

∣∣ ≤ 2 ‖ρ2‖∞|Oλ| ≤
c

λ
|Du|(Rn)

λ→∞−→ 0.

In consequence, gathering the estimates for I, II, III,

〈DTλu〉(Rn) ≤ 〈Du〉(Rn) + ch(λ)|Du|(Oλ) +
c

λ
|Du|(Rn).(3.19)

This proves, (3.17). The estimate (3.18) follows analogously without the use of ρ2.
Hence,

lim sup
λ→∞

|〈DTλu〉|(Rn) ≤ 〈Du〉(Rn).(3.20)

On the other hand, by the first part of the proof, Tλu → u in L1
loc(Rn). Thus, by

the L1-lower semicontinuity (2.3) we obtain

〈Du〉(Rn) ≤ lim inf
λ→∞

〈DTλu〉(Rn).

In conjunction with (3.20), this yields limλ→∞〈DTλu〉(Rn) = 〈Du〉(Rn) and the
proof is complete. �

We conclude by identifying the limits of the single constituents of Tλu:

Lemma 11. The following hold:

(a) 1O{
λ
∇Tλu = 1O{

λ
∇u→ ∇u in L1(Rn) as λ→∞.

(b) ∇TλL n Oλ → Dsu in the sense of area-strict convergence of Rn-valued
Radon measures.

Proof. Since |Oλ| → 0 as λ → ∞ and the approximate gradient satisfies ∇u ∈
L1(Rn), we have ∇u− 1O{

λ
∇u = 1Oλ∇u→ 0 in L1(Rn). This proves (a). Ad (b).

Let ϕ ∈ Cc(Rn). By Lemma 10 it follows that DTλu→ Du in the weak* sense, so

〈1O{
λ
∇Tλu, ϕ〉 = 〈∇Tλu, ϕ〉 − 〈1Oλ∇Tλu, ϕ〉 → 〈Du−∇uL n, ϕ〉 = 〈Dsu, ϕ〉.
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It thus remains to establish that 〈DTλu〉(Oλ) → 〈Dsu〉(Rn) as λ → ∞. To this
end, we record that

〈DTλu〉(Oλ) = 〈DTλu〉(Rn)− 〈DTλu〉(O{
λ)

= 〈DTλu〉(Rn)− 〈Du〉(O{
λ)

= 〈DTλu〉(Rn)− (〈∇uL n〉(Rn)− 〈∇uL n〉(Oλ))

≤ (〈DTλu〉(Rn)− 〈∇uL n〉(Rn)) + |Oλ|+ |∇uL n|(Oλ)

→ 〈Du〉(Rn)− 〈∇u〉(Rn) = 〈Dsu〉(Rn), λ→∞,

where we have used that ∇uL n O{
λ = Du O{

λ in the third equality, the trivial

bound
√

1 + | · |2 ≤ 1+ | · | in the fourth and |Oλ| → 0 in conjunction with (a) in the
ultimate line. This establishes lim supλ→∞〈DTλu〉(Oλ) ≤ 〈Dsu〉(Rn). On the other
hand, the L1 lower semicontinuity (2.3) implies 〈Du〉(Rn) ≤ lim infλ→∞〈DTλu〉(Rn)
so that, in total, 〈Du〉(Rn) = limλ→∞〈DTλu〉(Rn). The proof is complete. �

3.4. Preserving zero boundary values. Sometimes it is desirable to preserve
zero boundary values of a given function. We show in this section how to modify
our Lipschitz truncation such that the uλ also have zero boundary values.

Hence, let Ω be a bounded Lipschitz domain and let u ∈ BV(Rn) with u = 0 on
Rn \ Ω. We take the same decomposition of our bad set by a Whitney cover as in
the beginning of the section. Recall that

Bju = ηj(u− uj)− ϕj ∗ (ηj(u− uj)),

Tλu = uλ = u−
∑
j

Bju.

To obtain Tλu = 0 on Rn \ Ω, we have to ensure that Bju = 0 on Rn \ Ω. For
this, let Qj be a cube close to the boundary ∂Ω, i.e. 3

4Qj 6⊂ Ω). In this case the
definition of the uj in (3.1) ensures that uj = 0. Thus, in this case

Bju = ηju− ϕj ∗ (ηju).

By assumption on u, we have ηj(u − uj) = ηju = 0 on Rn \ Ω. However, the
convolution with ϕj might transport values of u to Rn \ Ω. To avoid this, it is
necessary to use a directed convolution. So have to drop the assumption that
the ϕj are radially symmetric mollifiers.

By Lemma 2 (a), we have

|Qj | ≤ L n({M(Du) > λ}) . |Du|(R
n)

λ
.

Thus, for large λ the Whitney cubes are small. Now, since Ω is a Lipschitz domain,
its boundary ∂Ω can be written locally on Qj as a graph of a Lipschitz function.
Thus, there exists a unit vector νj (an approximation of the normal of ∂Ω on Qj)
such that Qj ∩ Ω satisfies the outer cone condition in direction νj . Thus, we can
choose K = K(Ω) ≥ 1 such that for all x ∈ Ω we have

Ω{ + B 1
K

(
1
2νj

)
=
{
x+ y : x ∈ Ω{, y ∈ B 1

K

(
1
2νj

)}
⊂ Ω{.(3.21)

Now, let ϕ be a smooth, non-negative, radially symmetric mollifier with support
in the unit ball. Then we define the local directed mollifier ϕj by

ϕj(x) := (K εj)
−nϕ

(
x

K εj
+
νj
2

)
with εj := h(λ) 1

4 rj .

Then (3.21) ensures that ϕj ∗ (ηju) = 0 on Rn \ Ω. The same holds for the Bju.
Consequently, uλ = 0 on Rn \ Ω provided that λ is large enough depending on
the boundary ∂Ω. Note that since the ϕj are no longer radially symmetric, one
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Ω{

Qj

Ω

Figure 2. Local chart of the boundary. The cones indicate the
direction of the convolution.

has to replace ϕj in the definition of the (almost) dual operator Sλ by ϕj with
ϕj(x) := ϕj(−x).

3.5. Proof of Theorem 1. We are now in position to prove our main theorem.
For a given λ > 0, define uλ := Tλu as in (3.4). The Lipschitz property (a) follows

from Corollary 8. The smallness of the set {u 6= uλ} from (b) is an immediate
consequence of the construction of Tλu and Lemma 2 (b). The stability asssertions
of (c) are given in Lemma 6. On the other hand, the convergence properites (d)
follow from Lemma 10 and Lemma 11. The preservation of the zero boundary
values (e) follows from Subsection 3.4. The proof of Theorem 1 is complete. �
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