ON CRITICAL L ${ }^{p}$-DIFFERENTIABILITY OF BD-MAPS

FRANZ GMEINEDER AND BOGDAN RAITA

Abstract

We prove that functions of locally bounded deformation on \mathbb{R}^{n} are $L^{\frac{n}{n-1}}$-differentiable \mathcal{L}^{n}-almost everywhere. More generally, we show that this critical L^{p}-differentiability result holds for functions of locally bounded \mathbb{A}-variation, provided that the first order, homogeneous differential operator \mathbb{A} has finite dimensional null-space.

1. Introduction

Approximate differentiability properties of weakly differentiable functions are reasonably well understood. Namely, it is well-known that maps in $\mathrm{W}_{\mathrm{loc}}^{1, p}\left(\mathbb{R}^{n}, \mathbb{R}^{N}\right)$ are $\mathrm{L}^{p^{*}}$-differentiable \mathcal{L}^{n}-a.e. in \mathbb{R}^{n}, where $1 \leqslant p<n, p^{*}:=n p /(n-p)$ (see, e.g., [5, Thm 6.2]). We recall that a map $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ is L^{q}-approximately differentiable at $x \in \mathbb{R}^{n}$ if and only if there exists a matrix $M \in \mathbb{R}^{N \times n}$ such that

$$
\left(f_{\mathrm{B}_{r}(x)}|u(y)-u(x)-M(y-x)|^{q} \mathrm{~d} y\right)^{\frac{1}{q}}=o(r)
$$

as $r \downarrow 0$, whence, in particular, u is approximately differentiable at x with approximate gradient M (see Section 2 for precise definitions). For $p=1$ one can show in addition that maps $u \in \mathrm{BV}_{\text {loc }}\left(\mathbb{R}^{n}, \mathbb{R}^{N}\right)$ are $\mathrm{L}^{1^{*}}$-differentiable \mathcal{L}^{n}-a.e. with the approximate gradient equal \mathcal{L}^{n}-a.e. to the absolutely continuous part of $\mathrm{D} u$ ([5, Thm. 6.1, 6.4]). It is natural to ask a similar question of the space $\operatorname{BD}\left(\mathbb{R}^{n}\right)$ of functions of bounded deformation, i.e., of $\mathrm{L}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$-maps u such that the symmetric part $\mathcal{E} u$ of their distributional gradient is a bounded measure. The situation in this case is significantly more complicated, since, for example, we have $\mathrm{BV}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \subsetneq \mathrm{BD}\left(\mathbb{R}^{n}\right)$ by the so-called Ornstein's Non-inequality $[4,8,10]$; equivalently, there are maps $u \in \operatorname{BD}\left(\mathbb{R}^{n}\right)$ for which the full distributional gradient $\mathrm{D} u$ is not a Radon measure, so one cannot easily retrieve the approximate gradient of u from the absolutely continuous part of $\mathcal{E} u$ with respect to \mathcal{L}^{n}. It is however possible to recover u from $\mathcal{E} u$ via convolution with a $(1-n)$-homogeneous kernel (cp. Lemma 2.1). HajŁasz used this observation and a Marcinkiewicz-type characterisation of approximate differentiability to show approximate differentiability \mathcal{L}^{n}-a.e. of BD-functions ([7, Cor. 1]). This result was improved in [2, Thm. 7.4] to L^{1}-differentiability \mathcal{L}^{n}-a.e. by Ambrosio, Coscia, and Dal Maso, using the precise Korn-Poincaré Inequality of Kohn [9]. It was only recently when Alberti, Bianchini, and Crippa generalized the approach in [7], obtaining L ${ }^{q}$ differentiability of BD -maps for $1 \leqslant q<1^{*}$ (see [1, Thm. 3.4, Prop. 4.3]). It is, however, unclear whether the critical exponent $q=1^{*}$ can be reached using the Calderón-Zygmund-type approach in [1].

