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Abstract. We prove that the inhomogeneous estimate of vector fields on balls in Rn(∫
B
|Dk−1u|n/(n−1)dx

)(n−1)/n

6 c

(∫
B
|Au| + |u|dx

)
for all u ∈ C∞(B̄,RN )

holds if and only if the linear, constant coefficient differential operator A of order k
has finite dimensional null-space (FDN). This generalizes the Gagliardo-Nirenberg-

Sobolev inequality on domains and provides the local version of the analogous homo-

geneous embedding in full-space(∫
Rn

|Dk−1u|n/(n−1)dx

)(n−1)/n

6 c

∫
Rn

|Au|dx for all u ∈ C∞c (Rn,RN ),

proved by Van Schaftingen precisely for elliptic and cancelling (EC) operators, build-
ing on fundamental L1-estimates from the works of Bourgain and Brezis. We prove

that FDN strictly implies EC and discuss the contrast between homogeneous and

inhomogeneous estimates on both algebraic and analytic level.

1. Introduction

1.1. L1-estimates. A known principle in harmonic analysis is that strong–type L1–
estimates are notoriously delicate to obtain. For example, singular integrals and Riesz
potentials are only bounded from L1 into a weak–type space, which contrasts the case of
Lp–spaces, p > 1. To note that these L1–estimates of weak–type are sharp, one simply
tests the inequalities with an approximation of the identity.

Historically, this discrepancy can be observed already from the original proof of the
Sobolev inequality for 1 < p < n and p∗ = np

n−p ,

‖u‖Lp∗ (Rn) 6 c‖Du‖Lp(Rn)(1.1)

for u ∈ C∞c (Rn). The technique of proof in [41] resembles proving boundedness of the

Riesz potential I1 between Lp and Lnp/(n−p), but it is in no way adaptable to the p = 1
case. It was much later that Gagliardo [24] and Nirenberg [36] independently showed
with new methods that (1.1) holds also for p = 1, in particular showing that the specific
vectorial structure of the gradient operator allows for a strong–type estimate, despite

unboundedness of I1 between L1 and L1∗ .
Coupled with the fact attributable to Calderón and Zygmund [16] that

‖Dku‖Lp(Rn) 6 c‖Au‖Lp(Rn)(1.2)

for k–th order elliptic operators A and 1 < p < ∞, it seems plausible that the vectorial
structure of A may also compensate for unboundedness of singular integrals on L1. This
fact was disproved by Ornstein in [37] (see also [31]), where it is shown that the estimate
(1.2) holds for p = 1 only if |Dku| 6 c|Au| pointwisely for all u ∈ C∞c .
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However, it remained possible that strong–type L1–estimates for lower order derivatives
can be deduced. Indeed, it was proved by Strauss in [44] that (1.1) holds for p = 1 when
the L1–norm of Du is replaced by the weaker quantity ‖Eu‖L1 . Here Eu = 1

2 (Du+(Du)t)
denotes the symmetrized gradient of u. More recently, it was proved by Bourgain and
Brezis in [5, 7] that, for Poisson’s equation in Rn, n ≥ 2,

∆u = f,

the surprising strong L1–estimate

‖Du‖L1∗ 6 c‖f‖L1

holds provided that f ∈ C∞c is divergence–free. This and substantial contributions in [8, 9,
10, 4, 6, 5, 7, 48, 49, 50, 51] lead to the remarkable characterization by Van Schaftingen
[52] of all k–homogeneous linear differential operators A such that

‖Dk−1u‖L1∗ (Rn) 6 c‖Au‖L1(Rn)(1.3)

for all u ∈ C∞c . The class of operators A for which (1.3) holds is that of elliptic and
cancelling operators (EC). Both these assumptions are defined in terms of the symbol
map of the operator A, the definition of which we now recall. We will represent k–
homogeneous linear differential operators with constant coefficients on Rn from V to W
as

Au =
∑
|α|=k

Aα∂
αu, u : Rn → V,(1.4)

where Aα ∈ L (V,W ) are fixed linear mappings between two finite dimensional normed
real vector spaces V and W . The symbol map is defined as

A[·] : Rn → L (V,W ), A[ξ]v =
∑
|α|=k

ξαAαv,

defined for ξ ∈ Rn, v ∈ V . Algebraically, (overdetermined) ellipticity is defined by injec-
tivity of the symbol map A[ξ] for all non–zero ξ ∈ Rn, whereas cancellation, introduced
in [52, Def. 1.2], is defined by ⋂

ξ∈Rn\{0}

imA[ξ] = {0}.(1.5)

We will use the short–hand EC for operators that are elliptic and cancelling. Analytically,
ellipticity is equivalent to the classical estimate (1.2). Surprisingly and interestingly,
cancellation is equivalent to non–admissibility for (1.3) of approximations of the identity,
in the sense that if Auε = ϕεw for all standard mollifiers ϕε ∈ C∞c (Rn) and w ∈W , then
w ∈ imA[ξ] for all ξ 6= 0.

1.2. L1-estimates on domains. An overarching overview of these and other recent de-
velopments on L1–estimates can be found in [53], where it is also asked in Open Prob-
lem 3 whether, under suitable complementing boundary conditions, one can develop global
strong–type estimates on domains. It is implicitly conjectured that estimates on smooth
domains Ω ⊂ Rn such as

‖Dk−1u‖L1∗ (Ω) 6 ‖Au‖L1(Ω) + ‖u‖L1(Ω),

provided that A is EC and u ∈ C∞(Ω̄, V ) satisfy Bju = 0 on ∂Ω, where Bj is a (finite
collection of) linear differential operator(s) defined on ∂Ω that satisfy the Lopatinskĭı–
Shapiro Complementing Conditions. Such a result would provide a reasonable analogue
of the results in [32, 1, 2, 26] to the case p = 1, in spite of Ornstein’s Non–Inequality.

The aim of this paper is to confirm this expectation in the case when Bj ≡ 0 (“no
boundary condition”) and Ω is a ball (whereas Van Schaftingen’s result [52, Thm. 1.3]
essentially deals with the antipodal case when Bj = ∂jν , j = 0 . . . k− 1, i.e., “all boundary
conditions”). We emphasize that in the present situation the geometry of ∂Ω is not the
foremost problem, as is the extendibility of functions u : Ω→ V to some v : Rn → V while
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ensuring that Av ∈ L1(Rn, V ) boundedly. In fact, as we shall see below, this property
even fails for a wealth of elliptic and cancelling operators. However, as the reader will
note at ease, the extension procedure as outlined below works for a substantially larger
class than that of Lipschitz domains, e.g., for those covered in [28, 18].

The complementing conditions for smooth domains for an elliptic operator A and
identically zero boundary conditions [27, Def. 20.1.1] can be rephrased as

A[ξ] ∈ L (V + iV,W + iW ) is injective for all ξ ∈ Cn \ {0}.(1.6)

This condition, referred to as C–ellipticity in [12], and attributable to Aronszajn [3] (at
least in the case of scalar–valued maps), was introduced to characterize operators A such
that the local variant of (1.2) holds, i.e.,

‖Dku‖Lp(B) 6 c
(
‖Au‖Lp(B) + ‖u‖Lp(B)

)
(1.7)

holds for u ∈ C∞(B̄, V ) (here 1 < p <∞); see also [39, 40]. By Ornstein’s Non–Inequality,
no such estimate is possible for p = 1, but, inspired by Van Schaftingen’s Theorem
and Open Problem, we will prove that C–ellipticity of A is equivalent to the estimate

‖Dk−1u‖Ln/(n−1)(B) 6 c
(
‖Au‖L1(B) + ‖u‖L1(B)

)
(1.8)

for u ∈ C∞c (B̄, V ). In particular, we recover the Gagliardo–Nirenberg–Sobolev inequality
on domains and the Korn–Sobolev inequality [43, Prop. 1.2], due to Strang and Temam.

To formally state our results, we prefer to use the functional framework of A–weakly
differentiable functions and define, in the spirit of [12], the space WA,1(B) as the space of
u ∈ L1(B, V ) such that Au ∈ L1(B,W ) with the obvious norm. In view of characterising
operators A admitting inequalities of the form (1.8), we confine to operators of order one
first and state our main result in the following slightly more elaborate form:

Theorem 1.1. Let A be as in (1.4), k = 1, n > 1. The following are equivalent:

(a) A is C–elliptic.

(b) WA,1(B) ↪→ L
n
n−1 (B, V ).

(c) WA,1(B) ↪→ Lp(B, V ) for some 1 < p 6 n
n−1 .

(d) WA,1(B) ↪→↪→ Lq(B, V ) for all 1 6 q < n
n−1 .

(e) WA,1(B) ↪→↪→ L1(B, V ).

