Functional Analysis & PDEs

*Dec 06, 2019*Dr. F. GMEINEDER

Functional Analysis Revision

Problem 1: 10 marks

Prove or disprove whether

$$X := \{x = (x_j) \in \ell^1(\mathbb{N}) \colon \sum_j x_j = 0\}$$

is dense in $(\ell^2(\mathbb{N}), \|\cdot\|_{\ell^2(\mathbb{N})})$.

Solution. Since $\ell^1 \subset \ell^2$ (also see the next problems), X is obviously a linear subspace of ℓ^2 . Suppose that X is not dense in \mathcal{H} . Then $\overline{X} \subsetneq \mathcal{H}$, and we find $z \in \mathcal{H} \setminus \overline{X}$. Since \overline{X} is closed, we may consider its orthogonal projection $\Pi(z)$ onto \overline{X} . Put $x := z - \Pi(z)$. Then $\langle x,y \rangle = \langle z,y \rangle - \langle \Pi(z),y \rangle = 0$ for all $y \in \overline{X}$. Clearly $x \neq 0$ as otherwise $z = \Pi(z)$ and so $z \in \overline{X}$. Therefore, there exists a non-zero $x = (x_j) \in \ell^2$ such that $\langle x,y \rangle = 0$ for all $y \in X$. Note that, for all $i \neq j$, $e_i - e_j \in X$, where $e_i = (\delta_{ik})_k$. Therefore, $\langle x, e_i - e_j \rangle = 0$. This implies

$$x_i = x_j$$
 for all $i \neq j$,

and since $x \neq 0$, $x_i = c \neq 0$. But then $x \notin \ell^2$, a contradiction.

Problem 2:

$$4 + 6 = 10 \text{ marks}$$

Let $1 \le p \le q \le \infty$.

- (a) Prove that $\ell^p(\mathbb{N}) \subset \ell^q(\mathbb{N})$.
- (b) Let $T: \ell^p(\mathbb{N}) \ni x \mapsto x \in \ell^q(\mathbb{N})$ be the injection underlying (a). Show that T is a bounded linear operator and compute its operator norm.

Solution. We prove both assertions simultaneously. Let $\xi = (\xi_j) \in \ell^p \setminus \{0\}$ and put $x := \xi/\|\xi\|_{\ell^p}$. Then, for any $j \in \mathbb{N}$,

$$|\xi_j| \le \left(\sum_i |\xi_i|^p\right)^{\frac{1}{p}} \Rightarrow \forall j \in \mathbb{N} \colon |x_j| \le 1.$$

Hence $|x_j|^q \le |x_j|^p$ for $q \ge p$. Thus, we have

$$\sum_{j} |x_j|^q \le \sum_{j} |x_j|^p = 1.$$

Therefore,

$$\frac{\|\xi\|_{\ell^q}}{\|\xi\|_{\ell^p}} = \|x\|_{\ell^q} \le 1.$$

Note that if $\xi = 0$, then there is nothing to prove. Hence $\ell^p(\mathbb{N}) \subset \ell^q(\mathbb{N})$, and the identity $\mathrm{Id} \colon \ell^p(\mathbb{N}) \hookrightarrow \ell^q(\mathbb{N})$ has operator norm at most one. One the other hand, consider $e_1 = (1,0,0,\ldots) \in \ell^p(\mathbb{N})$. Then $\mathrm{Id}(e_1) = e_1$, and $\|e_1\|_{\ell^q(\mathbb{N})} = 1$. Hence $\|\mathrm{Id}\|_{\ell^p \to \ell^q} = 1$.