[^0]In the present paper, we settle the question in [1, Rk. 4.5.(v)] of optimal differentiability of BD-maps in the positive (see Corollary 1.2). Although reminiscent of the elaborate estimates in [2, Sec. 7], our proof is rather straightforward. The key observation is to replace Kohn's Poincaré-Korn Inequality with the more abstract Korn-Sobolev Inequality due to Strang and Temam [12, Prop. 2.4], combined with ideas developed recently by the authors in [6]. In fact, we shall prove $\mathrm{L}^{n /(n-1)}$-differentiability of maps of bounded \mathbb{A}-variation (as introduced in [3, Sec. 2.2]), provided that \mathbb{A} has finite dimensional null-space.

To formally state our main result, we pause to introduce some terminology and notation. Let \mathbb{A} be a linear, first order, homogeneous differential operator with constant coefficients on \mathbb{R}^{n} from V to W, i.e.,

$$
\begin{equation*}
\mathbb{A} u=\sum_{j=1} A_{j} \partial_{j} u, \quad u: \mathbb{R}^{n} \rightarrow V \tag{1.1}
\end{equation*}
$$

where $A_{j} \in \mathscr{L}(V, W)$ are fixed linear mappings between two finite dimensional real vector spaces V and W. For an open set $\Omega \subset \mathbb{R}^{n}$, we define $\operatorname{BV}^{\mathbb{A}}(\Omega)$ as the space of $u \in \mathrm{~L}^{1}(\Omega, V)$ such that $\mathbb{A} u$ is a W-valued Radon measure. We say that \mathbb{A} has $F D N$ (finite dimensional null-space) if the vector space $\left\{u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}, V\right): \mathbb{A} u=0\right\}$ is finite dimensional. Using the main result in [6, Thm. 1.1], we will prove that FDN is sufficient to obtain a Korn-Sobolev-type inequality

$$
\begin{equation*}
\left(f_{\mathrm{B}_{r}}\left|u-\pi_{\mathrm{B}_{r}} u\right|^{\frac{n}{n-1}} \mathrm{~d} x\right)^{\frac{n-1}{n}} \leqslant c r f_{\mathrm{B}_{r}}|\mathbb{A} u| \mathrm{d} x \tag{1.2}
\end{equation*}
$$

for all $u \in \mathrm{C}^{\infty}\left(\overline{\mathrm{B}}_{r}, V\right)$. Here π denotes a suitable bounded projection on the nullspace of \mathbb{A}, as described in [3, Sec. 3.1]. This is our main ingredient to prove the following:
Theorem 1.1. Let \mathbb{A} as in (1.1) have $F D N$, $u \in \mathrm{BV}_{\mathrm{loc}}^{\mathbb{A}}\left(\mathbb{R}^{n}\right)$. Then u is $\mathrm{L}^{n /(n-1)}-$ differentiable at x for \mathcal{L}^{n}-a.e. $x \in \mathbb{R}^{n}$.

Our example of interest is $\mathrm{BD}:=\mathrm{BV}^{\mathcal{E}}$, where $\mathcal{E} u:=\left(\mathrm{D} u+(\mathrm{D} u)^{\mathrm{T}}\right) / 2$ for $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. It is well known that the null-space of \mathcal{E} consists of rigid motions, i.e., affine maps of anti-symmetric gradient. In particular, \mathcal{E} has FDN.

Corollary 1.2. Let $u \in \mathrm{BD}_{\mathrm{loc}}\left(\mathbb{R}^{n}\right)$. Then u is $\mathrm{L}^{n /(n-1)}$-differentiable \mathcal{L}^{n}-a.e.
This paper is organized as follows: In Section 2 we collect some notation and definitions, mainly those of approximate and L^{p}-differentiability, present the main result in [1], collect a few results on \mathbb{A}-weakly differentiable functions from [3, 6], and prove the inequality (1.2). In Section 3 we give a brief proof of Theorem 1.1.

Acknowledgement. The authors wish to thank Jan Kristensen for reading a preliminary version of the paper. The second author was supported by Engineering and Physical Sciences Research Council Award EP/L015811/1.