This result manifests the following dichotomy: Either A is C-elliptic, in which case
one retrieves the known Sobolev embeddings on domains for the gradient or symmetric
gradients, say, or A is not C-elliptic. In this case estimates trivialise in the sense that for
such A, u ∈ WA,1(B) in general only belongs to L1(B;V ) (which holds by definition of

WA,1) but no better Lp-space.
To prove this, a crucial step is to show that C–ellipticity implies cancellation. Then

we extend to full–space and employ (1.3). The fact that the sub–critical embedding in
(d) is compact generalizes the well–known result for BD (i.e., for A = E ; see [23, 43, 45])
and is achieved by a careful application of the Riesz–Kolmogorov criterion. It is a priori
far from obvious how can one connect the algebraic definitions of C–ellipticity (1.6) and
cancellation (1.5). We, however, consider the analytic characterization of cancellation
[52, Prop. 6.1] and a consequence of Smith’s representation formulas [40] (the kernel of a
C–elliptic operator is finite dimensional) to build a bridge in Lemma 3.2. In fact, it was
already observed in [12] for first order operators that C–ellipticity of A is equivalent with

dim{u ∈ D ′(Rn, V ) : Au = 0} <∞.(FDN)

In Proposition 3.1 we will give a short proof of the fact that C–ellipticity and FDN are
equivalent for operators of arbitrary order. Henceforth, we will thus use “FDN” and “C–
elliptic” interchangeably. On the other hand, we also show that the implication of EC by
C–ellipticity is strict by considering the first order operator

Au = (∂1u1 − ∂2u2, ∂2u1 + ∂1u2, ∂3u1, ∂3u2) for u : R3 → R2.
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N = 1 N ≥ 2

n = 2

k = 1: E⇒FDN
k = 2: EC⇒FDN
k ≥ 3: EC 6⇒FDN

k = 1: EC⇒FDN
k ≥ 2: EC 6⇒FDN

n ≥ 3
k = 1: E⇒FDN
k ≥ 2: EC 6⇒FDN

EC6⇒FDN

Figure 1. Relationships between EC (elliptic and cancelling) and FDN
(finite dimensional nullspace) for all constellations of n ≥ 2, N ≥ 1 and
the order k ≥ 1 of A.

In particular, for this operator, there are maps in WA,1(B) that are locally n
n−1–integrable,

but are not Lp–integrable up to the boundary for any p > 1. We further expand on these
points in Section 3.1.

In Section 3 we will give a more comprehensive comparison of the two conditions,
depending on n, N = dimV and the order k of A; this is depicted in Figure 1. In general,
we have the following result, which we believe to be of independent interest besides serving
as a crucial tool in the proof of Theorem 1.1:

Theorem 1.2. Let A be as in (1.4) with k ≥ 1 and n > 1. Then A has FDN if and only
if A is C–elliptic. Moreover, if A has FDN, then A is elliptic and cancelling, and there
exists a bounded, linear extension operator EB : WA,1(B)→WA,1(Rn).

Due to lack of boundedness of singular integrals on L1, the matter of extending
WA,1(B)-maps is much more delicate as in the case of usual Sobolev spaces (or in the
more general contexts considered in [40, 30]), cp. Lemma 5.7. Instead, we resort to the
technique introduced by Jones [28]. From a conceptual perspective, this method cru-
cially relies on inverse estimates for polynomials and thereby underlines the need of the
FDN. Using the tools from Theorem 1.2, we can refine our result on fractional scales,
thereby obtaining the local versions of the embeddings in [52, Thm. 8.1, Thm. 8.4]:

Theorem 1.3. Let A be as in (1.4) with k ≥ 1, s ∈ [k − 1, k) and q ∈ (1,∞). Then A
has FDN if and only if there exists c > 0 such that

‖u‖
B
s, n
n−k+s

q (B,V )
6 c

(
‖Au‖L1(B,W ) + ‖u‖L1(B,V )

)
for all u ∈ C∞(B̄, V ).

Here, the Besov spaces on domains are defined as in [17, Sec. 2]. We obtain the embed-

dings WA,1(B) ↪→Ws,n/(n−k+s)(B, V ) if we choose q = n/(n−k+s) (cp. [52, Thm. 8.1])

and WA,1(B) ↪→Wk−1,n/(n−1)(B, V ) if we further choose s = k − 1 (cp. [52, Thm. 1.3]).
The novelty of Theorems 1.1 and 1.3 comes from the fact that, up to our knowledge, there
are only a few examples of L1–estimates near the boundary that go in the direction of [53,
Open Prob. 3] (cp. [15]). The result of Theorem 1.3 is sharp on the fractional (or Besov)
scale, in the sense that the parameter s = k is ruled out by Ornstein’s Non–Inequality.
Other embeddings into scales as Lorentz spaces are possible, too, but can be obtained in
the same way as the aforementioned embedding into Besov spaces, now using Theorem 1.2
in conjunction with the results of [52].

1.3. Organisation of the paper. This paper is organized as follows: In Section 2 we
collect preliminaries on function spaces, multi–linear algebra, harmonic analysis and give
examples of operators. In Section 3 we give the proof of the first two statements in
Theorem 1.2 and complete the comparison between EC and FDN, as well as the compar-
ison between the embeddings (1.3) and (1.8). In Section 4 we construct the Jones–type
extension and prove Theorems 1.1 and 1.3.
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2. Preliminaries

Throughout this paper we assume that n > 1.

2.1. Function spaces. We define, reminiscent of [33], for 1 6 p 6∞ and open Ω ⊂ Rn

WA,p(Ω) := {u ∈ Lp(Ω, V ) : Au ∈ Lp(Ω)},

BVA(Ω) := {u ∈ L1(Ω, V ) : Au ∈M(Ω,W )},

VA,p(Ω) := {u ∈WA,p(Ω): ∇lu ∈ Lp(Ω, V �l Rn), l = 1 . . . k − 1},

and the homogeneous spaces ẆA,p as the closure of C∞c (Rn, V ) in the semi–norm |u|A,p :=

‖Au‖Lp . In the case A = ∇k, we write Wk,p(Ω, V ), Vk,p(Ω, V ). When it is clear from the
context what the target space is, we abbreviate the Lp–norm of maps defined on Ω by
‖ · ‖p,Ω. We denote the space of V –valued polynomials of degree at most d in n variables
by Rd[x]V . We recall the weighted Bergman spaces Apα(D) of holomorphic maps defined
on the open unit disc D ⊂ C, that are p–integrable with weight wα(z) = (1 − |z|2)α. It
is well–known that these are Banach spaces under the Lpwα–norm for 1 6 p < ∞ and
−1 < α <∞. We also recall, for s > 0, 1 6 p, q <∞, the Besov space

Bs,pq (Ω) := {u ∈ Lp(Ω): |u|Bs,pq (Ω) <∞},

with an obvious choice of norm. Here, the Besov semi–norm is defined (see, e.g., [17,
Sec. 2]) for integer r > s by

|u|Bs,pq (Ω) = ‖u‖Ḃs,pq(Ω) :=

(∫ ∞
0

sup|h|<t ‖∆r
hu‖

q
Lp(Ω)

t1+sq
dt

) 1
q

,

where the r-th finite difference ∆r
hu is defined to be zero if undefined, i.e., if at least one

of x+ jh, j = 1 . . . r, falls outside Ω. We also define the homogeneous space Ḃs,pq(Rn) as
the closure of C∞c (Rn) in the Besov semi–norm.

We also collect the assumptions on our operators. As in Section 1, we say that A is
(C–)elliptic if and only if the linear map A[ξ] : V (+ iV ) → W (+ iW ) is injective for all
non–zero ξ ∈ Rn(+ iRn). Trivially, C–elliptic operators are elliptic. We say that A has
FDN (finite dimensional null–space) if and only if the vector space {u ∈ D ′(Rn, V ) : Au =
0} is finite dimensional. Finally, A is cancelling if and only if

⋂
ξ∈Sn−1 A[ξ](V ) = {0}.

2.2. Multi-linear algebra. Let U, V be finite dimensional vector spaces and l ∈ N. We
write L (U, V ) for the space of linear maps U → V and V �l U for the space of V –valued
symmetric l–linear maps on U . This is naturally the space of the l–th gradients, i.e.,
Dlf(x) ∈ V �l U for f ∈ Cl(U, V ), x ∈ U . For more detail, see [20, Ch. 1]. We also write
a⊗b = (aibj) (the usual tensor product) and ⊗la := ⊗a⊗ . . .⊗a, where a appears l times

on the right hand side. We single out the standard fact that ∇̂lf(ξ) = f̂(ξ)⊗l ξ ∈ V �l U
for f ∈ S (U, V ), ξ ∈ U . We recall the pairing introduced in [12], v ⊗A ξ := A[ξ]v, which
is reminiscent of the tensor product notation, i.e., if A = D, we have ⊗A = ⊗. We have
the following for k = 1:

A(ρu) = ρAu+ u⊗A ∇ρ for u ∈ C1(Rn, V ), ρ ∈ C1(Rn),

A(φ(w)) = φ′(w)⊗A ∇w for φ ∈ C1(R, V ), w ∈ C1(Rn).

The above can easily be checked by direct computation and will be used without mention.
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2.3. Harmonic analysis. Let A as in (1.4) be elliptic and u ∈ S (Rn, V ). We Fourier
transform Au and apply the one–sided inverse mA(ξ) := (A∗[ξ]A[ξ])−1A∗[ξ] ∈ L (W,V )

of A[ξ] to get that û(x) = mA(ξ)Âu(ξ) for ξ ∈ Rn (we omitted the complex multiplicative
constant arising from Fourier transforming, as it can be absorbed in the definition of mA).
We define the map GA as the inverse Fourier transform of the k–homogeneous map mA.
Thus we have the Green’s function representation u = GA ?Au. These considerations are
formalized in [11, Lem. 2.1], an implication of which we recall below:

Lemma 2.1. Let A as in (1.4) be elliptic. Then there exists a (1−n)–homogeneous map
KA ∈ C∞(Rn \ {0},L (W,V �k−1 Rn)) such that

Dk−1u(x) =

∫
Rn

KA(x− y)Au(y) dy = (KA ? Au)(x)(2.1)

for all u ∈ C∞c (Rn, V ).

We also record standard facts regarding Lp–boundedness of Riesz potentials (see [42,
Ch. V.1] and [25, Lem. 7.2]), which are defined by

Iαf := | · |α−n ? f

for α ∈ [0, n) and measurable f : Rn → R.

