ON CRITICAL L p -DIFFERENTIABILITY OF BD-MAPS

FRANZ GMEINEDER AND BOGDAN RAITA

ABSTRACT. We prove that functions of locally bounded deformation on \mathbb{R}^n are $\operatorname{L}^{\frac{n}{n-1}}$ -differentiable \mathcal{L}^n -almost everywhere. More generally, we show that this critical L^p -differentiability result holds for functions of locally bounded \mathbb{A} -variation, provided that the first order, homogeneous differential operator \mathbb{A} has finite dimensional null-space.

1. Introduction

Approximate differentiability properties of weakly differentiable functions are reasonably well understood. Namely, it is well–known that maps in $W^{1,p}_{loc}(\mathbb{R}^n,\mathbb{R}^N)$ are L^{p^*} –differentiable \mathcal{L}^n –a.e. in \mathbb{R}^n , where $1 \leq p < n$, $p^* := np/(n-p)$ (see, e.g., [5, Thm 6.2]). We recall that a map $u : \mathbb{R}^n \to \mathbb{R}^N$ is L^q –approximately differentiable at $x \in \mathbb{R}^n$ if and only if there exists a matrix $M \in \mathbb{R}^{N \times n}$ such that

$$\left(\oint_{B_r(x)} |u(y) - u(x) - M(y - x)|^q \, dy \right)^{\frac{1}{q}} = o(r)$$

as $r \downarrow 0$, whence, in particular, u is approximately differentiable at x with approximate gradient M (see Section 2 for precise definitions). For p=1 one can show in addition that maps $u \in \mathrm{BV}_{\mathrm{loc}}(\mathbb{R}^n, \mathbb{R}^N)$ are L^{1^*} -differentiable \mathcal{L}^n -a.e. with the approximate gradient equal \mathcal{L}^n -a.e. to the absolutely continuous part of Du([5, Thm. 6.1, 6.4]). It is natural to ask a similar question of the space BD(\mathbb{R}^n) of functions of bounded deformation, i.e., of $L^1(\mathbb{R}^n,\mathbb{R}^n)$ -maps u such that the symmetric part $\mathcal{E}u$ of their distributional gradient is a bounded measure. The situation in this case is significantly more complicated, since, for example, we have $BV(\mathbb{R}^n, \mathbb{R}^n) \subseteq BD(\mathbb{R}^n)$ by the so-called Ornstein's Non-inequality [4, 8, 10]; equivalently, there are maps $u \in BD(\mathbb{R}^n)$ for which the full distributional gradient Du is not a Radon measure, so one cannot easily retrieve the approximate gradient of u from the absolutely continuous part of $\mathcal{E}u$ with respect to \mathcal{L}^n . It is however possible to recover u from $\mathcal{E}u$ via convolution with a (1-n)-homogeneous kernel (cp. Lemma 2.1). Hajłasz used this observation and a Marcinkiewicz-type characterisation of approximate differentiability to show approximate differentiability \mathcal{L}^n -a.e. of BD-functions ([7, Cor. 1]). This result was improved in [2, Thm. 7.4] to L^1 -differentiability \mathcal{L}^n -a.e. by Ambrosio, Coscia, and Dal Maso, using the precise Korn-Poincaré Inequality of Kohn [9]. It was only recently when ALBERTI, BIANCHINI, and CRIPPA generalized the approach in [7], obtaining L^{q} differentiability of BD-maps for $1 \leq q < 1^*$ (see [1, Thm. 3.4, Prop. 4.3]). It is, however, unclear whether the critical exponent $q = 1^*$ can be reached using the Calderón–Zygmund–type approach in [1].

²⁰¹⁰ Mathematics Subject Classification. Primary: 26B05; Secondary: 46E35 .

Key words and phrases. Approximate differentiability, convolution operators, functions with bounded variation, functions with bounded deformation.

In the present paper, we settle the question in [1, Rk. 4.5.(v)] of optimal differentiability of BD-maps in the positive (see Corollary 1.2). Although reminiscent of the elaborate estimates in [2, Sec. 7], our proof is rather straightforward. The key observation is to replace KOHN's Poincaré-Korn Inequality with the more abstract Korn-Sobolev Inequality due to STRANG and TEMAM [12, Prop. 2.4], combined with ideas developed recently by the authors in [6]. In fact, we shall prove $L^{n/(n-1)}$ -differentiability of maps of bounded \mathbb{A} -variation (as introduced in [3, Sec. 2.2]), provided that \mathbb{A} has finite dimensional null-space.