2. Preliminaries

An operator \mathbb{A} as in (1.1) can also be seen as $\mathbb{A} u=A(\mathrm{D} u)$ for $u: \mathbb{R}^{n} \rightarrow V$, where $A \in \mathscr{L}\left(V \otimes \mathbb{R}^{n}, W\right)$. We recall that such an operator has a Fourier symbol map

$$
\mathbb{A}[\xi] v=\sum_{j=1}^{n} \xi_{j} A_{j} v
$$

defined for $\xi \in \mathbb{R}^{n}$ and $v \in V$. An operator \mathbb{A} is said to be elliptic if and only if for all non-zero ξ, the maps $\mathbb{A}[\xi] \in \mathscr{L}(V, W)$ are injective. By considering the maps

$$
u_{f}(x):=f(x \cdot \xi) v
$$

for functions $f \in \mathrm{C}^{1}(\mathbb{R})$, it is easy to see that if \mathbb{A} has FDN , then \mathbb{A} is necessarily elliptic. Ellipticity is in fact equivalent with one-sided invertibility of \mathbb{A} in Fourier space; more precisely, the equation $\mathbb{A} u=f$ can be uniquely solved for $u \in \mathscr{S}\left(\mathbb{R}^{n}, V\right)$ whenever $f \in \mathscr{S}\left(\mathbb{R}^{n}, W\right) \cap \operatorname{imA}$. One has:
Lemma 2.1. Let \mathbb{A} be elliptic. There exists a convolution kernel $K^{\mathbb{A}} \in \mathrm{C}^{\infty}\left(\mathbb{R}^{n} \backslash\right.$ $\{0\}, \mathscr{L}(W, V))$ which is $(1-n)$-homogeneous such that $u=K^{\mathbb{A}} * \mathbb{A} u$ for all $u \in$ $\mathscr{S}\left(\mathbb{R}^{n}, V\right)$.

For a proof of this fact, see, e.g., [6, Lem. 2.1]. We next define, for open $\Omega \subset \mathbb{R}^{n}$ (often a ball $\mathrm{B}_{r}(x)$), the space

$$
\operatorname{BV}^{\mathbb{A}}(\Omega):=\left\{u \in \mathrm{~L}^{1}(\Omega, V): \mathbb{A} u \in \mathcal{M}(\Omega, W)\right\}
$$

of maps of bounded \mathbb{A}-variation, which is a Banach space under the obvious norm. By the Radon-Nikodym Theorem $\mathbb{A} u$ has the decomposition

$$
\mathbb{A} u=\mathbb{A}^{a c} u \mathcal{L}^{n} L \Omega+\mathbb{A}^{s} u:=\frac{\mathrm{d} \mathbb{A} u}{\mathrm{~d} \mathcal{L}^{n}} \mathcal{L}^{n} L \Omega+\frac{\mathrm{d} \mathbb{A}^{s} u}{\mathrm{~d}\left|\mathbb{A}^{s} u\right|}\left|\mathbb{A}^{s} u\right|
$$

with respect to \mathcal{L}^{n}. Here $|\cdot|$ denotes the total variation semi-norm. We next see that ellipticity of \mathbb{A} implies sub-critical L^{p}-differentiability. We denote averaged integrals by $f_{\Omega}:=\mathcal{L}^{n}(\Omega)^{-1} \int_{\Omega}$ or by $(\cdot)_{x, r}$ if $\Omega=\mathrm{B}_{r}(x)$, the ball of radius $r>0$ centred at $x \in \mathbb{R}^{n}$.
Definition 2.2. A measurable map $u: \mathbb{R}^{n} \rightarrow V$ is said to be

- approximately differentiable at $x \in \mathbb{R}^{n}$ if there exists a matrix $M \in V \otimes \mathbb{R}^{n}$ such that

$$
\operatorname{ap}_{y \rightarrow x} \lim _{x \rightarrow} \frac{|u(y)-u(x)-M(y-x)|}{|y-x|}=0
$$

- L^{p}-differentiable at $x \in \mathbb{R}^{n}, 1 \leqslant p<\infty$ if there exists a matrix $M \in V \otimes \mathbb{R}^{n}$ such that

$$
\left(f_{\mathrm{B}_{r}(x)}|u(y)-u(x)-M(y-x)|^{p} \mathrm{~d} y\right)^{\frac{1}{p}}=o(r)
$$

as $r \downarrow 0$.
We say that $\nabla u(x):=M$ is the approximate gradient of u at x.
We should also recall that

