Functional Analysis
 \& PDEs

Jan 31, 2020
Dr. F. Gmeineder

Functional Analysis Revision

Problem 1: Warm-up on compact operators

Let $(X,\|\cdot\|)$ be a Banach space. Denote $K(X)$ the compact linear operators $T: X \rightarrow$ X.
(a) Prove that $K(X)$ is a closed, two-sided ideal in $\mathcal{L}(X)$ for the operator norm on X. In particular, the quotient $\mathcal{C}(X):=\mathcal{L}(X) / K(X)$ is well-defined; it is called the Calkin-Algebra of X.
(b) Prove that $K(X)$ is dense in $\mathcal{L}(X)$ for the operator norm on X if and only if $\operatorname{dim}(X)<\infty$.
(c) Let $T: X \rightarrow X$ be a linear operator such that $\|x\| \leq c\|T x\|$ holds for some $c>0$ and all $x \in X$. Prove that T is compact if and only if $\operatorname{dim}(X)<\infty$.
(d) Let $k \in \mathrm{C}([0,1] \times[0,1])$ and define $T: \mathrm{C}([0,1]) \rightarrow \mathrm{C}([0,1])$ by

$$
T f(x):=\int_{[0,1]} k(x, y) f(y) \mathrm{d} y, \quad x \in[0,1]
$$

Prove that T is compact.

Problem 2: True or false?

Decide whether the following statements are true in general - justify your answer.
(a) Any separable real Hilbert space is isometrically isomorphic to $\ell^{2}(\mathbb{N})$.
(b) Let $1 \leq p<\infty$ and let $\Omega \subset \mathbb{R}^{n}$ be open and bounded. Suppose that $X \subset$ $\mathrm{W}^{1, p}\left(\mathrm{~B}_{1}(0)\right)$ is such that for each $u \in X$ the trivial extension belongs to $\mathrm{W}^{1, p}\left(\mathbb{R}^{n}\right)$. Then $\mathrm{W}^{1, p}(\Omega)$ is compactly embedded into $\mathrm{L}^{1}(\Omega)$.
(c) There exists a functional $f \in\left(\ell^{\infty}\right)^{*}$ such that $f \neq 0$ and $f(x)=0$ for all $x \in X$, where $X:=\bigcup_{1 \leq p<\infty} \ell^{p}$.

Problem 3:

Let $(X,\|\cdot\|)$ be a real Banach space. Moreover, let $f, f_{1}, f_{2}, \ldots \in X^{*}$ and $x, x_{1}, x_{2}, \ldots \in$ X be such that

$$
f_{j} \stackrel{*}{\rightharpoonup} f \text { and } x_{j} \rightarrow x \quad \text { as } j \rightarrow \infty .
$$

Prove that $f_{j}\left(x_{j}\right) \rightarrow f(x)$ as $j \rightarrow \infty$.

Problem 4:
Let $a \in \mathbb{R}$ and define $u_{a}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
u_{a}(x):= \begin{cases}a e^{x} & x<\infty \\ 10 & x=0 \\ e^{-x} \cos (x) & x>0\end{cases}
$$

Determine the maximal set of a 's such that $u_{a} \in \mathrm{~W}^{1,1}(\mathbb{R})$.