Problem 3: 10 marks

Let $1 \leq q \leq \infty$. Prove that

$$\bigcup_{p < q} \ell^p(\mathbb{N}) \subsetneq \ell^q(\mathbb{N}).$$

Solution. By problem 2, we only have to establish that the inclusions are strict provided $1 \leq p < q \leq \infty$. If $q = \infty$, pick any $x = (x_j)$ which is bounded but does not converge to zero – then $x \notin \bigcup_{p < \infty} \ell^p(\mathbb{N})$. Now let $q < \infty$. Suppose that $\ell^q(\mathbb{N}) = \bigcup_{1 \leq p < q} \ell^p(\mathbb{N})$. We pick a sequence $(p_k) \subset [1, \infty)$ with $p_k \nearrow q$. Then

$$\bigcup_{p < q} \ell^p(\mathbb{N}) = \bigcup_{k \in \mathbb{N}} \ell^{p_k}(\mathbb{N}).$$

Indeed, if x belongs to the left-hand side, then there exists p < q with $x \in \ell^p(\mathbb{N})$. But $p_k \nearrow q$, so that there exists $k_0 \in \mathbb{N}$ with $p < p_{k_0}$ and hence $x \in \ell^{p_{k_0}}(\mathbb{N})$, and hence x belongs to the right-hand side, too. The other inclusion is trivial. Now put, for $N \in \mathbb{N}$,

$$\ell_N^{p_k}(\mathbb{N}) := \{ x \in \ell^{p_k}(\mathbb{N}) \colon \|x\|_{\ell^{p_k}} \le N \}. \tag{3.1}$$

First, $\ell_N^{p_k}(\mathbb{N})$ is closed (for $\|\cdot\|_{\ell^q}$). Indeed, let $x, x^1, x^2, \ldots \in \ell_N^{p_k}(\mathbb{N})$ such that $x^j \to x$ in $\ell^q(\mathbb{N})$. Then, by Fatou's lemma (on \mathbb{N} with the counting measure), $x_i^j \to x_i$ for all $i \in \mathbb{N}$. Therefore,

$$||x||_{\ell^{p_k}} \le \liminf_{j \to \infty} ||x^j||_{\ell^{p_k}} \le N.$$

Now, $\ell_N^{p_k}(\mathbb{N})$ is closed in $\ell^{p_k}(\mathbb{N})$ and, as a proper closed subset of $\ell^q(\mathbb{N})$, has empty interior. Note that $\ell^{p_k} \subsetneq \ell^q$ – indeed, pick $x = (\frac{1}{j^{\frac{1}{p_k}}})$. In conclusion,

$$\ell^q(\mathbb{N}) = \bigcup_{k=1}^{\infty} \bigcup_{N \in \mathbb{N}} \ell_N^{p_k}(\mathbb{N})$$

represents $\ell^q(\mathbb{N})$ as the countable union of nowhere dense sets (with respect to the $\ell^q(\mathbb{N})$ -norm) – a contradiction to Baire's theorem since $\ell^q(\mathbb{N})$ is Banach for $\|\cdot\|_{\ell^q(\mathbb{N})}$). The proof is complete.

Problem 4: 10 marks

Let C([0,1]) the space of continuous functions $u : [0,1] \to \mathbb{R}$, endowed with the usual supremum norm. Let $X \subset C([0,1])$ be a closed subspace of C([0,1]) for the supremum norm which satisfies

$$X\subset \bigcup_{0<\alpha\leq 1} \mathbf{C}^{0,\alpha}([0,1]).$$

Prove that $\dim(X) < \infty$.

Solution. We aim to show that all bounded sequences in $(X, \|\cdot\|)$ possess a convergent subsequence in $(X, \|\cdot\|_{\sup})$. By the compactness characterisation of finite dimensional spaces, this shall establish the claim.

