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Functional Analysis Revision

Problem 1: 10 marks

Prove or disprove whether

X := {x = (xj) ∈ `1(N) :
∑
j

xj = 0}

is dense in (`2(N), ‖ · ‖`2(N)).

Solution. Since `1 ⊂ `2 (also see the next problems), X is obviously a linear subspace
of `2. Suppose that X is not dense in H. Then X ( H, and we find z ∈ H\X. Since X
is closed, we may consider its orthogonal projection Π(z) onto X. Put x := z −Π(z).
Then 〈x, y〉 = 〈z, y〉−〈Π(z), y〉 = 0 for all y ∈ X. Clearly x 6= 0 as otherwise z = Π(z)
and so z ∈ X. Therefore, there exists a non-zero x = (xj) ∈ `2 such that 〈x, y〉 = 0
for all y ∈ X. Note that, for all i 6= j, ei − ej ∈ X, where ei = (δik)k. Therefore,
〈x, ei − ej〉 = 0. This implies

xi = xj for all i 6= j,

and since x 6= 0, xi = c 6= 0. But then x /∈ `2, a contradiction. �



Problem 2: 4 + 6 = 10 marks

Let 1 ≤ p ≤ q ≤ ∞.

(a) Prove that `p(N) ⊂ `q(N).

(b) Let T : `p(N) 3 x 7→ x ∈ `q(N) be the injection underlying (a). Show that T is
a bounded linear operator and compute its operator norm.

Solution. We prove both assertions simultaneously. Let ξ = (ξj) ∈ `p \ {0} and put
x := ξ/‖ξ‖`p . Then, for any j ∈ N,

|ξj | ≤
(∑

i

|ξi|p
) 1

p ⇒ ∀j ∈ N : |xj | ≤ 1.

Hence |xj |q ≤ |xj |p for q ≥ p. Thus, we have∑
j

|xj |q ≤
∑
j

|xj |p = 1.

Therefore,

‖ξ‖`q
‖ξ‖`p

= ‖x‖`q ≤ 1.

Note that if ξ = 0, then there is nothing to prove. Hence `p(N) ⊂ `q(N), and the
identity Id: `p(N) ↪→ `q(N) has operator norm at most one. One the other hand,
consider e1 = (1, 0, 0, ....) ∈ `p(N). Then Id(e1) = e1, and ‖e1‖`q(N) = 1. Hence
‖Id‖`p→`q = 1. �



Problem 3: 10 marks

Let 1 ≤ q ≤ ∞. Prove that ⋃
p<q

`p(N) ( `q(N).

Solution. By problem 2, we only have to establish that the inclusions are strict
provided 1 ≤ p < q ≤ ∞. If q = ∞, pick any x = (xj) which is bounded but
does not converge to zero – then x /∈

⋃
p<∞ `p(N). Now let q < ∞. Suppose that

`q(N) =
⋃

1≤p<q `
p(N). We pick a sequence (pk) ⊂ [1,∞) with pk ↗ q. Then⋃

p<q

`p(N) =
⋃
k∈N

`pk(N).

Indeed, if x belongs to the left-hand side, then there exists p < q with x ∈ `p(N).
But pk ↗ q, so that there exists k0 ∈ N with p < pk0 and hence x ∈ `pk0 (N), and
hence x belongs to the right-hand side, too. The other inclusion is trivial. Now put,
for N ∈ N,

`pkN (N) := {x ∈ `pk(N) : ‖x‖`pk ≤ N}. (3.1)

First, `pkN (N) is closed (for ‖ · ‖`q ). Indeed, let x, x1, x2, ... ∈ `pkN (N) such that xj → x

in `q(N). Then, by Fatou’s lemma (on N with the counting measure), xji → xi for all
i ∈ N. Therefore,

‖x‖`pk ≤ lim inf
j→∞

‖xj‖`pk ≤ N.

Now, `pkN (N) is closed in `pk(N) and, as a proper closed subset of `q(N), has empty
interior. Note that `pk ( `q – indeed, pick x = ( 1

j
1
pk

). In conclusion,

`q(N) =

∞⋃
k=1

⋃
N∈N

`pkN (N)

represents `q(N) as the countable union of nowhere dense sets (with respect to the
`q(N)-norm) – a contradiction to Baire’s theorem since `q(N) is Banach for ‖ · ‖`q(N)).
The proof is complete. �



Problem 4: 10 marks

Let C([0, 1]) the space of continuous functions u : [0, 1]→ R, endowed with the usual
supremum norm. Let X ⊂ C([0, 1]) be a closed subspace of C([0, 1]) for the supremum
norm which satisfies

X ⊂
⋃

0<α≤1

C0,α([0, 1]).

Prove that dim(X) <∞.

Solution. We aim to show that all bounded sequences in (X, ‖·‖) possess a convergent
subsequence in (X, ‖·‖sup). By the compactness characterisation of finite dimensional
spaces, this shall establish the claim.
To this end, we employ the Arzelá-Ascoli theorem. The underlying base space [0, 1] is
compact, ensuring the applicability of the latter theorem. Let (fi) ⊂ X be bounded.
The Ascoli-Arzelá theorem requires equicontinuity, and so we must strive for equicon-
tinuity first. We claim that there exist β ∈ (0, 1] and C > 0 such that for all i ∈ N
and all x, y ∈ [0, 1] there holds

|fi(x)− fi(y)| ≤ C|x− y|β . (4.1)

Now,

X =
⋃
n∈N
j∈N

{u ∈ X : [u]
C0, 1

n
≤ j},

and the union on the right hand side over n, j ∈ N is countable. We now claim that
each Xj,n := {u ∈ X : [u]