$$
v=\operatorname{ap} \lim _{y \rightarrow x} u(y) \Longleftrightarrow \forall \varepsilon>0, \lim _{r \downarrow 0} r^{-n} \mathcal{L}^{n}\left(\left\{y \in \mathrm{~B}_{r}(x):|u(y)-v|>\varepsilon\right\}\right)=0,
$$

where $x \in \mathbb{R}^{n}$ and $u: \mathbb{R}^{n} \rightarrow V$ is measurable. In the terminology of $[1$, Sec. 2.2], we can alternatively say that u is L^{p}-differentiable at x if

$$
\begin{equation*}
u(y)=\nabla u(x)(y-x)+u(x)+R_{x}(y) \tag{2.1}
\end{equation*}
$$

where $\left(\left|R_{x}\right|^{p}\right)_{x, r}=o\left(r^{p}\right)$ as $r \downarrow 0$. We will refer to the decomposition (2.1) as a first order L^{p}-Taylor expansion of u about x.
Theorem 2.3 ([1, Thm. 3.4]). Let $K \in \mathrm{C}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ be $(1-n)$-homogeneous, and $\mu \in \mathcal{M}\left(\mathbb{R}^{n}\right)$ be a bounded measure. Then $u:=K * \mu$ is L^{p}-differentiable \mathcal{L}^{n}-a.e. for all $1 \leqslant p<n /(n-1)$.

As a consequence of Lemma 2.1 and Theorem 2.3, we have that if \mathbb{A} is elliptic, then maps in $\mathrm{BV}^{\mathbb{A}}\left(\mathbb{R}^{n}\right)$ are L^{p}-differentiable \mathcal{L}^{n}-a.e. for $1 \leqslant p<n /(n-1)$ (cp. Lemma 3.1). Ellipticity, however, is insufficient to reach the critical exponent. In Theorem 1.1, we show that FDN is a sufficient condition for the critical $\mathrm{L}^{n /(n-1)}$ differentiability. The following is essentially proved in [11], and is discussed at length in [3, 6]. We will, however, sketch an elementary proof for the interested reader.

Lemma 2.4. Let \mathbb{A} as in (1.1) have $F D N$. Then there exists $l \in \mathbb{N}$ such that null-space elements of \mathbb{A} are polynomials of degree at most l.
Sketch. One can show by standard arguments that if \mathbb{A} is elliptic and $\mathbb{A} u=0$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{n}, V\right)$, then u is in fact analytic. If u is not a polynomial, then one can write u as an infinite sum of homogeneous polynomials and identify coefficients, thereby obtaining infinitely many linearly independent (homogeneous) polynomials in the null-space of \mathbb{A}. Then the kernel consists of polynomials, which must have a maximal degree, otherwise \mathbb{A} fails to have FDN.

We next provide a Sobolev-Poincaré-type inequality which, in the \mathbb{A}-setting, follows from the recent work [6] and is the main ingredient in the proof of Theorem 1.1. Following [3, Sec. 3.1], we define for \mathbb{A} with FDN, $\pi_{B}: \mathrm{C}^{\infty} \cap \mathrm{BV}^{\mathbb{A}}(\mathrm{B}) \rightarrow$ $\operatorname{ker} \mathbb{A} \cap \mathrm{L}^{2}(\mathrm{~B}, V)$ as the L^{2}-projection onto $\operatorname{ker} \mathbb{A}$.

Proposition 2.5 (Poincaré-Sobolev-type Inequality). Let \mathbb{A} as in (1.1) have FDN. Then (1.2) holds. Moreover, there exists $c>0$ such that

$$
\left(f_{\mathrm{B}_{r}(x)}\left|u-\pi_{\mathrm{B}_{r}(x)} u\right|^{\frac{n}{n-1}} \mathrm{~d} y\right)^{\frac{n-1}{n}} \leqslant c r^{1-n}|\mathbb{A} u|\left(\overline{\mathrm{B}_{r}(x)}\right) .
$$

for all $u \in \operatorname{BV}_{\text {loc }}^{\mathbb{A}}\left(\mathbb{R}^{n}\right), x \in \mathbb{R}^{n}, r>0$.
Proof. By smooth approximation ([3, Thm. 2.8]), it suffices to prove (1.2). Since $\pi_{\mathrm{B}_{r}(x)}$ is linear, we can assume that $r=1, x=0$. The result then follows by scaling and translation. We abbreviate $\mathrm{B}:=\mathrm{B}_{1}(0)$. By [6, Thm. 1.1] we have that

$$
\left(\int_{\mathrm{B}}\left|u-\pi_{\mathrm{B}} u\right|^{\frac{n}{n-1}} \mathrm{~d} y\right)^{\frac{n-1}{n}} \leqslant c\left(\int_{\mathrm{B}}|\mathbb{A} u|+\left|u-\pi_{\mathrm{B}} u\right| \mathrm{d} y\right) \leqslant c \int_{\mathrm{B}}|\mathbb{A} u| \mathrm{d} y
$$

where for the second estimate we use the Poincaré-type inequality in [3, Thm. 3.2]. The proof is complete.

We conclude this section with a simple technical Lemma:
Lemma 2.6. Let $l \in \mathbb{N}$. There exists a constant $c>0$ independent of any ball $\mathrm{B} \subset \mathbb{R}^{n}$ such that

$$
\begin{equation*}
\sup _{y \in \mathrm{~B}}|P(y)| \leqslant c f_{\mathrm{B}}|P(y)| \mathrm{d} y \tag{2.2}
\end{equation*}
$$

for any polynomial of degree at most l.
Proof. The space the polynomials of degree at most l restricted on the unit ball is finite dimensional, hence the L^{∞} and L^{1} norms are equivalent. In particular, (2.2) holds for $\mathrm{B}=\mathrm{B}_{1}(0)$. Consider $\mathrm{B}:=\mathrm{B}_{r}(x)$. Then

$$
\sup _{y \in \mathrm{~B}}|P(y)|=\sup _{z \in \mathrm{~B}_{1}(0)}|P(x+r z)| \leqslant c f_{\mathrm{B}_{1}(0)}|P(x+r z)| \mathrm{d} z=c f_{\mathrm{B}_{r}(x)}|P(y)| \mathrm{d} y,
$$

since $P(x+r \cdot)$ are polynomials of degree at most l. The proof is complete.

3. Proof of Theorem 1.1

We begin by proving sub-critical L^{p}-differentiability of $u \in \mathrm{BV}^{\mathbb{A}}$ for elliptic $\mathbb{A}(c p .[7$, Thm. 5]). We also provide a formula that enables us to retrieve the absolutely continuous part of $\mathbb{A} u$ from the approximate gradient. This formula respects the algebraic structure of \mathbb{A}, generalizing the result for BD in $[2, \mathrm{Rk} .7 .5]$.

Lemma 3.1. If \mathbb{A} is elliptic, then any map $u \in \mathrm{BV}^{\mathbb{A}}\left(\mathbb{R}^{n}\right)$ is L^{p}-differentiable \mathcal{L}^{n}-a.e. for all $1 \leqslant p<n /(n-1)$. Moreover, we have that

$$
\begin{equation*}
\frac{\mathrm{d} \mathbb{A} u}{\mathrm{~d} \mathcal{L}^{n}}(x)=A(\nabla u(x)) \tag{3.1}
\end{equation*}
$$

for \mathcal{L}^{n}-a.e $x \in \mathbb{R}^{n}$.
Proof. By Lemma 2.1, we can write the components $u_{i}=K_{i j}^{\mathbb{A}} *(\mathbb{A} u)_{j}$, where summation over repeated indices is adopted. We then note that $K_{i j}^{\mathbb{A}}$ satisfies the assumptions of Theorem 2.3, hence each component u_{i} is L^{p}-differentiable \mathcal{L}^{n}-a.e. for $1 \leqslant p<n /(n-1)$.

We next let $u \in \mathrm{BV}^{\mathbb{A}}\left(\mathbb{R}^{n}\right)$ and $x \in \mathbb{R}^{n}$ be a Lebesgue point of u and $\mathbb{A}^{a c} u$, and also a point of L^{1}-differentiability of u. We also consider a sequence $\left(\eta_{\varepsilon}\right)_{\varepsilon>0}$ of standard mollifiers, i.e., $\eta_{1} \in \mathrm{C}_{c}^{\infty}\left(\mathrm{B}_{1}(0)\right)$ is radially symmetric and has integral equal to 1 and $\eta_{\varepsilon}(y)=\varepsilon^{-n} \eta_{1}(x / \varepsilon)$. Finally, we write $u_{\varepsilon}:=u * \eta_{\varepsilon}$ and employ the Taylor expansion (2.1) to compute

$$
\begin{aligned}
\nabla u_{\varepsilon}(x) & =\int_{\mathrm{B}_{\varepsilon}(x)} u(y) \otimes \nabla_{x} \eta_{\varepsilon}(x-y) \mathrm{d} y \\
& =-\int_{\mathrm{B}_{\varepsilon}(x)}\left(\nabla u(x)(y-x)+u(x)+R_{x}(y)\right) \otimes \nabla_{y} \eta_{\varepsilon}(y-x) \mathrm{d} y \\
& =\int_{\mathrm{B}_{\varepsilon}(x)} \eta_{\varepsilon}(y-x) \nabla u(x) \mathrm{d} y-\int_{\mathrm{B}_{\varepsilon}(x)} R_{x}(y) \otimes \nabla_{y} \eta_{\varepsilon}(y-x) \mathrm{d} y \\
& =\nabla u(x)+\int_{\mathrm{B}_{\varepsilon}(x)} R_{x}(y) \otimes \nabla_{x} \eta_{\varepsilon}(x-y) \mathrm{d} y
\end{aligned}
$$

where we used integration by parts to establish the third equality. Since

$$
\left\|\nabla_{x} \eta(x-\cdot)\right\|_{\infty}=\varepsilon^{-(n+1)}\left\|\nabla \eta_{1}\right\|_{\infty}
$$

we have that $\left|\nabla u_{\varepsilon}(x)-\nabla u(x)\right| \leqslant c\left(n, \eta_{1}\right) \varepsilon^{-1}\left(\left|R_{x}\right|\right)_{x, \varepsilon}=o(1)$ as x is a point of L^{1}-differentiability of u. In particular, $\nabla u_{\varepsilon} \rightarrow \nabla u \mathcal{L}^{n}$-a.e., so that $\mathbb{A} u_{\varepsilon} \rightarrow A(\nabla u)$ \mathcal{L}^{n}-a.e. To establish (3.1), we will show that $\mathbb{A} u_{\varepsilon} \rightarrow \mathbb{A}^{a c} u \mathcal{L}^{n}$-a.e. Using only that u is a distribution, one easily shows that $\mathbb{A} u_{\varepsilon}=\mathbb{A} u * \eta_{\varepsilon}$, so that

$$
\begin{aligned}
\mathbb{A} u_{\varepsilon}(x)-\mathbb{A}^{a c} u(x) & =\mathbb{A}^{a c} u * \eta_{\varepsilon}(x)-\mathbb{A}^{a c} u(x)+\mathbb{A}^{s} u * \eta_{\varepsilon}(x) \\
& =\int_{\mathrm{B}_{\varepsilon}(x)} \eta_{\varepsilon}(x-y)\left(\mathbb{A}^{a c} u(y)-\mathbb{A}^{a c} u(x)\right) \mathrm{d} y \\
& +\int_{\mathrm{B}_{\varepsilon}(x)} \eta_{\varepsilon}(x-y) \mathrm{d}^{s} u(y)
\end{aligned}
$$

Using the fact that $\left\|\eta_{\varepsilon}(x-\cdot)\right\|_{\infty}=\varepsilon^{-n}\left\|\eta_{1}\right\|_{\infty}$ and Lebesgue differentiation, the proof is complete.
Remark 3.2 (Insufficiency of ellipticity). Consider v as in [1, Prop. 4.2] with $n=2$. One shows by direct computation that $v \in \mathrm{BV}^{\partial}\left(\mathbb{R}^{2}\right)$, where the Wirtinger
derivative

$$
\partial u:=\frac{1}{2}\binom{\partial_{1} u_{1}+\partial_{2} u_{2}}{\partial_{2} u_{1}-\partial_{1} u_{2}}
$$

is easily seen to be elliptic (computation). However, it is shown in [1, Rk. 4.5.(iv)] that there are maps $v \in \mathrm{BV}^{\partial}\left(\mathbb{R}^{2}\right)$ which are not L^{2}-differentiable.

In turn, the stronger FDN condition is sufficient for $\mathrm{L}^{1^{*}}$-differentiability:
Proof of Theorem 1.1. Let $u \in \mathrm{BV}_{\text {loc }}^{\mathbb{A}}\left(\mathbb{R}^{n}\right)$ and $x \in \mathbb{R}^{n}$ that is a Lebesgue point of $\mathbb{A} u$ such that

$$
\begin{equation*}
f_{\mathrm{B}_{r}(x)}|u(y)-u(x)-\nabla u(x)(y-x)| \mathrm{d} y=o(r) \tag{3.2}
\end{equation*}
$$

as $r \downarrow 0$. By Lemma 3.1 for $p=1$, such points exist \mathcal{L}^{n}-a.e. Here $\nabla u(x)$ denotes the approximate gradient of u at x. We define $v(y):=u(y)-u(x)-\nabla u(x)(y-x)$ for $y \in \mathbb{R}^{n}$. We aim to show that

$$
\begin{equation*}
\left(f_{\mathrm{B}_{r}(x)}|v(y)|^{\frac{n}{n-1}} \mathrm{~d} y\right)^{\frac{n-1}{n}}=o(r) \tag{3.3}
\end{equation*}
$$

as $r \downarrow 0$. Firstly, we remark that the integral in (3.3) is well-defined for $r>0$, as v is the sum of an affine and a $\mathrm{BV}_{\text {loc }}^{\mathrm{A}}$-map; the latter is $\mathrm{L}_{\text {loc }}^{n /(n-1)}$-integrable, e.g., by [6, Thm. 1.1]. Next, we abbreviate $\pi_{r} v:=\pi_{\mathrm{B}_{r}(x)} v$ and use Proposition 2.5 to estimate:

$$
\begin{aligned}
\left(f_{\mathrm{B}_{r}(x)}|v|^{1^{*}} \mathrm{~d} y\right)^{\frac{1}{1^{*}}} & \leqslant\left(f_{\mathrm{B}_{r}(x)}\left|v-\pi_{r} v\right|^{1^{*}} \mathrm{~d} y\right)^{\frac{1}{1^{*}}}+\left(f_{\mathrm{B}_{r}(x)}\left|\pi_{r} v\right|^{1^{*}} \mathrm{~d} y\right)^{\frac{1}{1^{*}}} \\
& \leqslant c r \frac{|\mathbb{A} v|\left(\overline{\mathrm{B}_{r}(x)}\right)}{r^{n}}+\left(f_{\mathrm{B}_{r}(x)}\left|\pi_{r} v\right|^{\frac{n}{n-1}} \mathrm{~d} y\right)^{\frac{n-1}{n}}=: \mathbf{I}_{r}+\mathbf{I I}_{r} .
\end{aligned}
$$

To deal with \mathbf{I}_{r}, first note that $\mathbb{A} v=\mathbb{A} u-A(\nabla u(x))$ (the latter term is obtained by classical differentiation of an affine map). By (3.1), we obtain $\mathbb{A} v=\mathbb{A} u-\mathbb{A}^{a c} u(x)$, so $\mathbf{I}_{r}=o(r)$ as $r \downarrow 0$ by Lebesgue differentiation for Radon measures. To bound $\mathbf{I I}_{r}$, by Lemma 2.4, we can use (2.2) to get that

$$
\left(f_{\mathrm{B}_{r}(x)}|P|^{\frac{n}{n-1}} \mathrm{~d} y\right)^{\frac{n-1}{n}} \leqslant c f_{\mathrm{B}_{r}(x)}|P| \mathrm{d} y,
$$

so that we have $\mathbf{I I}_{r} \leqslant c\left(\left|\pi_{r} v\right|\right)_{x, r}$. We claim that

$$
\begin{equation*}
f_{\mathrm{B}_{r}(x)}\left|\pi_{r} v\right| \mathrm{d} y \leqslant c f_{\mathrm{B}_{r}(x)}|v| \mathrm{d} y, \tag{3.4}
\end{equation*}
$$

which suffices to conclude by (3.2), and (3.3). Though elementary and essentially present in [3, Sec. 3.1], the proof of (3.4) is delicate and we present a careful argument. We write