To this end, we employ the Arzelá-Ascoli theorem. The underlying base space [0,1] is compact, ensuring the applicability of the latter theorem. Let $(f_i) \subset X$ be bounded. The Ascoli-Arzelá theorem requires equicontinuity, and so we must strive for equicontinuity first. We claim that there exist $\beta \in (0,1]$ and C > 0 such that for all $i \in \mathbb{N}$ and all $x, y \in [0,1]$ there holds

$$|f_i(x) - f_i(y)| \le C|x - y|^{\beta}.$$
 (4.1)

Now,

$$X = \bigcup_{\substack{n \in \mathbb{N} \\ j \in \mathbb{N}}} \{ u \in X \colon [u]_{\mathbf{C}^{0, \frac{1}{n}}} \le j \},$$

and the union on the right hand side over $n, j \in \mathbb{N}$ is countable. We now claim that each $X_{j,n} := \{u \in X \colon [u]_{\mathbb{C}^{0,\frac{1}{n}}} \leq j\}$ is closed in $(X, \|\cdot\|_{\sup})$. Let $\varphi_1, \ldots \in X_{j,n}$ and $\varphi \in \mathrm{C}([0,1])$ be such that $\varphi_k \to \varphi$ with respect to $\|\cdot\|_{\sup}$. Then there holds

$$|\varphi(x) - \varphi(y)| \leq |\varphi(x) - \varphi_k(x)| + |\varphi_k(x) - \varphi_k(y)| + |\varphi_k(y) - \varphi(y)|$$

$$\leq 2\|\varphi - \varphi_k\|_{\sup} + j|x - y|^{\frac{1}{n}}$$

$$\stackrel{k \to \infty}{\longrightarrow} j|x - y|^{\frac{1}{n}},$$

and hence $\varphi \in X_{j,n}$. Thus $X_{j,n}$ is closed in $(C([0,1]), \|\cdot\|_{\sup})$. As a closed subspace of $C([0,1]), (X, \|\cdot\|_{\sup})$ is Banach in its own right. Therefore, by Baire, there must exist $(n,j) \in \mathbb{N} \times \mathbb{N}$ such that $X_{j,n}$ has non-empty interior. This, in particular, means that there exists $\varphi_0 \in X_{j,n}$ and $\varepsilon > 0$ such that $B(\varphi_0, \varepsilon) \subset X_{j,n}^{\circ}$. Now let $\varphi \in X \setminus \{0\}$. Then $\varphi_0 + \delta \varphi \in B(\varphi_0, \varepsilon)$ for any $0 < \delta < \frac{\varepsilon}{\|\varphi\|_{\sup}}$. In consequence, we find for all $x, y \in [0, 1]$:

$$\begin{aligned} |\varphi(x) - \varphi(y)| &= \frac{1}{\delta} |\delta \varphi(x) - \delta \varphi(y)| \\ &\leq \frac{1}{\delta} |\delta \varphi(x) + \varphi_0(x) - \delta \varphi(y) - \varphi_0(y)| + \frac{1}{\delta} |\varphi_0(x) - \varphi_0(y)| \\ &\leq \frac{2j}{\delta} |x - y|^{\frac{1}{n}}. \end{aligned}$$

Hence, sending $\delta \nearrow \frac{\varepsilon}{\|\varphi\|_{\sup}}$, we find

$$|\varphi(x) - \varphi(y)| \le \frac{2j}{\varepsilon} \|\varphi\|_{\sup} |x - y|^{\frac{1}{n}}. \tag{4.2}$$

Coming back to the original task: Let $(f_i) \subset X$ be bounded for $\|\cdot\|_{\sup}$. Then $\sup_i \|f_i\|_{\sup} < \infty$. Estimate (4.2) entails that (4.1) is satisfied with the particular choice $C = \frac{2j}{\varepsilon} \sup_i \|f_i\|_{\sup} < \infty$. So (f_i) is equicontinuous and bounded, hence relatively compact in C([0,1]), and since it is closed by assumption, there exists $f \in C([0,1])$ such that $f_{i(j)} \to f$ in C([0,1]) for a suitable subsequence. In conclusion, $\dim(X) < \infty$ and the proof is complete.