Theorem 2.2. Let 1 6 p, q 6∞. We have that:

(a) Iα is bounded Lp(Rn)→ Lq(Rn) for 0 < α < n, 1 < p < n/α, q = np/(n− αp);
(b) Iα is bounded Lp(Ω)→ Lq(Ω) for 0 < α < n, 0 6 n(1/p− 1/q) < α with

‖Iαf‖Lq(Ω) 6 c(diam Ω)α−n(1/p−1/q)‖f‖Lp(Ω)

for all f ∈ Lp(Ω).

In Theorem 2.2(b) we make the convention 1/∞ = 0.

2.4. Examples. We give examples of operators arising in conductivity, elasticity, plas-
ticity and fluid mechanics ([21, 23, 34]). Let A be as in (1.4). The facts that we use
without mention are the main Theorems 1.1, 1.2, and 1.3.

(a) If A = ∇k, we have that kerA = Rk−1[x]V , so A has FDN, hence is EC. This,
of course, corresponds to the case of classical Sobolev spaces, but we highlight it
here to stress that our generalization brings a new perspective on their study.

(b) If Au = Eu := (∇u+ (∇u)T)/2 is the symmetrized gradient, it is easy to see that
kerA is the space of rigid motions, i.e., affine maps of anti–symmetric gradient, so
A has FDN, hence is EC. In this case, we recover the inequality in [43, Prop. 1.2].

(c) Let Au = EDu := Eu− (div u/n)I, where n ≥ 2 and I is the identity n×n matrix.
If n ≥ 3, we have from [38] that kerA is the space of conformal Killing vectors,
so A has FDN, hence is EC. If n = 2, we show in Counterexample 3.4 that A is
elliptic. However, under the canonical identification R2 ∼= C, we can also identify
ED with the anti–holomorphic derivative ∂̄, so that we can further identify kerA
with the space of holomorphic functions, so A does not have FDN. Neither is A
cancelling: by ellipticity, we have that ED[ξ](R2) = R2. No critical embedding
(3.1), (3.2) can hold in this case.

(d) If A = ∆, which is clearly elliptic, we have that kerA is the space of all harmonic
functions, so A does not have FDN and since A[ξ](V ) = (ξ2

1 + . . .+ ξ2
n)RN = RN

for ξ ∈ Rn \ {0}, neither is A cancelling.
(e) If A is elliptic, one can consider minimizers of the A–Dirichlet energy u 7→∫

B
|Au|2 dx, which has Euler–Lagrange system A∗Au = 0. Then ∆A := A∗A

is elliptic, as 〈(A∗A)[ξ]v, v〉 = |A[ξ]v|2 & |ξ|2k|v|2, where the last inequality
follows from |A[ξ]v| > 0 on {|ξ| = 1, |v| = 1} and homogeneity. Therefore
(A∗A)[ξ](V ) = V for all ξ 6= 0, so the Euler–Lagrange system above has infi-
nite dimensional solution space (by Lemma 3.2).
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3. EC Versus FDN

We begin by proving the first two statements in Theorem 1.2. Throughout, n > 1.

Proposition 3.1. Let A be as in (1.4). Then A has FDN if and only if A is C–elliptic.

Proof. From Theorem 5.3, we have that if A is C–elliptic, then kerA consists of polyno-
mials of fixed maximal degree. Suppose now that A is not C–elliptic, so that there exist
non–zero ξ ∈ Cn, v ∈ V + iV such that A[ξ]v = 0. We define uf (x) = f(x · ξ)v, for holo-
morphic f : C → C. It can be shown by direct real differentiation of real and imaginary
parts and use of the Cauchy–Riemann equations for f that Duf (x) = (∂1f)(x · ξ)v ⊗ ξ.
Since ∂1f is itself holomorphic, inductively we get that Dluf (x) = (∂l1f)(x · ξ)v ⊗l ξ. We
make the simple observation that there exists a linear map A ∈ L (V �kRn,W ) such that
Au = A(Dku), which can be viewed as a coordinate invariant (jet) definition of A. In
this notation, by standard properties of the Fourier transform we get A[η]w = A(w⊗k η)
for η ∈ Rn, w ∈ V . It is then easy to see that Auf (x) = (∂k1 f)(x · ξ)A(v ⊗k ξ) = 0. In
particular, <uf ,=uf ∈ kerA, so A has infinite dimensional null–space. �

The above result enables us to use FDN and C–ellipticity interchangeably. Note that
to prove that FDN implies ellipticity, one can simply take real ξ, v and f ∈ C1(R). We
next provide an instrumental ingredient for proving sufficiency of FDN for Theorem 1.3.

Lemma 3.2. Let A be as in (1.4). If A has FDN, then A is cancelling.

Proof. We use Lemma 5.1. Let u ∈ C∞(Rn, V ) be such that K := sptAu is compact.
Consider an open ball B containing K. Cover the complement of B with an increasing
chain of overlapping open balls Bj such that Bc ⊂

⋃
j Bj ⊂ Kc. In particular, we have

Au = 0 in each Bj , so by Theorem 5.3, u must be a polynomial of degree at most d(A)
in each Bj . Since the pairs of balls overlap on a set of positive measure, we get that u
equals a V –valued polynomial P (tacitly viewed as already extended to the entire Rn)
in Bc such that AP = 0 in Rn. To conclude, we elaborate on the notation introduced
in the proof of Proposition 3.1. Put m := dimW , so that we can write in coordinates
(AV )l = Al ·V for fixed Al ∈ V �k Rn, l = 1 . . .m, and all V ∈ V �k Rn. For l = 1 . . .m,
we integrate by parts to get∫

Rn
(Au)l dx =

∫
B

Al ·Dkudx =

∫
∂B

Al · (Dk−1u⊗ ν) dHn−1

=

∫
∂B

Al · (Dk−1P ⊗ ν) dHn−1 =

∫
B

Al ·DkP dx =

∫
B

(AP )l dx = 0,

where ν denotes the unit normal to ∂B. The proof is complete. �

The converse of Lemma 3.2, however, is not true in general. In what follows, we
complete the algebraic comparison of the FDN condition and Van Schaftingen’s EC
condition. We write N := dimV . The streamline here is that for N = k = 1, ellip-
ticity alone implies FDN (rendering these cases rather uninteresting), whereas in higher
dimensions or for higher orders, there are EC operators that are not FDN. Somewhat
surprisingly, there are also a few instances in which ellipticity and C–ellipticity differ, but
EC implies FDN. We give the details below.

Lemma 3.3. Let A as in (1.4) be elliptic, N = k = 1. Then A has FDN.

Proof. Since N = 1, it is clear that A is F–elliptic, F ∈ {R,C}, if and only if the polyno-
mials (A[ξ])l, l = 1 . . .m, have no common non–trivial zeroes in F. Since we also assume
k = 1, we have A[ξ] = Aξ for some A ∈ Rm×n It is clear that all roots of the polynomials
thus arising are real (in fact, A is F–elliptic if and only if kerRA = 0). �

If n ≥ 3, EC turns out to be insufficient for FDN, even for scalar fields or first order
operators.
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Counterexample 3.4 (EC does not imply FDN). Consider the operators

Ak,nu := ∇k−1 (∂1u1 − ∂2u2, ∂2u1 + ∂1u2, ∂jui)(i,j)/∈{1,2}×{1,2} for N ≥ 2,

Bk,nu := ∇k−2
(
∂2

1u+ ∂2
2u, ∂

2
j u
)
j=3...n

for N = 1, k ≥ 2.

If n ≥ 3 or k ≥ 2, then Ak,n is elliptic and cancelling, but has infinite dimensional
null–space. The same is true of Bk,n if n ≥ 3 or k ≥ 3.

Proof. The failure of FDN is clear: simply take

uA(x) := (<f (x1 + ix2) ,=f (x1 + ix2) , 0, . . . , 0)
T

uB(x) := g(x1, x2)

for holomorphic f and (scalar) harmonic g. We next show that Ak,n = ∇k−1A1,n is
elliptic if n,N ≥ 2. We can reduce to ellipticity of A1,n, since for non–zero ξ, we have
that 0 = Ak,n[ξ]v = (A1,n[ξ]v)⊗k−1 ξ, so A1,n[ξ]v = 0. Let 1 6 j 6 n be such that ξj 6= 0.
If j ≥ 3, we clearly get v = 0. If 1 6 j 6 2, we get that vi = 0 for 3 6 i 6 N . The
remaining equations are ξ1v1 − ξ2v2 = 0 = ξ2v1 + ξ1v2, with determinant ξ2

1 + ξ2
2 > 0, so

v1 = 0 = v2. It remains to check that, under our assumptions, Ak,n is cancelling. The
case k > 1 is easier, since the composition of operators L1 ◦L2 is cancelling if L1 is. This
is simply due to the fact that im(L1 ◦ L2)[ξ] = L1[ξ](imL2[ξ]) ⊆ imL1[ξ]. If k = 1 and
n ≥ 3 we can make a straightforward computation. Write (wl)l=1...Nn−2 := A1,n[ξ]v. For
w ∈

⋂
ξ 6=0 A1,n[ξ](V ), we can essentially test with different values of ξ 6= 0. By choosing ξ

to have exactly one non–zero entry, we obtain that wl = 0 for 3 6 l 6 Nn−2. Incidentally,
when testing with ξ such that ξ1 = 0 = ξ2, we also obtain w1 = 0 = w2, so all properties
are checked for Ak,n. Ellipticity of Bk,n is obvious, whereas cancellation is established
analogously. �

The two specific cases that are not covered by Lemma 3.3 and Counterexample 3.4
reveal that the classes EC and FDN can coincide even if they are strictly smaller than
the class of elliptic operators.

Lemma 3.5. Let n = 2 and A be as in (1.4) be elliptic but not C–elliptic. If any of the
following hold,

(a) N = 1, k = 2,
(b) N ≥ 2, k = 1,

then A is not cancelling.

Proof. Suppose that (a) holds. Since N = 1 and A is not C–elliptic, the homogeneous,
quadratic, scalar polynomials (A[ξ])l, l = 1 . . .m, must have a common complex root.
This root cannot be real, as A is real–elliptic. It follows that (A[ξ])l are all multiples of
the same quadratic polynomial P : R → R, so that A[ξ]v = vP (ξ)w0 for all v ∈ V ' R
and some w0 ∈W \{0}. It is clear then that A[ξ](V ) = Rw for all ξ 6= 0. We next assume
that (b) holds. Since A is elliptic, there exist linearly independent ξ, η ∈ R2, v, w ∈ RN
such that A[ξ]v = A[η]w and A[ξ]w = −A[η]v. We also have that any ζ ∈ R2 can be
written as ζ = aξ + bη. We put vζ := av + bw. It follows that

A[ζ]vζ = A[aξ + bη](av + bw) = (a2 + b2)A[ξ]v,

so that
⋂
ζ∈R2\{0} A[ζ](V ) 3 A[ξ]v 6= 0. �

We conclude this section with a minor curiosity: we can append the proof above by
taking wζ := bv − aw and obtain

⋂
ζ 6=0 A[ζ](V ) ⊃ {A[ξ]v,A[ξ]w}. Therefore, if n = 2,

k = 1, and A is elliptic but not cancelling, then

dim
⋂
ζ 6=0

A[ζ](V ) ≥ 2.

This is no longer the case in higher dimensions, as can be seen by considering the first
order operator Au = (div u, curlu) for u : Rn → Rn, n ≥ 3.
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3.1. Insufficiency of EC. We next give examples of first order EC operators and do-
mains Ω ⊂ Rn for which the Sobolev–type embedding fails. Firstly, we pause to compare
the embeddings in Theorem 1.1(b), (c) with Van Schaftingen’s homogeneous embed-

ding ẆA,1(Rn) ↪→ L
n
n−1 (Rn, V ). For elliptic A, the latter embedding is equivalent to

WA,1
0 (B) ↪→ L

n
n−1 (B, V )(3.1)

(see Lemma 5.9 for a scaling argument) and it can easily be shown that, in the absence of
cancellation, we can still prove by means of a Green’s formula and boundedness of Riesz

potentials that WA,1
0 (B) ↪→ Lp(B, V ) for any 1 6 p < n/(n− 1) (see Lemma 5.10). Here

WA,p
0 (B) is defined as the closure of C∞c (B, V ) in the (semi–)norm u 7→ ‖Au‖Lp . The

situation is dramatically different as far as Lp–embeddings of WA,1(B) are concerned. By
Theorem 1.1, if the critical embedding

WA,1(B) ↪→ L
n
n−1 (B, V )(3.2)

fails, then no uniform higher integrability estimate is possible. The difference can be even
sharper: for EC, non–FDN operators there are maps in WA,1(B) that have no higher inte-
grability, so the homogeneous embedding (3.1) can hold even if the inhomogeneous (3.2)

fails completely. We highlight that the main difference between WA,1(B) and WA,1
0 (B)

lies in the traces, which are integrable if and only if A has FDN [12].

The existence of elliptic and cancelling A, domains Ω, and of maps u ∈ WA,1(Ω)
that are in no Lp(Ω, V ), p > 1, follows from Counterexample 3.4 above and the next
Lemma, which is a strengthened version of the strict inclusion of (weighted) Bergman
spaces generalized to elliptic, non–FDN operators.

Lemma 3.6. Let k = 1 and A as in (1.4) be elliptic but not have FDN, so there exist
linearly independent η1, η2 ∈ Rn such that A[η1 + i η2] has non–trivial kernel in V + iV .
Assume that η1, η2 are orthonormal. If any of the following holds:

(a) Ω := Bspan{η1,η2} × [0, 1]n−2,
(b) Ω := B,

then there exists smooth u ∈ L1 \
⋃
p>1 Lp(Ω, V ) such that Au = 0.

Proof. We write ξ = η1 + i η2, and write D for the unit disc in span{η1, η2}. We stress
that each ηj must be non–zero by ellipticity of A, so D is indeed a non–degenerate disc.
We also know from the proof of Proposition 3.1 that there exist non–zero v ∈ V + iV
such that A[ξ]v = 0, and one can show by direct computation that for any holomorphic
function f we can define uf (x) := f(x · ξ)v, for which A<uf = 0 = A=uf . We have that∫

Ω

|uf (x)|p dx =

∫
D

∫
(η+{η1,η2}⊥)∩Ω

|f(η · ξ)|p|v|p dHn−2 dH2(η)

= |v|p
∫
D

|f(η · ξ)|pHn−2
(
(η + {η1, η2}⊥) ∩ Ω

)
dH2(η)

We now make the case distinction. Assume (a) holds, so∫
Ω

|uf (x)|p dx = |v|p
∫
D

|f(η · ξ)|p dH2(η) =

∫
D
|f(z)|p dL2(z).

Assume (b), so∫
Ω

|uf (x)|p dx = c(n)|v|p
∫
D

|f(η · ξ)|p(1− |η|2)
n−2
2 dH2(η)

= c(n)|v|p
∫
D
|f(z)|p(1− |z|2)

n−2
2 dL2(z),

where c(n) denotes the volume of the (n − 2)–dimensional ball. By Lemma 3.7 below,
we can choose f ∈ A1

α(D) \
⋃
p>1A

p
α(D) for α = 0 and α = (n − 2)/2 respectively, so

that both <uf and =uf are in L1(B, V ), but one of them is in not in any other Lp. This
proves the claim. �
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The following Lemma is also feasible by direct computation, but we prefer to give an
abstract argument for the sake of brevity.

Lemma 3.7. For all 1 6 p <∞, α ≥ 0 the set Apα(D) \
⋃
q>pA

q
α(D) is non–empty.

Proof. We abbreviate Ap := Apα(D). The proof relies on the strict inclusion Aq ( Ap for
1 6 p < q < ∞ proved in [55, Cor. 68] and a Baire category argument. Assume that
the result is false, so that by Hölder’s Inequality we can find a sequence qj ↓ p such that

Ap =
⋃
j A

qj . For natural l, we define the sets F jl := {f ∈ Aqj : ‖f‖qj
Aqj
6 l}, which we

claim to be closed in Ap. Let fm ∈ F jl converge to f in Ap. By completeness of Ap, we
have, by Fatou’s Lemma on a pointwise convergent, not relabelled subsequence that∫

D
|f |qjwα dL2 6 lim inf

m→∞

∫
D
|fm|qjwα dL2 6 l,

so that indeed f ∈ F jl . Since Aqj is a proper subspace of Ap, it follows that the sets F jl
are nowhere dense in Ap. It remains to notice that then Ap =

⋃
j,l F

j
l , which contradicts

completeness of Ap by Baire’s Theorem. �

3.2. Comparison to the Bourgain–Brezis condition. We recall here the assumptions
on A (sufficient for EC) under which a general inequality of the type (1.3) was first proved
in [7], in the case k = 1 and V = Rn. In their notation, we write (Au)s = 〈L(s),∇u〉 for
matrices L(s) ∈ Rn×n, s = 1 . . .m. It is shown in [7, Thm. 25], that if an operator A is
elliptic such that detL(s) = 0 for s = 1 . . .m, then (1.3) holds. It is clear (either by [52,
Thm. 1.3] or by direct computation) that such operators are cancelling. By Lemma 3.5,
if n = 2, we have that such A also has FDN, and thus satisfies (3.2). However, if n ≥ 3,
we show that A1,n as in Counterexample 3.4 with N = n satisfies the Bourgain–Brezis

condition, but do not have FDN. We explicitly write down the matrices L(s) if n = 3, the
general case being a simple exercise: 1 0 0

0 −1 0
0 0 0

 ,

 0 1 0
1 0 0
0 0 0

 ,

 0 0 0
0 0 0
1 0 0

 ,

 0 0 0
0 0 0
0 1 0

 ,

 0 0 0
0 0 0
0 0 1

 ,

 0 0 1
0 0 0
0 0 0

 ,

 0 0 0
0 0 1
0 0 0

 .

By the reasoning in Section 3.1, with A = A1,n, we have that ẆA,1(Rn) ↪→ Ln/(n−1)(Rn),

but there are maps in WA,1(B) that have no higher integrability.

4. The Sobolev–type Embedding on Domains

4.1. A Jones–type Extension. In this section we complete the proof of Theorem 1.2
with the following generalization:

Theorem 4.1. Let A as in (1.4) have FDN, 1 6 p <∞, Ω ⊂ Rn be a bounded Lipschitz
domain. Then there exists a bounded, linear extension operator

EΩ : WA,p(Ω)→ VA,p(Rn).

To prove this result we use Jones’ method of extension developed in the celebrated
paper [28]. Recall that Jones’s original idea was to decompose a small neighbourhood of
∂Ω into small cubes and assign suitable polynomials of degree at most k−1 to each cube.
Inspired by [12, Sec. 4.1-2], we assign elements of kerA on such cubes, as explained below.
We stress that the fact that kerA consists of a finite dimensional space of polynomials
is essential for the construction to work. With this crucial modification, the streamlined
proof that we include below mostly follows the same lines as in [28, Sec. 2-3], where all the
details we omit can be found. What deserves some special attention is a Poincaré–type
inequality, which is interesting in its own right, as it implies that WA,p(B) ' VA,p(B)
for FDN operators (see Lemma 5.6). We present it below and mention that it is a
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generalization of the results in [33, Sec. 1.1.11] and [12, Sec. 3]. We extend the notation
presented in Theorem 5.3 by πΩu := ΠPu, where Π denotes the L2–orthogonal projection
of Rd[x]V onto kerA.

Proposition 4.2 (Poincaré–type inequality). Let A as in (1.4) have FDN, 1 6 p 6 ∞,
0 6 l < k, and Ω ⊂ Rn be a star–shaped domain with respect to a ball. Then there exists
c > 0 such that

‖∇l(u− πΩu)‖p,Ω 6 c(diam Ω)k−l‖Au‖p.Ω(4.1)

for all u ∈ C∞(Ω̄, V ).

Interestingly, A having FDN is not necessary for the estimate (4.1) to hold, as can be
seen from [22]. We believe that ellipticity alone is sufficient for the estimate to hold and
intend to pursue this in future work.

Proof. We start with ‖∇l(u − πΩu)‖p,Ω 6 ‖∇l(u − Pu)‖p,Ω + ‖∇l(Pu − πΩu)‖p,Ω, and
estimate both terms. We have by the growth conditions on K from Theorem 5.3 that

‖∇l(u− Pu)‖p,Ω =

(∫
Ω

∣∣∣∣∫
Ω

∇lxK(x, y)Au(y) dy

∣∣∣∣p dx

) 1
p

.

(∫
Ω

(∫
Ω

|Au(y)|
|x− y|n+l−k dy

)p
dx

) 1
p

.

Now consider the case n+ l > k, so that we can estimate the RHS using Theorem 2.2(b):

‖Ik−l(|Au|)‖p,Ω . (diam Ω)k−l‖Au‖p,Ω.
If, on the other hand, n+ l 6 k, with R = diam Ω, we perform the elementary estimation(∫

Ω

(∫
Ω

|Au(y)||x− y|k−l−n dy

)p
dx

) 1
p

6 Rk−l−n
(∫

Ω

|Au(y)|dy
)(∫

Ω

dx

) 1
p

6 Rk−l−n ·Rn(p−1)/p · ‖Au‖p,Ω ·Rn/p

= Rk−l‖Au‖p,Ω,
where obvious modifications have to be made if p =∞.

We then note that P 7→ ‖P − ΠP‖p,Ω and P 7→ ‖AP‖p,Ω respectively define a semi–
norm and a norm on the finite dimensional vector space Rd[x]V / kerA, so that the second
term ‖∇l(Pu − πΩu)‖p,Ω . ‖APu‖p,Ω, with a domain dependent constant. We recall
from the original proof of Theorem 5.3 that Pu is the averaged Taylor polynomial

Pu(x) =

∫
Ω

∑
|α|6d

∂αy ((y − x)αw(y))

α!
u(y) dy =

∫
Ω

∑
|α|6d

(x− y)α

α!
w(y)∂αu(y) dy,

where the weight w is a smooth map supported in the ball with respect to which Ω is
star–shaped such that

∫
w = 1. One can show by direct computation that averaged

Taylor polynomials “commute” with derivatives, in the sense that

APu =

∫
Ω

∑
|β|6d−k

∂βy
(
(y − · )βw(y)

)
α!

Au(y) dy.

It is then obvious that ‖APu‖p,Ω . ‖Au‖p,Ω. The precise dependence of the constant on
the domain follows by standard scaling arguments. �

We next introduce the framework required to prove Theorem 4.1. We use the same
Whitney coverings as in [28], which we recall for the reader’s convenience. Firstly recall
the Decomposition Lemma introduced in [54], that any open subset Ω ⊂ Rn can be
covered with a countable collection W1 := {Sj} of closed dyadic cubes satisfying

(D1) `(Sj)/4 6 `(Sl) 6 4`(Sj) if Sj ∩ Sl 6= ∅,
(D2) intSj ∩ intSl = ∅ if j 6= l,
(D3) `(Sj) 6 dist(Sj , ∂Ω) 6 4

√
n`(Sj) for all j,

11



where `(Q) denotes the side–length of a cube Q. We henceforth assume that Ω is as in the
statement of Theorem 4.1. We further consider a Whitney decomposition W2 := {Ql}
of Rn \ Ω̄, and further define W3 := {Q ∈ W2 : `(Q) 6 εδ/(16n)}. We reflect each cube
Q ∈ W3 to a non–unique interior cube Q∗ ∈ W1 such that

(R1) `(Q) 6 `(Q∗) 6 4`(Q),
(R2) dist(Q,Q∗) 6 C`(Q),

where above and in the following C denotes a constant depending on k, p, n, ε, δ only;
additional dependencies will be specified. The non–uniqueness causes no issues, as one
can show that

(R3) For any two choices S1, S2 of Q∗, we have dist(S1, S2) 6 C`(Q),
(R4) For any S ∈ W1, there are at most C cubes Q ∈ W3 such that S = Q∗,
(R5) For any adjacent Q1, Q2 ∈ W3, we have dist(Q∗1, Q

∗
2) 6 C`(Q1).

For detail on theses basic properties of the reflection see [28, Lem. 2.4-7]. We conclude
the presentation of the decomposition by quoting the following:

Lemma 4.3 ([28, Lem. 2.8]). For any adjacent cubes Q1, Q2 ∈ W3, there is a chain
C(Q∗1, Q∗2) := {Q∗1 =: S1, S2, . . . Sm := Q∗2} of cubes in Sj ∈ W1, i.e., such that Sj and
Sj+1 touch for all j, and m 6 C.

We proceed to define the extension operator

EΩu :=

{
u in Ω∑
Q∈W3

ϕQπQ∗u in Rn \ Ω̄,

where {ϕQ}Q∈W3
⊂ C∞(Rn) is a partition of unity such that for all Q ∈ W3 we have

(P1) 0 6 ϕQ 6 1 and
∑
Q∈W3

ϕQ = 1 in
⋃
W3,

(P2) sptϕQ ⊂ 17/16Q, where λQ denotes the homothety of Q by λ about its centre,
(P3) |∇lϕQ| 6 C`(Q)−l for all 0 6 l 6 k.

Our proof mostly follows the lines of the original proof. We first prove an estimate on
chains in W1, then suitably bound the norms of the derivatives in the exterior domains,
and we conclude by showing that the extension has weak derivatives in full–space. We
warn the reader that in the remainder of this section we may use the properties of the
decomposition, reflection and partition of unity without mention.

Lemma 4.4 ([28, Lem. 3.1]). Let C := {S1, . . . Sm} ⊂ W1 be a chain. Then for 0 6 l < k
we have

‖∇l(πS1
u− πSmu)‖p,S1

6 C(m)`(S1)k−l‖Au‖p,∪C
for all u ∈ C∞(Ω̄, V ).

Proof. We remark that Lp–norms of polynomials of degree at most d on adjacent cubes
in W1 are comparable (see, e.g., [28, Lem. 2.1]). We get

LHS 6
m−1∑
j=1

‖∇l(πSj+1u− πSju)‖p,S1

6 C(m)

m−1∑
j=1

‖∇l(πSj+1
u− πSj∪Sj+1

u)‖p,Sj+1
+ ‖∇l(πSj∪Sj+1

u− πSju)‖p,Sj

6 C(m)

m−1∑
j=1

(
‖∇l(πSj+1

u− u)‖p,Sj+1
+ 2‖∇l(u− πSj∪Sj+1

u)‖p,Sj∪Sj+1

+‖∇l(u− πSju)‖p,Sj
)

and we can use the Poincaré–type inequality, Proposition 4.2, to conclude. �

Lemma 4.5 ([28, Prop. 3.4]). For 1 6 p 6∞, we have ‖EΩu‖VA,p(Rn\Ω̄) 6 C‖u‖WA,p(Ω)

for all u ∈ C∞(Ω̄, V ).
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Proof. We estimate on each cube in W2, distinguishing between small and large cubes.
We also distinguish between A and the derivatives of order less than k. Let Q0 ∈ W3.
Then, since ϕQ sum to one in Q0 and AπQ∗0u ≡ 0, we have

‖AEΩu‖p,Q0
=

∥∥∥∥∥∥A
∑
Q∈W3

ϕQ(πQ∗u− πQ∗0u)

∥∥∥∥∥∥
p,Q0

6

∥∥∥∥∥∥
∑

∅6=Q0∩Q∈W3

A(ϕQ(πQ∗u− πQ∗0u))

∥∥∥∥∥∥
p,Q0

6 C
∑

∅6=Q0∩Q∈W3

k−1∑
j=0

‖|∇k−jϕQ||∇j(πQ∗u− πQ∗0u)|‖p,Q0

6 C
∑

∅6=Q0∩Q∈W3

k−1∑
j=0

`(Q0)j−k‖∇j(πQ∗u− πQ∗0u)‖p,Q∗0

6 C
∑

∅6=Q0∩Q∈W3

‖Au‖p,∪C(Q∗0 ,Q∗),

where the last inequality follows from Lemma 4.4. With a similar reasoning we obtain,
for 0 6 l 6 k − 1, that

‖∇lEΩu‖p,Q0 6 C

‖∇lu‖p,Q∗0 + `(Q0)k−l
∑

∅6=Q0∩Q∈W3

‖Au‖p,∪C(Q∗0 ,Q∗)

 .

We move on to the case Q0 ∈ W2 \ W3, so if Q ∩ Q0 6= ∅, then `(Q) ≥ `(Q0)/4 ≥
εδ/(64n) ≥ C. Let 0 6 l 6 k − 1, so that

‖∇lEΩu‖p,Q0
6

∑
∅6=Q0∩Q∈W3

‖∇l(ϕQπQ∗u)‖p,Q0

6 C
∑

∅6=Q0∩Q∈W3

l∑
j=1

`(Q0)j−l‖∇jπQ∗u‖p,Q0

6 C
∑

∅6=Q0∩Q∈W3

l∑
j=1

`(Q0)j−l‖∇jπQ∗u‖p,Q∗

6 C
∑

∅6=Q0∩Q∈W3

l∑
j=1

`(Q0)j−l(‖∇j(πQ∗u− u)‖p,Q∗ + ‖∇ju‖p,Q∗)

6 C
∑

∅6=Q0∩Q∈W3

‖u‖Vl,p(Q∗,V ) + `(Q0)k−l‖Au‖p,Q∗ .

As, above, we similarly show that ‖AEΩu‖p,Q0
6 C

∑
∅6=Q0∩Q∈W3

‖u‖VA,p(Q∗). There is

no loss in assuming that `(Q0) 6 1 for any Q0 ∈ W2, so that we can collect the estimates
to obtain

‖EΩu‖VA,p(Q0) 6 C
∑

∅6=Q0∩Q∈W3

‖u‖VA,p(C(Q∗0 ,Q∗)).

It remains to use local finiteness of the partition of unity (see, e.g., [28, Eqn. (3.1-4)]) and
Lemma 5.6 to conclude. �

Proof of Theorem 4.1. We firstly show that EΩu has weak derivatives in Rn, for which it
suffices (by Lemma 5.5) to show that EΩ maps u ∈ Vk,∞(Ω̄, V ) into Vk,∞(Rn, V ). This
we do in two steps. First, we show that the obvious candidate (∇lu)χΩ̄ + (∇lEΩu)χRn\Ω̄
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is bounded for all 0 6 l 6 k. We need only prove this for l = k, the other cases being
dealt with in Lemma 4.5 for p =∞. As before, we first take Q0 ∈ W3, where

|∇kEΩu| 6 |∇kπQ∗0u|+
∑

∅6=Q0∩Q∈W3

|∇k(ϕQ(πQ∗u− πQ∗0u))|

6 C

|∇kπQ∗0u|+ ∑
∅6=Q0∩Q∈W3

‖∇ku‖∞,C(Q∗0 ,Q∗)

 .

Clearly, P 7→ ‖∇kP‖∞,Q∗0 is a norm on Rd[x]V /Rk−1[x], whereas P 7→ ‖∇kΠP‖∞,Q∗0 is a

semi–norm. We therefore get that ‖∇kπQ∗0u‖∞,Q∗0 6 C‖∇kPQ∗0u‖∞,Q∗0 6 C‖∇ku‖∞,Q∗0 ,
where the latter inequality is given by the stability of averaged Taylor polynomials. Now
consider the other case, when Q0 ∈ W2 \W3, and recall that then `(Q0) ≥ C. We have

|∇lEΩu| 6
∑

∅6=Q0∩Q∈W3

|∇k(ϕQπQ∗)| 6 C
∑

∅6=Q0∩Q∈W3

k∑
j=1

`(Q)j−k|∇jπΩu|

6 C
∑

∅6=Q0∩Q∈W3

k∑
j=1

`(Q0)j−k|∇jπΩu| 6 C
∑

∅6=Q0∩Q∈W3

k∑
j=1

|∇jπΩu|,

so we can conclude as in the previous step.
The second step is to show that ∇lEΩu is continuous for 0 6 l < k. To this end, it

suffice to show that

‖∇lEΩu− (∇lu)Q∗0‖∞,Q0
→ 0 as `(Q0)→ 0

for Q0 ∈ W3. Here ( · )S denotes the average with respect to Lebesgue measure on S. By
the triangle inequality and properties of the partition of unity, we get

‖∇lEΩu− (∇lu)Q∗0‖∞,Q0
6

∥∥∥∥∥∥∇l
∑

∅6=Q0∩Q∈W3

ϕQ(πQ∗ − πQ∗0 )

∥∥∥∥∥∥
∞,Q0

+ ‖∇lπQ∗0u− (∇lu)Q∗0‖∞,Q0 = I + II.

By an estimation which is by now routine (see the proof of Lemma 4.5) we have that

I 6 C`(Q0)k−l
∑

∅6=Q0∩Q∈W3

‖Au‖∞,∪C(Q∗0 ,Q∗),

which tends to zero as `(Q0) → 0 since k > l. For the second term, we have by [28,
Lem. 2.1] and closeness of Q0 and Q∗0 that

II 6 C‖∇lπQ∗0u− (∇lu)Q∗0‖∞,Q∗0 6 C‖∇
lπQ∗0u−∇

lu‖∞,Q∗0 + C‖∇lu− (∇lu)Q∗0‖∞,Q∗0
6 C`(Q0)‖Au‖∞,Q∗0 + C`(Q0)‖∇l+1u‖∞,Q∗0 ,

where the last inequality we used Proposition 4.2 and the fact that ∇lu is Lipschitz as
l < k.

We next note that by density of smooth functions in WA,p(Ω) (Lemma 5.5), it suffices
to prove boundedness of the extension for maps in u ∈ C∞(Ω̄, V ). By the argument

above, we have that EΩu ∈ Vk,∞(Rn, V ), so that

∇lEΩu = (∇lu)χΩ̄ + (∇lEΩu)χRn\Ω̄ for 0 6 l 6 k − 1

AEΩu = (Au)χΩ̄ + (AEΩu)χRn\Ω̄.

It follows that

‖EΩu‖VA,p(Rn) 6 ‖u‖VA,p(Ω) + ‖EΩu‖VA,p(Rn\Ω̄) 6 C‖u‖WA,p(Ω),

where in the last inequality we used Lemmas 4.5 and 5.6. The proof is complete. �
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4.2. Proofs of the main results. We now begin the proof of Theorem 1.1. It is clear
that (b) implies (c) and that (d) implies (e). We first prove that (a) implies (b) in full
generality.

Proof of Theorem 1.3 (sufficiency of FDN). Since A has FDN, by Theorem 1.2, there

exists a bounded, linear extension operator EB : WA,1(B)→ VA,1(Rn). A close inspection
of the proof of Theorem 4.1 reveals that EB maps restrictions to the ball B of C∞(Rn, V )–

functions into C∞c (B̃, V ) for a larger ball B̃ c B, which depends on B only. We write
p := n/(n− k + s) and use Hölder’s Inequality to get that

‖u‖Bs,pq (B,V ) 6 ‖EBu‖Bs,pq (Rn,V ) = ‖EBu‖Lp(B̃,V ) + ‖EBu‖Ḃs,pq (Rn,V )

. ‖EBu‖L n
n−1 (B̃,V )

+ ‖EBu‖Ḃs,pq (Rn,V )

. ‖∇k−1EBu‖L n
n−1 (B̃,V )

+ ‖EBu‖Ḃs,pq (Rn,V )

where the last estimate follows from Poincaré’s Inequality with zero boundary values. We
conclude by [52, Thm. 1.3, Thm. 8.4] and boundedness of EB . �

We will complete the proof of Theorem 1.3 (i.e., show necessity of FDN) at the end of
this section. Returning to Theorem 1.1, to see that (b) implies (d), we prove the following:

Theorem 4.6. Let A be as in (1.4) with k = 1. Suppose that WA,1(B) ↪→ L
n
n−1 (B, V ).

Then WA,1(B) ↪→↪→ Lq(B, V ) for all 1 6 q < n
n−1 .

The proof of Theorem 4.6 relies on the Riesz-Kolmogorov criterion and the following
Nikolskĭı–type estimate:

Lemma 4.7 (Nikolskĭı–type Estimate). Let A be an elliptic operator of the form (1.4),
k = 1. Fix R > 0. Then for every 0 < s < 1 there exists a constant c = c(s,R) > 0 such

that if u ∈WA,1(Rn) vanishes identically outside B(0, R), then there holds∫
Rn
|u(x+ y)− u(x)|p dx 6 c‖Au‖p

L1(B(0,R),W )
|y|sp.

whenever p < n/(n− 1 + s).

Note that by Ornstein’s Non–Inequality, s = 1 is not allowed in the lemma. A more
general, sharp version, can be found in [52, Prop. 8.22].

Proof of Theorem 4.6. Recall that by the Riesz–Kolmogorov Theorem on relatively com-
pact subsets of Lp–spaces [13, Thm. 4.26] on Ω ⊂ Rn open and 1 6 p < ∞, a subset
F ⊂ Lp(Ω, V ) is relatively compact in Lp(Ω, V ) if and only if

(i) F is a bounded set in Lp(Ω, V ) and
(ii) for all ε > 0 there exists δ > 0 such that there holds

‖f̄(·+ y)− f̄(·)‖Lp(Rn,V ) < ε,(4.2)

for all f ∈ F and all y ∈ Rn with |y| < δ

Here f̄ is the trivial extension of f ∈ F to Rn.
Let 1 6 q < 1∗ and F be the unit ball in WA,1(B). The embedding WA,1(B) ↪→

Ln/(n−1)(B, V ) implies that F is bounded in Lq(B, V ) which shows condition (i) of the
Riesz–Kolmogorov criterion. As to (ii), let ε > 0 be arbitrary. Given % > 0 sufficiently
small (to be determined later on), let ρ̃% : [0, 1]→ [0, 1] be the Lipschitz function given by

ρ%(t) :=


1 if 0 < t < 1− 2%,

− 1
% t+ 1−%

% if 1− 2% < t < 1− %,
0 if 1− % < t 6 1,
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and put ρ%(x) := ρ̃%(|x|), x ∈ Rn, and finally set, for given f ∈ F , f% := ρ%f . Denoting
Bt := B(0, t) for t > 0, we note that if |y| < %, then f(·+ y)− f(·) and f%(·+ y)− f%(·)
coincide on B1−3%. Let f ∈WA,1(B) be arbitrary. We split∫

Rn
|f̄(x+ y)− f̄(x)|q dx =

(∫
Rn\B1−3%

+

∫
B1−3%

)
|f̄(x+ y)− f̄(x)|q dx =: I% + II%,

with an obvious definition of I% and II%.
Ad I%. As |y| < %, if x ∈ Rn \ B1−3%, then x + y ∈ Rn \ B1−4%. Therefore, we obtain

with a constant c > 0 independent of f ∈ F

I% 6 c
∫
B1\B1−4%

|f(z)|q dx 6 c

(∫
B

|f |
n
n−1 dx

) (n−1)q
n

L n(B1 \B1−4%)
n−q(n−1)

n

6 cL n(B1 \B1−4%)
n−q(n−1)

n

and we may hence record that there exists δ1 > 0 such that if 0 < % < δ1, then I% < ε/3.
Ad II%. Firstly, since 1 6 q < n/(n − 1), we find and fix 0 < s < 1 such that

q < n/(n−1+s). By Lemma 5.8, WA,1(B) ↪→ L1∗(B, V ) implies that A is elliptic so that
we are in position to suitably apply Lemma 4.7. Since f(·+y)−f(·) equals f%(·+y)−f%(·)
on B1−3% and f% is compactly supported in Rn with supports in a sufficiently large fixed
ball, we find with a constant c > 0 independent of f ∈ F

II% =

∫
B1−3%

|f%(x+ y)− f%(x)|q dx 6
∫
Rn
|f%(x+ y)− f%(x)|q dx

6 c‖Af%‖qL1(BR,W )
|y|sq

6 c
(
‖ρ%Af‖qL1(BR,W )

+ ‖f ⊗A Dρ%‖qL1(BR,W )

)
|y|sq

6 c
(
‖Af‖q

L1(BR,W )
+ ‖f ⊗A Dρ%‖qL1(BR,W )

)
|y|sq

(4.3)

Pick δ2 > 0 such that if |y| < δ2, then c supf∈F ‖Af‖
q
L1(BR,W )

|y|sq < ε/3. Finally, we

note because of |Dρ%| 6 4/% by definition of ρ%,(∫
Rn
|Dρ%|n dx

) 1
n

6
c

%

(
(1− 2%)n − (1− 3%)n

) 1
n = 1 +O(%)(4.4)

and so, by WA,1(B) ↪→ L1∗(B, V ) and since 0 < % 6 1,

‖Dρ% ⊗A f‖qL1(BR,W )
|y|sq 6

(∫
Rn
|Dρ%|n dx

) q
n

sup
f∈F
‖f‖q

WA,1(B)
|y|sq

6 C sup
f∈F
‖f‖q

WA,1(B)
|y|sq,

and from here it is evident that there exists δ3 > 0 such that if |y| < δ3, then ‖Dρ% ⊗A
f‖q

L1(BR,W )
|y|sq < ε/3 and so, by (4.3), IIδ < 2ε/3 for all f ∈ F . Now let 0 < δ < % :=

min{δ1, δ2, δ3}. Collecting estimates, we see that (ii) is satisfied and thus we can conclude

that the compact embedding WA,1(B) ↪→↪→ Lq(B, V ) holds. �

With an inexpensive modification of the proof of Theorem 4.6, one can show that (c)

implies that WA,1(B) ↪→↪→ Lq(B, V ) for all 1 6 q < p, which trivially then implies (e).

Proof of Theorem 1.1. It remains to see that (e) implies (a), which is now a simple con-

sequence of the Equivalence Lemma 5.2. We choose E1 = WA,1(B), E2 = L1(B,W ),

E3 = L1(B, V ), and A := A ∈ L (WA,1(B),L1(B,W )), whereas B := ι is the embedding

operator ι : WA,1(B) ↪→↪→ L1(B, V ). It is then clear that ‖u‖WA,1(B) = ‖u‖∗, so the
equivalence lemma yields that A has finite dimensional null–space. �
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Proof of Theorem 1.3 (necessity of FDN). Assume that the embedding holds. By stan-

dard embeddings of Besov spaces, we have that WA,1(B) ↪→ Wk−1,p(B, V ) for some
p > 1. If k = 1, we use Theorem 1.1, (c) implies (a), to see that A has FDN. Otherwise,
we give the following simple argument: assume that A is not FDN, so that the maps
uj(x) = exp(jx · ξ)v lie in kerA for some non–zero complex ξ, v. We traced this example
back to [40], but it was likely known before (cp. [3, Eq. (3.2)]). The assumed embedding
and Hölder’s Inequality give

jk−1

(∫
B

| exp(jx · ξ)|p dx

) 1
p

. ‖uj‖Wk−1,p(B,V ) . ‖uj‖L1(B,V )

.

(∫
B

| exp(jx · ξ)|p dx

) 1
p

,

which leads to a contradiction as j →∞. Here constants depend on diamB, p, n only. �

4.3. Concluding Remarks. In view of Theorem 1.3, it is quite surprising that the
Sobolev–type embedding of WA,1(B) holds for operators of arbitrary order whereas the
techniques used to prove the trace embedding [12, Thm. 4.17–18] seem to be difficult
to extend past first order operators. If A has FDN, we can use Theorem 1.3 to give a
sub–optimal trace embedding

WA,1(B) ↪→Ws− 1
p ,p(∂B, V ) for s ↑ k, so p =

n

n− k + s
↓ 1,(4.5)

using standard trace theory for Besov spaces. At this stage, a straightforward generalisa-
tion of the arguments of [12] even yields that WA,1(B)–maps admit traces in Wk−1,1(∂B).
However, this does not yield the sharp boundary trace space as is expected, e.g., for
the gradient: The optimal embedding for A = ∇k was established only recently by
Mironescu and Russ in [35], building on the k = 2 case proved by Uspenskĭı in [47].

They proved that the trace operator is continuous onto Bk−1,1
1 , which is in general strictly

smaller than Wk−1,1 (see [14, Rk. A.1]). However, by modifying the arguments of [12]
one might make the following conjecture:

Conjecture 4.8. An operator A as in (1.4) has FDN if and only if there exists a con-

tinuous, linear, surjective trace operator Tr: WA,1(B)→ Bk−1,1
1 (∂B, V ).

A few remarks are in order. Necessity of FDN can be proved by a modification of
the arguments in [12, Sec. 4.3]. Surjectivity is obvious, using [35, Thm. 1.3-4] and

Wk,1(B, V ) ↪→ WA,1(B). The difficulty stems from proving boundedness (hence, well-
definedness) of the trace operator, which cannot be reduced to the situation in [35] by
Ornstein’s Non–Inequality, or to (4.5) by strict inclusion of Besov spaces. We do not
see a straightforward way to merge the techniques in [12, 35] and intend to tackle the
problem in the future.

5. Appendix

5.1. Miscellaneous background. The following relevant facts we quote without proof:

Lemma 5.1 ([52], Proposition 6.1). Let A as in (1.4) be elliptic. Then A is cancelling if
and only if we have that ∫

Rn
Audx = 0

for all u ∈ C∞(Rn, V ) such that the support of Au is compact.

Lemma 5.2 (Peetre–Tartar Equivalence Lemma, [46, Lem. 11.1]). Let E1 be a Banach
space and let E2, E3 be two normed spaces (with corresponding norms ‖ · ‖i, i ∈ {1, 2, 3})
and let A ∈ L (E1, E2) and B ∈ L (E1, E3) be two bounded linear operators such that B
is compact and the norms ‖ · ‖1 and ‖ · ‖∗ := ‖A · ‖2 + ‖B · ‖3 are equivalent on E1. Then
dim(kerA)) <∞.
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Theorem 5.3 ([29, Thm. 4]). Let A as in (1.4) be C–elliptic, and Ω ⊂ Rn be a star–
shaped domain with respect to a ball. Then there exist an integer d := d(A), a linear map
P ∈ L (C∞(Ω̄, V ),Rd[x]V ) and a smooth map K ∈ C∞(Rn × Rn \ 4,L (W,V )), where
4 = {(x, x) : x ∈ Rn} such that |Dα

xD
β
yK(x, y)| . |x− y|k−n−|α|−|β| for all multi–indices

α, β and all (x, y) ∈ Rn × Rn \ 4, and

u(x) = Pu(x) +

∫
Ω

K(x, y)Au(y) dy

for all x ∈ Ω and u ∈ C∞(Ω̄, V ). Therefore kerA ⊆ Rd[x]V .

5.2. Other facts about WA,p. We collect some complementary results that explain, e.g.,
our choice of definition for the A–Sobolev spaces and of extension technique for p = 1.

Definition 5.4. A connected open set Ω ⊂ Rn is called a

(a) C0–domain if for any x ∈ ∂Ω there exist a neighbourhood N of x relatively open
in Ω, a coordinate system in Rn and a continuous function f such that, in the
new coordinates (x′, xn), N = {(x′, xn) : 0 < xn < f(x′), x′ ∈ B1(0)}.