To formally state our main result, we pause to introduce some terminology and notation. Let \mathbb{A} be a linear, first order, homogeneous differential operator with constant coefficients on \mathbb{R}^n from V to W, i.e.,

(1.1)
$$\mathbb{A}u = \sum_{j=1} A_j \partial_j u, \qquad u \colon \mathbb{R}^n \to V,$$

where $A_j \in \mathcal{L}(V, W)$ are fixed linear mappings between two finite dimensional real vector spaces V and W. For an open set $\Omega \subset \mathbb{R}^n$, we define $\mathrm{BV}^{\mathbb{A}}(\Omega)$ as the space of $u \in \mathrm{L}^1(\Omega, V)$ such that $\mathbb{A}u$ is a W-valued Radon measure. We say that \mathbb{A} has FDN (finite dimensional null-space) if the vector space $\{u \in \mathcal{D}'(\mathbb{R}^n, V) : \mathbb{A}u = 0\}$ is finite dimensional. Using the main result in [6, Thm. 1.1], we will prove that FDN is sufficient to obtain a Korn-Sobolev-type inequality

(1.2)
$$\left(\int_{\mathbf{B}_r} |u - \pi_{\mathbf{B}_r} u|^{\frac{n}{n-1}} \, \mathrm{d}x \right)^{\frac{n-1}{n}} \leqslant cr \int_{\mathbf{B}_r} |\mathbb{A}u| \, \mathrm{d}x$$

for all $u \in C^{\infty}(\bar{B}_r, V)$. Here π denotes a suitable bounded projection on the null–space of \mathbb{A} , as described in [3, Sec. 3.1]. This is our main ingredient to prove the following:

Theorem 1.1. Let \mathbb{A} as in (1.1) have FDN, $u \in \mathrm{BV}^{\mathbb{A}}_{\mathrm{loc}}(\mathbb{R}^n)$. Then u is $\mathrm{L}^{n/(n-1)}$ – differentiable at x for \mathcal{L}^n – a.e. $x \in \mathbb{R}^n$.

Our example of interest is BD := BV^{\mathcal{E}}, where $\mathcal{E}u := (Du + (Du)^T)/2$ for $u: \mathbb{R}^n \to \mathbb{R}^n$. It is well known that the null-space of \mathcal{E} consists of rigid motions, i.e., affine maps of anti-symmetric gradient. In particular, \mathcal{E} has FDN.

Corollary 1.2. Let
$$u \in \mathrm{BD}_{\mathrm{loc}}(\mathbb{R}^n)$$
. Then u is $L^{n/(n-1)}$ -differentiable \mathcal{L}^n -a.e.

This paper is organized as follows: In Section 2 we collect some notation and definitions, mainly those of approximate and L^p -differentiability, present the main result in [1], collect a few results on \mathbb{A} -weakly differentiable functions from [3, 6], and prove the inequality (1.2). In Section 3 we give a brief proof of Theorem 1.1.

Acknowledgement. The authors wish to thank Jan Kristensen for reading a preliminary version of the paper. The second author was supported by Engineering and Physical Sciences Research Council Award EP/L015811/1.

2. Preliminaries

An operator \mathbb{A} as in (1.1) can also be seen as $\mathbb{A}u = A(\mathbb{D}u)$ for $u \colon \mathbb{R}^n \to V$, where $A \in \mathcal{L}(V \otimes \mathbb{R}^n, W)$. We recall that such an operator has a Fourier symbol map

$$\mathbb{A}[\xi]v = \sum_{j=1}^{n} \xi_j A_j v,$$

defined for $\xi \in \mathbb{R}^n$ and $v \in V$. An operator \mathbb{A} is said to be *elliptic* if and only if for all non-zero ξ , the maps $\mathbb{A}[\xi] \in \mathcal{L}(V, W)$ are injective. By considering the maps

$$u_f(x) := f(x \cdot \xi)v$$

for functions $f \in C^1(\mathbb{R})$, it is easy to see that if \mathbb{A} has FDN, then \mathbb{A} is necessarily elliptic. Ellipticity is in fact equivalent with one–sided invertibility of \mathbb{A} in Fourier space; more precisely, the equation $\mathbb{A}u = f$ can be uniquely solved for $u \in \mathscr{S}(\mathbb{R}^n, V)$ whenever $f \in \mathscr{S}(\mathbb{R}^n, W) \cap \text{im} \mathbb{A}$. One has:

Lemma 2.1. Let \mathbb{A} be elliptic. There exists a convolution kernel $K^{\mathbb{A}} \in C^{\infty}(\mathbb{R}^n \setminus \{0\}, \mathcal{L}(W, V))$ which is (1 - n)-homogeneous such that $u = K^{\mathbb{A}} * \mathbb{A}u$ for all $u \in \mathcal{S}(\mathbb{R}^n, V)$.

For a proof of this fact, see, e.g., [6, Lem. 2.1]. We next define, for open $\Omega \subset \mathbb{R}^n$ (often a ball $B_r(x)$), the space

$$\mathrm{BV}^{\mathbb{A}}(\Omega) := \{ u \in \mathrm{L}^1(\Omega, V) \colon \mathbb{A}u \in \mathcal{M}(\Omega, W) \}$$

of maps of bounded A-variation, which is a Banach space under the obvious norm. By the Radon-Nikodym Theorem Au has the decomposition

$$\mathbb{A}u = \mathbb{A}^{ac}u\mathcal{L}^n \, \lfloor \, \Omega + \mathbb{A}^s u := \frac{\mathrm{d}\mathbb{A}u}{\mathrm{d}\mathcal{L}^n}\mathcal{L}^n \, \lfloor \, \Omega + \frac{\mathrm{d}\mathbb{A}^s u}{\mathrm{d}|\mathbb{A}^s u|} |\mathbb{A}^s u|$$

with respect to \mathcal{L}^n . Here $|\cdot|$ denotes the total variation semi-norm. We next see that ellipticity of \mathbb{A} implies sub-critical L^p -differentiability. We denote averaged integrals by $f_{\Omega} := \mathcal{L}^n(\Omega)^{-1} \int_{\Omega}$ or by $(\cdot)_{x,r}$ if $\Omega = B_r(x)$, the ball of radius r > 0 centred at $x \in \mathbb{R}^n$.

Definition 2.2. A measurable map $u: \mathbb{R}^n \to V$ is said to be

• approximately differentiable at $x \in \mathbb{R}^n$ if there exists a matrix $M \in V \otimes \mathbb{R}^n$ such that

$$\mathop{\rm ap\, lim}_{y \to x} \frac{|u(y) - u(x) - M(y - x)|}{|y - x|} = 0;$$

• L^p-differentiable at $x \in \mathbb{R}^n$, $1 \leq p < \infty$ if there exists a matrix $M \in V \otimes \mathbb{R}^n$ such that

$$\left(\oint_{B_r(x)} |u(y) - u(x) - M(y - x)|^p \,\mathrm{d}y \right)^{\frac{1}{p}} = o(r)$$

as $r \downarrow 0$.

We say that $\nabla u(x) := M$ is the approximate gradient of u at x.

We should also recall that

$$v = \operatorname*{ap\,lim}_{y \to x} u(y) \iff \forall \varepsilon > 0, \ \operatorname*{lim}_{r \downarrow 0} r^{-n} \mathcal{L}^n \left(\left\{ y \in B_r(x) \colon |u(y) - v| > \varepsilon \right\} \right) = 0,$$

where $x \in \mathbb{R}^n$ and $u \colon \mathbb{R}^n \to V$ is measurable. In the terminology of [1, Sec. 2.2], we can alternatively say that u is L^p -differentiable at x if

(2.1)
$$u(y) = \nabla u(x)(y - x) + u(x) + R_x(y),$$

where $(|R_x|^p)_{x,r} = o(r^p)$ as $r \downarrow 0$. We will refer to the decomposition (2.1) as a first order L^p-Taylor expansion of u about x.

Theorem 2.3 ([1, Thm. 3.4]). Let $K \in C^2(\mathbb{R}^n \setminus \{0\})$ be (1-n)-homogeneous, and $\mu \in \mathcal{M}(\mathbb{R}^n)$ be a bounded measure. Then $u := K * \mu$ is L^p -differentiable \mathcal{L}^n -a.e. for all $1 \leq p < n/(n-1)$.