C0, 1
n
≤ j} is closed in (X, ‖ · ‖sup). Let ϕ1, ... ∈ Xj,n and

ϕ ∈ C([0, 1]) be such that ϕk → ϕ with respect to ‖ · ‖sup. Then there holds

|ϕ(x)− ϕ(y)| ≤ |ϕ(x)− ϕk(x)|+ |ϕk(x)− ϕk(y)|+ |ϕk(y)− ϕ(y)|

≤ 2‖ϕ− ϕk‖sup + j|x− y| 1n
k→∞−→ j|x− y| 1n ,

and hence ϕ ∈ Xj,n. Thus Xj,n is closed in (C([0, 1]), ‖ · ‖sup). As a closed subspace of
C([0, 1]), (X, ‖ · ‖sup) is Banach in its own right. Therefore, by Baire, there must exist
(n, j) ∈ N×N such that Xj,n has non-empty interior. This, in particular, means that
there exists ϕ0 ∈ Xj,n and ε > 0 such that B(ϕ0, ε) ⊂ X◦j,n. Now let ϕ ∈ X \ {0}.
Then ϕ0 + δϕ ∈ B(ϕ0, ε) for any 0 < δ < ε

‖ϕ‖sup . In consequence, we find for all

x, y ∈ [0, 1]:

|ϕ(x)− ϕ(y)| = 1

δ
|δϕ(x)− δϕ(y)|

≤ 1

δ
|δϕ(x) + ϕ0(x)− δϕ(y)− ϕ0(y)|+ 1

δ
|ϕ0(x)− ϕ0(y)|

≤ 2j

δ
|x− y| 1n .

Hence, sending δ ↗ ε
‖ϕ‖sup

, we find

|ϕ(x)− ϕ(y)| ≤ 2j

ε
‖ϕ‖sup|x− y|

1
n . (4.2)

Coming back to the original task: Let (fi) ⊂ X be bounded for ‖ · ‖sup. Then
supi ‖fi‖sup <∞. Estimate (4.2) entails that (4.1) is satisfied with the particular choi-
ce C = 2j

ε supi ‖fi‖sup <∞. So (fi) is equicontinuous and bounded, hence relatively
compact in C([0, 1]), and since it is closed by assumption, there exists f ∈ C([0, 1])
such that fi(j) → f in C([0, 1]) for a suitable subsequence. In conclusion, dim(X) <∞
and the proof is complete. �



Problem 5: 10 marks

Let H be separable Hilbert space with inner product 〈·, ·〉 and the induced norm ‖ · ‖.
Let (ej) be an orthonormal basis for H and let (xn) be a sequence in H. Prove that
the following are equivalent:

(a) For all f ∈ H∗ there holds f(xn)→ 0 as n→∞.

(b) For all j ∈ N there holds 〈ej , xn〉 → 0 as n→∞ and supn∈N ‖xn‖ <∞.

Solution. Ad (a)⇒(b). Fix j ∈ N. Then 〈ej , ·〉 ∈ H∗ by Cauchy-Schwarz, and hence
〈ej , xn〉 → 0 by (a). For the second part, we employ the uniform boundedness
principle. Define Φn ∈ H∗∗ via Φn : H∗ 3 f 7→ f(xn). Then, by the Riesz re-
presentation theorem, ‖Φn‖H∗∗ = ‖xn‖H. The assumption from (a) implies that
supn∈N |Φn(f)| <∞ for any f ∈ H∗, and hence, by the uniform boundedness princi-
ple, supn∈N ‖Φn‖ <∞. Since ‖Φn‖ = ‖xn‖, (b) follows at once.
Ad (b)⇒(a). Since H is separable, it possesses a countable orthonormal basis (ej). By
the Riesz representation theorem, any f ∈ H∗ can be represented as f(x) = 〈x, y〉 for
some y ∈ H; without loss of generality, y 6= 0 as otherwise there is nothing to prove.
Express y =

∑
j〈y, ej〉ej . Now, for any N ∈ N,

f(xn) = 〈y, xn〉 =
∑
j

〈y, ej〉〈ej , xn〉

=
∑
j≤N

〈y, ej〉〈ej , xn〉+
∑
j≥N

〈y, ej〉〈ej , xn〉

=
∑
j≤N

〈y, ej〉〈ej , xn〉+

〈∑
j≥N

〈y, ej〉ej , xn

〉

Let ε > 0 be arbitrary. Then we find with L := supn∈N ‖xn‖ (which is finite by the
second hypothesis of (b)),

∃N0 ∈ N : ‖
∑
j≥N0

〈y, ej〉ej‖ <
ε

2L
.

To make this precise, note that by Bessel’s inequality,

‖
∑
j≥N0

〈y, ej〉ej‖2 ≤
∑
j≥N0

|〈y, ej〉|2 ≤ ‖y‖2 <∞,

and so the existence of such a number N0 follows (the mid series is absolutely sum-
mable). On the other hand, by the first hypothesis of (b), we find n1 ∈ N such that
for all j ∈ {1, ..., N0} and n ≥ n1 there holds

|〈ej , xn〉| ≤
1

2N0‖y‖
ε.

In conclusion, for all n ≥ n1 there holds

|f(xn)| ≤
( ∑

1≤j≤N0

|〈y, ej〉|
)

max
1≤j≤N0

|〈ej , xn〉|+
ε

2

≤ N0‖y‖
2N0‖y‖

ε+
ε

2
= ε.

This is (a), and the proof is complete. �


