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Abstract. We prove that functions of locally bounded deformation on Rn

are L
n

n−1 –differentiable Ln–almost everywhere. More generally, we show that
this critical Lp–differentiability result holds for functions of locally bounded
A–variation, provided that the first order, homogeneous differential operator
A has finite dimensional null–space.

1. Introduction

Approximate differentiability properties of weakly differentiable functions are
reasonably well understood. Namely, it is well–known that maps in W1,p

loc(Rn,RN )

are Lp∗–differentiable Ln–a.e. in Rn, where 1 6 p < n, p∗ := np/(n − p) (see,
e.g., [5, Thm 6.2]). We recall that a map u : Rn → RN is Lq–approximately
differentiable at x ∈ Rn if and only if there exists a matrix M ∈ RN×n such that( 

Br(x)
|u(y)− u(x)−M(y − x)|q dy

) 1
q

= o(r)

as r ↓ 0, whence, in particular, u is approximately differentiable at x with ap-
proximate gradient M (see Section 2 for precise definitions). For p = 1 one can
show in addition that maps u ∈ BVloc(Rn,RN ) are L1∗–differentiable Ln–a.e. with
the approximate gradient equal Ln–a.e. to the absolutely continuous part of Du
([5, Thm. 6.1, 6.4]). It is natural to ask a similar question of the space BD(Rn)
of functions of bounded deformation, i.e., of L1(Rn,Rn)–maps u such that the
symmetric part Eu of their distributional gradient is a bounded measure. The
situation in this case is significantly more complicated, since, for example, we
have BV(Rn,Rn) ( BD(Rn) by the so–called Ornstein’s Non–inequality [4, 8, 10];
equivalently, there are maps u ∈ BD(Rn) for which the full distributional gradient
Du is not a Radon measure, so one cannot easily retrieve the approximate gradient
of u from the absolutely continuous part of Eu with respect to Ln. It is however
possible to recover u from Eu via convolution with a (1− n)–homogeneous kernel
(cp. Lemma 2.1). Hajłasz used this observation and a Marcinkiewicz–type char-
acterisation of approximate differentiability to show approximate differentiability
Ln–a.e. of BD–functions ([7, Cor. 1]). This result was improved in [2, Thm. 7.4]
to L1–differentiability Ln–a.e. by Ambrosio, Coscia, and Dal Maso, using
the precise Korn–Poincaré Inequality of Kohn [9]. It was only recently when
Alberti, Bianchini, and Crippa generalized the approach in [7], obtaining Lq–
differentiability of BD–maps for 1 6 q < 1∗ (see [1, Thm. 3.4, Prop. 4.3]). It is,
however, unclear whether the critical exponent q = 1∗ can be reached using the
Calderón–Zygmund–type approach in [1].
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In the present paper, we settle the question in [1, Rk. 4.5.(v)] of optimal differ-
entiability of BD–maps in the positive (see Corollary 1.2). Although reminiscent
of the elaborate estimates in [2, Sec. 7], our proof is rather straightforward. The
key observation is to replace Kohn’s Poincaré–Korn Inequality with the more
abstract Korn–Sobolev Inequality due to Strang and Temam [12, Prop. 2.4],
combined with ideas developed recently by the authors in [6]. In fact, we shall
prove Ln/(n−1)–differentiability of maps of bounded A–variation (as introduced in
[3, Sec. 2.2]), provided that A has finite dimensional null–space.

To formally state our main result, we pause to introduce some terminology and
notation. Let A be a linear, first order, homogeneous differential operator with
constant coefficients on Rn from V to W , i.e.,

Au =
∑
j=1

Aj∂ju, u : Rn → V,(1.1)

where Aj ∈ L (V,W ) are fixed linear mappings between two finite dimensional real
vector spaces V and W . For an open set Ω ⊂ Rn, we define BVA(Ω) as the space
of u ∈ L1(Ω, V ) such that Au is a W–valued Radon measure. We say that A has
FDN (finite dimensional null–space) if the vector space {u ∈ D ′(Rn, V ) : Au = 0}
is finite dimensional. Using the main result in [6, Thm. 1.1], we will prove that
FDN is sufficient to obtain a Korn–Sobolev–type inequality( 

Br

|u− πBru|
n

n−1 dx

)n−1
n

6 cr
 

Br

|Au| dx(1.2)

for all u ∈ C∞(B̄r, V ). Here π denotes a suitable bounded projection on the null–
space of A, as described in [3, Sec. 3.1]. This is our main ingredient to prove the
following:

Theorem 1.1. Let A as in (1.1) have FDN, u ∈ BVA
loc(Rn). Then u is Ln/(n−1)–

differentiable at x for Ln–a.e. x ∈ Rn.

Our example of interest is BD := BVE , where Eu :=
(
Du+ (Du)T

)
/2 for

u : Rn → Rn. It is well known that the null–space of E consists of rigid motions,
i.e., affine maps of anti–symmetric gradient. In particular, E has FDN.

Corollary 1.2. Let u ∈ BDloc(Rn). Then u is Ln/(n−1)–differentiable Ln–a.e.

This paper is organized as follows: In Section 2 we collect some notation and
definitions, mainly those of approximate and Lp–differentiability, present the main
result in [1], collect a few results on A–weakly differentiable functions from [3, 6],
and prove the inequality (1.2). In Section 3 we give a brief proof of Theorem 1.1.

Acknowledgement. The authors wish to thank Jan Kristensen for reading a
preliminary version of the paper. The second author was supported by Engineering
and Physical Sciences Research Council Award EP/L015811/1.

2. Preliminaries

An operator A as in (1.1) can also be seen as Au = A(Du) for u : Rn → V ,
where A ∈ L (V ⊗Rn,W ). We recall that such an operator has a Fourier symbol
map

A[ξ]v =

n∑
j=1

ξjAjv,
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defined for ξ ∈ Rn and v ∈ V . An operator A is said to be elliptic if and only if for
all non–zero ξ, the maps A[ξ] ∈ L (V,W ) are injective. By considering the maps

uf (x) := f(x · ξ)v

for functions f ∈ C1(R), it is easy to see that if A has FDN, then A is neces-
sarily elliptic. Ellipticity is in fact equivalent with one–sided invertibility of A in
Fourier space; more precisely, the equation Au = f can be uniquely solved for
u ∈ S (Rn, V ) whenever f ∈ S (Rn,W ) ∩ imA. One has:

Lemma 2.1. Let A be elliptic. There exists a convolution kernel KA ∈ C∞(Rn \
{0},L (W,V )) which is (1 − n)–homogeneous such that u = KA ∗ Au for all u ∈
S (Rn, V ).

For a proof of this fact, see, e.g., [6, Lem. 2.1]. We next define, for open Ω ⊂ Rn

(often a ball Br(x)), the space

BVA(Ω) := {u ∈ L1(Ω, V ) : Au ∈M(Ω,W )}
of maps of bounded A–variation, which is a Banach space under the obvious norm.
By the Radon–Nikodym Theorem Au has the decomposition

Au = AacuLn Ω + Asu :=
dAu
dLn
Ln Ω +

dAsu

d|Asu|
|Asu|

with respect to Ln. Here | · | denotes the total variation semi–norm. We next see
that ellipticity of A implies sub–critical Lp–differentiability. We denote averaged
integrals by

ffl
Ω := Ln(Ω)−1

´
Ω or by (·)x,r if Ω = Br(x), the ball of radius r > 0

centred at x ∈ Rn.

Definition 2.2. A measurable map u : Rn → V is said to be
• approximately differentiable at x ∈ Rn if there exists a matrix M ∈ V ⊗Rn

such that

ap lim
y→x

|u(y)− u(x)−M(y − x)|
|y − x|

= 0;

• Lp–differentiable at x ∈ Rn, 1 6 p <∞ if there exists a matrixM ∈ V ⊗Rn

such that( 
Br(x)

|u(y)− u(x)−M(y − x)|p dy

) 1
p

= o(r)

as r ↓ 0.
We say that ∇u(x) := M is the approximate gradient of u at x.

We should also recall that

v = ap lim
y→x

u(y) ⇐⇒ ∀ε > 0, lim
r↓0

r−nLn ({y ∈ Br(x) : |u(y)− v| > ε}) = 0,

where x ∈ Rn and u : Rn → V is measurable. In the terminology of [1, Sec. 2.2],
we can alternatively say that u is Lp–differentiable at x if

u(y) = ∇u(x)(y − x) + u(x) +Rx(y),(2.1)

where (|Rx|p)x,r = o(rp) as r ↓ 0. We will refer to the decomposition (2.1) as a
first order Lp–Taylor expansion of u about x.

Theorem 2.3 ([1, Thm. 3.4]). Let K ∈ C2(Rn\{0}) be (1−n)–homogeneous, and
µ ∈ M(Rn) be a bounded measure. Then u := K ∗ µ is Lp–differentiable Ln–a.e.
for all 1 6 p < n/(n− 1).
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As a consequence of Lemma 2.1 and Theorem 2.3, we have that if A is elliptic,
then maps in BVA(Rn) are Lp–differentiable Ln–a.e. for 1 6 p < n/(n − 1) (cp.
Lemma 3.1). Ellipticity, however, is insufficient to reach the critical exponent. In
Theorem 1.1, we show that FDN is a sufficient condition for the critical Ln/(n−1)–
differentiability. The following is essentially proved in [11], and is discussed at
length in [3, 6]. We will, however, sketch an elementary proof for the interested
reader.

Lemma 2.4. Let A as in (1.1) have FDN. Then there exists l ∈ N such that
null–space elements of A are polynomials of degree at most l.

Sketch. One can show by standard arguments that if A is elliptic and Au = 0 in
D ′(Rn, V ), then u is in fact analytic. If u is not a polynomial, then one can write
u as an infinite sum of homogeneous polynomials and identify coefficients, thereby
obtaining infinitely many linearly independent (homogeneous) polynomials in the
null–space of A. Then the kernel consists of polynomials, which must have a
maximal degree, otherwise A fails to have FDN. �

We next provide a Sobolev–Poincaré–type inequality which, in the A–setting,
follows from the recent work [6] and is the main ingredient in the proof of Theo-
rem 1.1. Following [3, Sec. 3.1], we define for A with FDN, πB : C∞ ∩BVA(B)→
kerA ∩ L2(B, V ) as the L2–projection onto kerA.
Proposition 2.5 (Poincaré–Sobolev–type Inequality). Let A as in (1.1) have
FDN. Then (1.2) holds. Moreover, there exists c > 0 such that( 

Br(x)
|u− πBr(x)u|

n
n−1 dy

)n−1
n

6 cr1−n|Au|(Br(x)).

for all u ∈ BVA
loc(Rn), x ∈ Rn, r > 0.

Proof. By smooth approximation ([3, Thm. 2.8]), it suffices to prove (1.2). Since
πBr(x) is linear, we can assume that r = 1, x = 0. The result then follows by
scaling and translation. We abbreviate B := B1(0). By [6, Thm. 1.1] we have that(ˆ

B
|u− πBu|

n
n−1 dy

)n−1
n

6 c

(ˆ
B
|Au|+ |u− πBu| dy

)
6 c

ˆ
B
|Au| dy,

where for the second estimate we use the Poincaré–type inequality in [3, Thm. 3.2].
The proof is complete. �

We conclude this section with a simple technical Lemma:

Lemma 2.6. Let l ∈ N. There exists a constant c > 0 independent of any ball
B ⊂ Rn such that

sup
y∈B
|P (y)| 6 c

 
B
|P (y)| dy(2.2)

for any polynomial of degree at most l.

Proof. The space the polynomials of degree at most l restricted on the unit ball is
finite dimensional, hence the L∞ and L1 norms are equivalent. In particular, (2.2)
holds for B = B1(0). Consider B := Br(x). Then

sup
y∈B
|P (y)| = sup

z∈B1(0)
|P (x+ rz)| 6 c

 
B1(0)

|P (x+ rz)| dz = c

 
Br(x)

|P (y)| dy,

since P (x+ r ·) are polynomials of degree at most l. The proof is complete. �
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3. Proof of Theorem 1.1

We begin by proving sub–critical Lp–differentiability of u ∈ BVA for elliptic
A (cp. [7, Thm. 5]). We also provide a formula that enables us to retrieve the
absolutely continuous part of Au from the approximate gradient. This formula
respects the algebraic structure of A, generalizing the result for BD in [2, Rk. 7.5].

Lemma 3.1. If A is elliptic, then any map u ∈ BVA(Rn) is Lp–differentiable
Ln–a.e. for all 1 6 p < n/(n− 1). Moreover, we have that

dAu
dLn

(x) = A(∇u(x))(3.1)

for Ln–a.e x ∈ Rn.

Proof. By Lemma 2.1, we can write the components ui = KA
ij ∗ (Au)j , where

summation over repeated indices is adopted. We then note that KA
ij satisfies the

assumptions of Theorem 2.3, hence each component ui is Lp–differentiable Ln–a.e.
for 1 6 p < n/(n− 1).

We next let u ∈ BVA(Rn) and x ∈ Rn be a Lebesgue point of u and Aacu, and
also a point of L1–differentiability of u. We also consider a sequence (ηε)ε>0 of
standard mollifiers, i.e., η1 ∈ C∞c (B1(0)) is radially symmetric and has integral
equal to 1 and ηε(y) = ε−nη1(x/ε). Finally, we write uε := u ∗ ηε and employ the
Taylor expansion (2.1) to compute

∇uε(x) =

ˆ
Bε(x)

u(y)⊗∇xηε(x− y) dy

= −
ˆ

Bε(x)
(∇u(x)(y − x) + u(x) +Rx(y))⊗∇yηε(y − x) dy

=

ˆ
Bε(x)

ηε(y − x)∇u(x) dy −
ˆ

Bε(x)
Rx(y)⊗∇yηε(y − x) dy

= ∇u(x) +

ˆ
Bε(x)

Rx(y)⊗∇xηε(x− y) dy,

where we used integration by parts to establish the third equality. Since

‖∇xη(x− ·)‖∞ = ε−(n+1)‖∇η1‖∞,

we have that |∇uε(x) − ∇u(x)| 6 c(n, η1)ε−1(|Rx|)x,ε = o(1) as x is a point of
L1–differentiability of u. In particular, ∇uε → ∇u Ln–a.e., so that Auε → A(∇u)
Ln–a.e. To establish (3.1), we will show that Auε → Aacu Ln–a.e. Using only that
u is a distribution, one easily shows that Auε = Au ∗ ηε, so that

Auε(x)− Aacu(x) = Aacu ∗ ηε(x)− Aacu(x) + Asu ∗ ηε(x)

=

ˆ
Bε(x)

ηε(x− y) (Aacu(y)− Aacu(x)) dy

+

ˆ
Bε(x)

ηε(x− y) dAsu(y).

Using the fact that ‖ηε(x − ·)‖∞ = ε−n‖η1‖∞ and Lebesgue differentiation, the
proof is complete. �

Remark 3.2 (Insufficiency of ellipticity). Consider v as in [1, Prop. 4.2] with
n = 2. One shows by direct computation that v ∈ BV∂(R2), where the Wirtinger
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derivative

∂u :=
1

2

(
∂1u1 + ∂2u2

∂2u1 − ∂1u2

)
is easily seen to be elliptic (computation). However, it is shown in [1, Rk. 4.5.(iv)]
that there are maps v ∈ BV∂(R2) which are not L2–differentiable.

In turn, the stronger FDN condition is sufficient for L1∗–differentiability:

Proof of Theorem 1.1. Let u ∈ BVA
loc(Rn) and x ∈ Rn that is a Lebesgue point of

Au such that  
Br(x)

|u(y)− u(x)−∇u(x)(y − x)| dy = o(r)(3.2)

as r ↓ 0. By Lemma 3.1 for p = 1, such points exist Ln–a.e. Here ∇u(x) denotes
the approximate gradient of u at x. We define v(y) := u(y)−u(x)−∇u(x)(y−x)
for y ∈ Rn. We aim to show that( 

Br(x)
|v(y)|

n
n−1 dy

)n−1
n

= o(r)(3.3)

as r ↓ 0. Firstly, we remark that the integral in (3.3) is well–defined for r > 0, as
v is the sum of an affine and a BVA

loc–map; the latter is L
n/(n−1)
loc –integrable, e.g.,

by [6, Thm. 1.1]. Next, we abbreviate πrv := πBr(x)v and use Proposition 2.5 to
estimate:( 

Br(x)
|v|1∗ dy

) 1
1∗

6

( 
Br(x)

|v − πrv|1
∗

dy

) 1
1∗

+

( 
Br(x)

|πrv|1
∗

dy

) 1
1∗

6 cr
|Av|(Br(x))

rn
+

( 
Br(x)

|πrv|
n

n−1 dy

)n−1
n

=: Ir + IIr.

To deal with Ir, first note that Av = Au−A(∇u(x)) (the latter term is obtained by
classical differentiation of an affine map). By (3.1), we obtain Av = Au−Aacu(x),
so Ir = o(r) as r ↓ 0 by Lebesgue differentiation for Radon measures. To bound
IIr, by Lemma 2.4, we can use (2.2) to get that( 

Br(x)
|P |

n
n−1 dy

)n−1
n

6 c
 

Br(x)
|P | dy,

so that we have IIr 6 c(|πrv|)x,r. We claim that 
Br(x)

|πrv| dy 6 c
 

Br(x)
|v|dy,(3.4)

which suffices to conclude by (3.2), and (3.3). Though elementary and essentially
present in [3, Sec. 3.1], the proof of (3.4) is delicate and we present a careful
argument. We write

πrv =

d∑
j=1

〈v, erj〉erj ,
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where the inner product is taken in L2 and {erj}dj=1 is a (finite) orthonormal basis
of kerA ∩ L2(Br(x), V ). By (2.2) and Cauchy–Schwarz inequality we have

sup
y∈Br(x)

|erj(y)| 6 c

( 
Br(x)

|erj |2 dy

) 1
2

= cr−
n
2 ,

so that 
Br(x)

|πrv| dy 6
d∑

j=1

 
Br(x)

ˆ
Br(x)

|v| dz dy‖erj‖2L∞(Br(x),V ) 6 cr
−n

ˆ
Br(x)

|v| dz,

which yields (3.4) and concludes the proof. �
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