As a consequence of Lemma 2.1 and Theorem 2.3, we have that if A is elliptic, then maps in $BV^{\mathbb{A}}(\mathbb{R}^n)$ are L^p -differentiable \mathcal{L}^n -a.e. for $1 \leq p < n/(n-1)$ (cp. Lemma 3.1). Ellipticity, however, is insufficient to reach the critical exponent. In Theorem 1.1, we show that FDN is a sufficient condition for the critical $L^{n/(n-1)}$ -differentiability. The following is essentially proved in [11], and is discussed at length in [3, 6]. We will, however, sketch an elementary proof for the interested reader.

Lemma 2.4. Let \mathbb{A} as in (1.1) have FDN. Then there exists $l \in \mathbb{N}$ such that null-space elements of \mathbb{A} are polynomials of degree at most l.

Sketch. One can show by standard arguments that if \mathbb{A} is elliptic and $\mathbb{A}u = 0$ in $\mathscr{D}'(\mathbb{R}^n, V)$, then u is in fact analytic. If u is not a polynomial, then one can write u as an infinite sum of homogeneous polynomials and identify coefficients, thereby obtaining infinitely many linearly independent (homogeneous) polynomials in the null-space of \mathbb{A} . Then the kernel consists of polynomials, which must have a maximal degree, otherwise \mathbb{A} fails to have FDN.

We next provide a Sobolev–Poincaré–type inequality which, in the \mathbb{A} –setting, follows from the recent work [6] and is the main ingredient in the proof of Theorem 1.1. Following [3, Sec. 3.1], we define for \mathbb{A} with FDN, $\pi_B \colon C^{\infty} \cap BV^{\mathbb{A}}(B) \to \ker \mathbb{A} \cap L^2(B, V)$ as the L^2 –projection onto $\ker \mathbb{A}$.

Proposition 2.5 (Poincaré–Sobolev–type Inequality). Let \mathbb{A} as in (1.1) have FDN. Then (1.2) holds. Moreover, there exists c > 0 such that

$$\left(\oint_{B_r(x)} |u - \pi_{B_r(x)} u|^{\frac{n}{n-1}} dy \right)^{\frac{n-1}{n}} \leqslant cr^{1-n} |\mathbb{A}u|(\overline{B_r(x)}).$$

for all $u \in BV_{loc}^{\mathbb{A}}(\mathbb{R}^n)$, $x \in \mathbb{R}^n$, r > 0.

Proof. By smooth approximation ([3, Thm. 2.8]), it suffices to prove (1.2). Since $\pi_{B_r(x)}$ is linear, we can assume that r=1, x=0. The result then follows by scaling and translation. We abbreviate $B:=B_1(0)$. By [6, Thm. 1.1] we have that

$$\left(\int_{\mathcal{B}} |u - \pi_{\mathcal{B}} u|^{\frac{n}{n-1}} \, \mathrm{d}y\right)^{\frac{n-1}{n}} \leqslant c \left(\int_{\mathcal{B}} |\mathbb{A} u| + |u - \pi_{\mathcal{B}} u| \, \mathrm{d}y\right) \leqslant c \int_{\mathcal{B}} |\mathbb{A} u| \, \mathrm{d}y,$$

where for the second estimate we use the Poincaré–type inequality in [3, Thm. 3.2]. The proof is complete. \Box

We conclude this section with a simple technical Lemma:

Lemma 2.6. Let $l \in \mathbb{N}$. There exists a constant c > 0 independent of any ball $B \subset \mathbb{R}^n$ such that

(2.2)
$$\sup_{y \in \mathcal{B}} |P(y)| \le c \int_{\mathcal{B}} |P(y)| \, \mathrm{d}y$$

for any polynomial of degree at most l.

Proof. The space the polynomials of degree at most l restricted on the unit ball is finite dimensional, hence the L^{∞} and L^{1} norms are equivalent. In particular, (2.2) holds for $B = B_{1}(0)$. Consider $B := B_{r}(x)$. Then

$$\sup_{y \in \mathcal{B}} |P(y)| = \sup_{z \in \mathcal{B}_1(0)} |P(x + rz)| \leqslant c \int_{\mathcal{B}_1(0)} |P(x + rz)| \, \mathrm{d}z = c \int_{\mathcal{B}_r(x)} |P(y)| \, \mathrm{d}y,$$

since P(x+r) are polynomials of degree at most l. The proof is complete.

3. Proof of Theorem 1.1

We begin by proving sub-critical L^p -differentiability of $u \in BV^{\mathbb{A}}$ for elliptic \mathbb{A} (cp. [7, Thm. 5]). We also provide a formula that enables us to retrieve the absolutely continuous part of $\mathbb{A}u$ from the approximate gradient. This formula respects the algebraic structure of \mathbb{A} , generalizing the result for BD in [2, Rk. 7.5].

Lemma 3.1. If \mathbb{A} is elliptic, then any map $u \in BV^{\mathbb{A}}(\mathbb{R}^n)$ is L^p -differentiable \mathcal{L}^n -a.e. for all $1 \leq p < n/(n-1)$. Moreover, we have that

(3.1)
$$\frac{\mathrm{d}\mathbb{A}u}{\mathrm{d}\mathcal{L}^n}(x) = A(\nabla u(x))$$

for \mathcal{L}^n -a.e $x \in \mathbb{R}^n$.

Proof. By Lemma 2.1, we can write the components $u_i = K_{ij}^{\mathbb{A}} * (\mathbb{A}u)_j$, where summation over repeated indices is adopted. We then note that $K_{ij}^{\mathbb{A}}$ satisfies the assumptions of Theorem 2.3, hence each component u_i is L^p -differentiable \mathcal{L}^n -a.e. for $1 \leq p < n/(n-1)$.

We next let $u \in \mathrm{BV}^{\mathbb{A}}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$ be a Lebesgue point of u and $\mathbb{A}^{ac}u$, and also a point of L^1 -differentiability of u. We also consider a sequence $(\eta_{\varepsilon})_{\varepsilon>0}$ of standard mollifiers, i.e., $\eta_1 \in \mathrm{C}_c^{\infty}(\mathrm{B}_1(0))$ is radially symmetric and has integral equal to 1 and $\eta_{\varepsilon}(y) = \varepsilon^{-n}\eta_1(x/\varepsilon)$. Finally, we write $u_{\varepsilon} := u * \eta_{\varepsilon}$ and employ the Taylor expansion (2.1) to compute

$$\nabla u_{\varepsilon}(x) = \int_{B_{\varepsilon}(x)} u(y) \otimes \nabla_{x} \eta_{\varepsilon}(x - y) \, dy$$

$$= -\int_{B_{\varepsilon}(x)} (\nabla u(x)(y - x) + u(x) + R_{x}(y)) \otimes \nabla_{y} \eta_{\varepsilon}(y - x) \, dy$$

$$= \int_{B_{\varepsilon}(x)} \eta_{\varepsilon}(y - x) \nabla u(x) \, dy - \int_{B_{\varepsilon}(x)} R_{x}(y) \otimes \nabla_{y} \eta_{\varepsilon}(y - x) \, dy$$

$$= \nabla u(x) + \int_{B_{\varepsilon}(x)} R_{x}(y) \otimes \nabla_{x} \eta_{\varepsilon}(x - y) \, dy,$$

where we used integration by parts to establish the third equality. Since

$$\|\nabla_x \eta(x - \cdot)\|_{\infty} = \varepsilon^{-(n+1)} \|\nabla \eta_1\|_{\infty},$$

we have that $|\nabla u_{\varepsilon}(x) - \nabla u(x)| \leq c(n, \eta_1)\varepsilon^{-1}(|R_x|)_{x,\varepsilon} = o(1)$ as x is a point of L¹-differentiability of u. In particular, $\nabla u_{\varepsilon} \to \nabla u \mathcal{L}^n$ -a.e., so that $\mathbb{A}u_{\varepsilon} \to A(\nabla u)$ \mathcal{L}^n -a.e. To establish (3.1), we will show that $\mathbb{A}u_{\varepsilon} \to \mathbb{A}^{ac}u \mathcal{L}^n$ -a.e. Using only that u is a distribution, one easily shows that $\mathbb{A}u_{\varepsilon} = \mathbb{A}u * \eta_{\varepsilon}$, so that

$$\begin{split} \mathbb{A}u_{\varepsilon}(x) - \mathbb{A}^{ac}u(x) &= \mathbb{A}^{ac}u * \eta_{\varepsilon}(x) - \mathbb{A}^{ac}u(x) + \mathbb{A}^{s}u * \eta_{\varepsilon}(x) \\ &= \int_{\mathcal{B}_{\varepsilon}(x)} \eta_{\varepsilon}(x-y) \left(\mathbb{A}^{ac}u(y) - \mathbb{A}^{ac}u(x) \right) \mathrm{d}y \\ &+ \int_{\mathcal{B}_{\varepsilon}(x)} \eta_{\varepsilon}(x-y) \, \mathrm{d}\mathbb{A}^{s}u(y). \end{split}$$

Using the fact that $\|\eta_{\varepsilon}(x-\cdot)\|_{\infty} = \varepsilon^{-n} \|\eta_1\|_{\infty}$ and Lebesgue differentiation, the proof is complete.

Remark 3.2 (Insufficiency of ellipticity). Consider v as in [1, Prop. 4.2] with n = 2. One shows by direct computation that $v \in BV^{\partial}(\mathbb{R}^2)$, where the Wirtinger

derivative

$$\partial u := \frac{1}{2} \left(\begin{array}{c} \partial_1 u_1 + \partial_2 u_2 \\ \partial_2 u_1 - \partial_1 u_2 \end{array} \right)$$

is easily seen to be elliptic (computation). However, it is shown in [1, Rk. 4.5.(iv)] that there are maps $v \in BV^{\partial}(\mathbb{R}^2)$ which are not L^2 -differentiable.

In turn, the stronger FDN condition is sufficient for L^{1*}-differentiability:

Proof of Theorem 1.1. Let $u \in \mathrm{BV}_{\mathrm{loc}}^{\mathbb{A}}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$ that is a Lebesgue point of $\mathbb{A}u$ such that

(3.2)
$$\int_{B_r(x)} |u(y) - u(x) - \nabla u(x)(y - x)| \, \mathrm{d}y = o(r)$$

as $r \downarrow 0$. By Lemma 3.1 for p = 1, such points exist \mathcal{L}^n -a.e. Here $\nabla u(x)$ denotes the approximate gradient of u at x. We define $v(y) := u(y) - u(x) - \nabla u(x)(y - x)$ for $y \in \mathbb{R}^n$. We aim to show that

(3.3)
$$\left(\oint_{B_r(x)} |v(y)|^{\frac{n}{n-1}} \, dy \right)^{\frac{n-1}{n}} = o(r)$$

as $r \downarrow 0$. Firstly, we remark that the integral in (3.3) is well–defined for r > 0, as v is the sum of an affine and a $\mathrm{BV}_{\mathrm{loc}}^{\mathbb{A}}$ -map; the latter is $\mathrm{L}_{\mathrm{loc}}^{n/(n-1)}$ -integrable, e.g., by [6, Thm. 1.1]. Next, we abbreviate $\pi_r v := \pi_{\mathrm{B}_r(x)} v$ and use Proposition 2.5 to estimate:

$$\left(\oint_{B_{r}(x)} |v|^{1^{*}} dy \right)^{\frac{1}{1^{*}}} \leq \left(\oint_{B_{r}(x)} |v - \pi_{r}v|^{1^{*}} dy \right)^{\frac{1}{1^{*}}} + \left(\oint_{B_{r}(x)} |\pi_{r}v|^{1^{*}} dy \right)^{\frac{1}{1^{*}}}$$

$$\leq cr \frac{|\mathbb{A}v|(\overline{B_{r}(x)})}{r^{n}} + \left(\oint_{B_{r}(x)} |\pi_{r}v|^{\frac{n}{n-1}} dy \right)^{\frac{n-1}{n}} =: \mathbf{I}_{r} + \mathbf{I}\mathbf{I}_{r}.$$

To deal with \mathbf{I}_r , first note that $\mathbb{A}v = \mathbb{A}u - A(\nabla u(x))$ (the latter term is obtained by classical differentiation of an affine map). By (3.1), we obtain $\mathbb{A}v = \mathbb{A}u - \mathbb{A}^{ac}u(x)$, so $\mathbf{I}_r = o(r)$ as $r \downarrow 0$ by Lebesgue differentiation for Radon measures. To bound \mathbf{II}_r , by Lemma 2.4, we can use (2.2) to get that

$$\left(\int_{B_r(x)} |P|^{\frac{n}{n-1}} \, \mathrm{d}y \right)^{\frac{n-1}{n}} \leqslant c \int_{B_r(x)} |P| \, \mathrm{d}y,$$

so that we have $\Pi_r \leqslant c(|\pi_r v|)_{x,r}$. We claim that

(3.4)
$$\oint_{B_r(x)} |\pi_r v| \, \mathrm{d}y \leqslant c \oint_{B_r(x)} |v| \, \mathrm{d}y,$$

which suffices to conclude by (3.2), and (3.3). Though elementary and essentially present in [3, Sec. 3.1], the proof of (3.4) is delicate and we present a careful argument. We write

$$\pi_r v = \sum_{j=1}^d \langle v, e_j^r \rangle e_j^r,$$

where the inner product is taken in L^2 and $\{e_j^r\}_{j=1}^d$ is a (finite) orthonormal basis of ker $\mathbb{A} \cap L^2(\mathcal{B}_r(x), V)$. By (2.2) and Cauchy–Schwarz inequality we have

$$\sup_{y \in B_r(x)} |e_j^r(y)| \le c \left(\oint_{B_r(x)} |e_j^r|^2 dy \right)^{\frac{1}{2}} = cr^{-\frac{n}{2}},$$

so that

$$\oint_{B_r(x)} |\pi_r v| \, dy \leqslant \sum_{i=1}^d \oint_{B_r(x)} \int_{B_r(x)} |v| \, dz \, dy \|e_j^r\|_{L^{\infty}(B_r(x),V)}^2 \leqslant cr^{-n} \int_{B_r(x)} |v| \, dz,$$

which yields (3.4) and concludes the proof.

References

- [1] Alberti, G., Bianchini, S., and Crippa, G., 2014. On the L^p-differentiability of certain classes of functions. Revista Matemática Iberoamericana, **30**, pp.349-367.
- [2] Ambrosio, L., Coscia, A., and Dal Maso, G., 1997. Fine properties of functions with bounded deformation. Archive for Rational Mechanics and Analysis, 139(3), pp.201-238.
- [3] Breit, D., Diening, L. and Gmeineder, F., 2017. Traces of functions of bounded Avariation and variational problems with linear growth. arXiv preprint arXiv:1707.06804.
- [4] Conti, S., Faraco, D., and Maggi, F., 2005. A new approach to counterexamples to L¹ estimates: Korn's inequality, geometric rigidity, and regularity for gradients of separately convex functions. Archive for rational mechanics and analysis, 175(2), pp.287-300.
- [5] EVANS, L.C. and Gariepy, R.F., 2015. Measure theory and fine properties of functions. CRC press.
- [6] GMEINEDER, F. and RAITA, B., 2017. Embeddings for A-weakly Differentiable Functions on Domains. arXiv preprint arXiv:1709.04508.
- [7] HAJLASZ, P., 1996. On approximate differentiability of functions with bounded deformation. Manuscripta Mathematica, 91(1), pp.61-72.
- [8] KIRCHHEIM, B. and KRISTENSEN, J., 2016. On rank one convex functions that are homogeneous of degree one. *Archive for Rational Mechanics and Analysis*. **221**(1), pp.527-558.
- [9] Kohn, R.V., 1979. New Estimates for Deformations in Terms of Their Strains. Ph.D. Thesis, Princeton Univ.
- [10] Ornstein, D., 1962. A non-inequality for differential operators in the L¹ norm. Archive for Rational Mechanics and Analysis, 11(1), pp.40-49.
- [11] SMITH, K.T., 1970. Formulas to represent functions by their derivatives. Mathematische Annalen, 188(1), pp.53-77.
- [12] Temam, R. and Strang, G., 1980. Functions of bounded deformation. Archive for Rational Mechanics and Analysis, 75(1), pp.7-21.

Franz Gmeineder: Mathematisches Institut, Universitat Bonn, Endenicher Allee 60, 53115 Bonn, Germany. Email: fgmeined@math.uni-bonn.de

BOGDAN RAITA: ANDREW WILES BUILDING, UNIVERSITY OF OXFORD, WOODSTOCK RD, OXFORD OX2 6GG, UNITED KINGDOM. EMAIL: RAITA@MATHS.OX.AC.UK