$$
\pi_{r} v=\sum_{j=1}^{d}\left\langle v, e_{j}^{r}\right\rangle e_{j}^{r},
$$

where the inner product is taken in L^{2} and $\left\{e_{j}^{r}\right\}_{j=1}^{d}$ is a (finite) orthonormal basis of ker $\mathbb{A} \cap \mathrm{L}^{2}\left(\mathrm{~B}_{r}(x), V\right)$. By (2.2) and Cauchy-Schwarz inequality we have

$$
\sup _{y \in \mathrm{~B}_{r}(x)}\left|e_{j}^{r}(y)\right| \leqslant c\left(f_{\mathrm{B}_{r}(x)}\left|e_{j}^{r}\right|^{2} \mathrm{~d} y\right)^{\frac{1}{2}}=c r^{-\frac{n}{2}}
$$

so that

$$
f_{\mathrm{B}_{r}(x)}\left|\pi_{r} v\right| \mathrm{d} y \leqslant \sum_{j=1}^{d} f_{\mathrm{B}_{r}(x)} \int_{\mathrm{B}_{r}(x)}|v| \mathrm{d} z \mathrm{~d} y\left\|e_{j}^{r}\right\|_{\mathrm{L}^{\infty}\left(\mathrm{B}_{r}(x), V\right)}^{2} \leqslant c r^{-n} \int_{\mathrm{B}_{r}(x)}|v| \mathrm{d} z
$$

which yields (3.4) and concludes the proof.

References

[1] Alberti, G., Bianchini, S., and Crippa, G., 2014. On the L p-differentiability of certain classes of functions. Revista Matemática Iberoamericana, 30, pp.349-367.
[2] Ambrosio, L., Coscia, A., and Dal Maso, G., 1997. Fine properties of functions with bounded deformation. Archive for Rational Mechanics and Analysis, 139(3), pp.201-238.
[3] Breit, D., Diening, L. and Gmeineder, F., 2017. Traces of functions of bounded $\mathbb{A}-$ variation and variational problems with linear growth. arXiv preprint arXiv:1707.06804.
[4] Conti, S., Faraco, D., and Maggi, F., 2005. A new approach to counterexamples to L^{1} estimates: Korn's inequality, geometric rigidity, and regularity for gradients of separately convex functions. Archive for rational mechanics and analysis, 175(2), pp.287-300.
[5] Evans, L.C. and Gariepy, R.F., 2015. Measure theory and fine properties of functions. CRC press.
[6] Gmeineder, F. and Raita, B., 2017. Embeddings for \mathbb{A}-weakly Differentiable Functions on Domains. arXiv preprint arXiv:1709.04508.
[7] HajŁasz, P., 1996. On approximate differentiability of functions with bounded deformation. Manuscripta Mathematica, 91(1), pp.61-72.
[8] Kirchheim, B. and Kristensen, J., 2016. On rank one convex functions that are homogeneous of degree one. Archive for Rational Mechanics and Analysis. 221(1), pp.527-558.
[9] Kohn, R.V., 1979. New Estimates for Deformations in Terms of Their Strains. Ph.D. Thesis, Princeton Univ.
[10] Ornstein, D., 1962. A non-inequality for differential operators in the L^{1} norm. Archive for Rational Mechanics and Analysis, 11(1), pp.40-49.
[11] Smith, K.T., 1970. Formulas to represent functions by their derivatives. Mathematische Annalen, 188(1), pp.53-77.
[12] Temam, R. and Strang, G., 1980. Functions of bounded deformation. Archive for Rational Mechanics and Analysis, 75(1), pp.7-21.

Franz Gmeineder: Mathematisches Institut, Universitat Bonn, Endenicher Allee 60, 53115 Bonn, Germany. Email: fgmeined@math.uni-bonn.de

Bogdan Raita: Andrew Wiles Building, University of Oxford, Woodstock Rd, Oxford OX2 6GG, United Kingdom. Email: raita@maths.ox.ac.uk

[^0]: 2010 Mathematics Subject Classification. Primary: 26B05; Secondary: 46E35 .
 Key words and phrases. Approximate differentiability, convolution operators, functions with bounded variation, functions with bounded deformation.