Problem 5: 10 marks

Let \mathcal{H} be separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$. Let (e_j) be an orthonormal basis for \mathcal{H} and let (x_n) be a sequence in \mathcal{H} . Prove that the following are equivalent:

- (a) For all $f \in \mathcal{H}^*$ there holds $f(x_n) \to 0$ as $n \to \infty$.
- (b) For all $j \in \mathbb{N}$ there holds $\langle e_j, x_n \rangle \to 0$ as $n \to \infty$ and $\sup_{n \in \mathbb{N}} ||x_n|| < \infty$.

Solution. Ad (a) \Rightarrow (b). Fix $j \in \mathbb{N}$. Then $\langle e_j, \cdot \rangle \in \mathcal{H}^*$ by Cauchy-Schwarz, and hence $\langle e_j, x_n \rangle \to 0$ by (a). For the second part, we employ the uniform boundedness principle. Define $\Phi_n \in \mathcal{H}^{**}$ via $\Phi_n \colon \mathcal{H}^* \ni f \mapsto f(x_n)$. Then, by the Riesz representation theorem, $\|\Phi_n\|_{\mathcal{H}^{**}} = \|x_n\|_{\mathcal{H}}$. The assumption from (a) implies that $\sup_{n \in \mathbb{N}} |\Phi_n(f)| < \infty$ for any $f \in \mathcal{H}^*$, and hence, by the uniform boundedness principle, $\sup_{n \in \mathbb{N}} \|\Phi_n\| < \infty$. Since $\|\Phi_n\| = \|x_n\|$, (b) follows at once.

Ad (b) \Rightarrow (a). Since \mathcal{H} is separable, it possesses a countable orthonormal basis (e_j) . By the Riesz representation theorem, any $f \in \mathcal{H}^*$ can be represented as $f(x) = \langle x, y \rangle$ for some $y \in \mathcal{H}$; without loss of generality, $y \neq 0$ as otherwise there is nothing to prove. Express $y = \sum_j \langle y, e_j \rangle e_j$. Now, for any $N \in \mathbb{N}$,

$$\begin{split} f(x_n) &= \langle y, x_n \rangle = \sum_j \langle y, e_j \rangle \langle e_j, x_n \rangle \\ &= \sum_{j \leq N} \langle y, e_j \rangle \langle e_j, x_n \rangle + \sum_{j \geq N} \langle y, e_j \rangle \langle e_j, x_n \rangle \\ &= \sum_{j \leq N} \langle y, e_j \rangle \langle e_j, x_n \rangle + \left\langle \sum_{j \geq N} \langle y, e_j \rangle e_j, x_n \right\rangle \end{split}$$

Let $\varepsilon > 0$ be arbitrary. Then we find with $L := \sup_{n \in \mathbb{N}} ||x_n||$ (which is finite by the second hypothesis of (b)),

$$\exists N_0 \in \mathbb{N}: \| \sum_{j>N_0} \langle y, e_j \rangle e_j \| < \frac{\varepsilon}{2L}.$$

To make this precise, note that by Bessel's inequality,

$$\|\sum_{j\geq N_0} \langle y, e_j \rangle e_j\|^2 \leq \sum_{j\geq N_0} |\langle y, e_j \rangle|^2 \leq \|y\|^2 < \infty,$$

and so the existence of such a number N_0 follows (the mid series is absolutely summable). On the other hand, by the first hypothesis of (b), we find $n_1 \in \mathbb{N}$ such that for all $j \in \{1, ..., N_0\}$ and $n \geq n_1$ there holds

$$|\langle e_j, x_n \rangle| \le \frac{1}{2N_0 ||y||} \varepsilon.$$

In conclusion, for all $n \geq n_1$ there holds

$$|f(x_n)| \le \left(\sum_{1 \le j \le N_0} |\langle y, e_j \rangle| \right) \max_{1 \le j \le N_0} |\langle e_j, x_n \rangle| + \frac{\varepsilon}{2}$$
$$\le \frac{N_0 \|y\|}{2N_0 \|y\|} \varepsilon + \frac{\varepsilon}{2} = \varepsilon.$$

This is (a), and the proof is complete.