(b) C0,1– (or Lipschitz–)domain if Ω is a C0–domain and the function f above can
be chosen to be Lipschitz.

(c) domain with the cone property if for any x ∈ Ω there exists a cone C with apex
at x and a coordinate system with respect to which, for some constants ci > 0 we
have C = {(x′, xn) : |x′|2 6 c1xn2, 0 6 xn 6 c2}.

(d) star–shaped domain (with respect to a ball B ⊂ Ω) if for all x ∈ Ω, y ∈ B, and
0 6 θ 6 1 we have that θx+ (1− θ)y ∈ Ω.

We collect a few facts from [33, Sec. 1.1] on bounded domains, which will be used
without mention in the sequel: any star–shaped domain is Lipschitz; Lipschitz domains
have the cone property; domains with the cone property can be written as finite unions of
star–shaped domains. The following density result closely mimics [33, Sec. 1.1.4-5]. We
reproduce the proof here since, on one hand, it is very elegant and, on the other, it is
crucial to prove the extension Theorem 4.1.

Lemma 5.5. Let A be as in (1.4), 1 6 p < ∞, and Ω ⊂ Rn be a bounded C0–domain.

Then C∞(Ω̄, V ) is dense in WA,p(Ω). The same holds true for VA,p(Ω).

Proof. We only prove the result for VA,p, the other case following in the same manner.
Step I. We first show that C∞(Ω, V )∩VA,p(Ω) is dense in VA,p(Ω). This step requires

no regularity or boundedness assumption on Ω, other that it is open in Rn.
Consider a Whitney decomposition {Qj}∞j=1 of Ω (which is locally finite), and let

ε ∈ (0, 1/2) and ρj ∈ C∞c (Qj) be a partition of unity associated with this decomposition.
We denote by vj a mollification of ρju such that

(a) spt vj is also a locally finite cover of Ω;
(b) If diam spt vj = λj diamQj , then λj ↓ 0;
(c) ‖ρju− vj‖VA,p(Ω) 6 ε

j for all j ≥ 1.

To make (c) plain, we recall, that mollification and weak derivatives are interchangeble. It
follows that v =

∑
vj ∈ C∞(Ω, V ) and u =

∑
ρju in any compact subset of Ω. Moreover,

due to the upper bound on ε, we obtain

‖u− v‖WA,p(Ω) 6
∞∑
j=1

‖ρju− vj‖WA,p(Ω) 6 ε(1− ε)−1 6 2ε,

which proves that v ∈ VA,p(Ω) and concludes the proof of this step.
Step II. To conclude the proof of the Lemma, by Step I, it suffices to show density of

C∞(Ω̄, V ) in C∞(Ω, V ) ∩VA,p(Ω).
We cover the boundary of Ω by open neighbourhoods {Nx}x∈∂Ω, where each Nx is the

graph of a continuous function as in Definition 5.4(a). We extract a finite subcolection
{Nj}j that still covers ∂Ω and let {ρj}j be a partition of unity associated with {Nj}∪N ,

18



where Ω\
⋃
Nj b N b Ω. Since u =

∑
ρju in Ω, it suffices to prove the claim for u and Ω

relabelled by ρju and Nj ∩Ω, respectively. In coordinates (x′, xn) as in Definition 5.4(a),
we choose uε(x

′, xn) = u(x′, xn − ε) for small enough ε > 0. Clearly uε ∈ C∞(Ω̄, V ) and

‖∂αu− ∂αuε‖Lp(Ω,V ) → 0 as ε ↓ 0 whenever ∂αu ∈ Lp(Ω, V ),

which completes the proof. �

Lemma 5.6. Let A be as in (1.4) have FDN and Ω ⊂ Rn be a bounded Lipschitz domain.

Then WA,p(Ω) ' VA,p(Ω), for each 1 6 p 6∞.

Proof. One embedding is clear by definition. Conversely, we first prove the inequality
under the extra assumption that Ω is star–shaped with respect to a ball. Let u ∈WA,p(B).
We use Proposition 4.2 to estimate, for 1 6 l 6 k − 1,

‖∇lu‖p,Ω 6 ‖∇l(u− πΩu)‖p,Ω + ‖∇lπΩu‖p,Ω . ‖Au‖p,Ω + ‖∇lπΩu‖p,Ω

To estimate the latter term, we note that P 7→ ‖∇lP‖p,Ω defines a semi–norm on Rd[x]V ,
so it is controlled by the Lp–norm of P . We have that

‖∇lπΩu‖p,Ω . ‖πΩu‖p,Ω 6 ‖u− πΩu‖p,Ω + ‖u‖p,Ω . ‖Au‖p,Ω + ‖u‖p,Ω,

where the last inequality follows by another application of Proposition 4.2. Altogether,
we have proved that

‖u‖VA,p(Ω) 6 C(Ω)‖u‖WA,p(Ω).(5.1)

We now assume just that Ω is Lipschitz, hence has the cone property. Hence there exist

M sub–domains Ωi that are star–shaped with respect to a ball and cover Ω =
⋃M
i=1 Ωi.

We apply (5.1) in each Ωi to get

‖u‖VA,p(Ω) 6
M∑
i=1

‖u‖VA,p(Ωi) 6
M∑
i=1

C(Ωi)‖u‖WA,p(Ωi) 6 max
16i6M

C(Ωi)

M∑
i=1

‖u‖WA,p(Ωi).

Let now 1 6 p < ∞. By concavity of the function [0,∞) 3 t 7→ t1/p and Jensen’s
Inequality, we obtain

M∑
i=1

‖u‖WA,p(Ωi) 6M
1−1/p‖u‖WA,p(Ω).(5.2)

If p = ∞, we simply estimate ‖u‖WA,∞(Ωi) by ‖u‖WA,∞(Ω) to note that (5.2) holds for

p =∞ as well (with the convention 1/p =∞). The proof is complete. �

Lemma 5.7. Let A as in (1.4) have FDN, 1 < p < ∞, and Ω ⊂ Rn be a star–shaped
domain with respect to a ball. Then there exists a bounded, linear extension operator
EΩ : WA,p(Ω)→ Vk,p(Rn, V ).

Proof. We use the extension suggested in [30], namely, in the notation of Theorem 5.3,

EΩu(x) := η(x)

(
Pu(x) +

∫
Ω

K(x, y)Au(y) dy

)
for u ∈ C∞(Ω̄, V ) and x ∈ Rn. Here η ∈ C∞c (Rn) is a smooth cut–off that equals 1 in a
neighbourhood of Ω. We abbreviate Ku =

∫
Ω
K( · , y)Au(y) dy. Let 0 6 l 6 k, and let B

be a ball containing the support of η. Then, with domain dependent constants,

‖∇lEΩu‖p,B .
l∑

j=0

‖∇j(Pu+Ku)‖p,B 6 ‖Pu‖Vl,p(B,V ) +

l∑
j=0

‖∇jKu‖p,B .

We note that ‖ · ‖Vl,p(B,V ) and ‖ · ‖Lp(Ω,V ) both define norms on Rd[x]V , hence they are

equivalent. We also remark that ∇jKu =
∫

Ω
∇jxK( · , y)Au(y) dy, so that

‖∇jKu‖p,B 6 ‖∇jKu‖p,Rn . ‖Au‖p,Ω.(5.3)
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If 0 6 j < k, the proof of (5.3) is presented in the proof of Proposition 4.2. If j = k, (5.3)
follows from [42, Ch. II] and the growth bounds on ∇kxK. Collecting, we get

‖∇lEΩu‖p,B . ‖Pu‖p,Ω + ‖Au‖p,Ω 6 ‖Pu+Ku‖p,Ω + ‖Ku‖p,Ω + ‖Au‖p,Ω . ‖u‖WA,p(Ω),

where the last inequality is obtained from (5.3) with j = 0. �

Lemma 5.8. Let A be as in (1.4) and Ω ⊂ Rn be a bounded, open set. If WA,1(Ω) ↪→
Wk−1,p(Ω, V ) for some p > 1, then A is elliptic.

Proof. Suppose A is not elliptic, such that there exist ξ ∈ Sn−1, v ∈ V \ {0} such that
A[ξ]v = 0. Consider open cubes Q1, Q2 in Rn such that ξ is normal to one of their faces
and Q̄1 ⊂ Ω ⊂ Q2, of side–lengths 2l1, 2l2, respectively. We put u(x) = f((x − x0) · ξ)v
for x0 the centre of Q1 and f(t) = |t|k−1−1/p if t ∈ R \ {0}. We have that Au = 0 and∫

Ω

|u|dx 6
∫
Q2

|u|dx =

∫
Q2

|f((x− x0) · ξ)||v|dx = ln−1
2 |v|

∫ l2

−l2
|t|k−1−1/p dt <∞,

so that u ∈WA,1(Ω). On the other hand,∫
Ω

|Dk−1u|p dx ≥
∫
Q1

|Dk−1u|p dx =

∫
Q1

|f (k−1)((x− x0) · ξ)|p|v ⊗k−1 ξ|p dx

= ln−1
1 |v ⊗k−1 ξ|p

∫ l1

−l1
|t|−1 dt =∞,

so that u /∈Wk−1,p
loc (Ω, V ). The proof is complete. �

Lemma 5.9. Let A be as in (1.4). If WA,1(B) ↪→Wk−1,n/(n−1)(B, V ), then A is elliptic
and cancelling.

Proof. Necessity of ellipticity follows via Lemma 5.8. We next show that our assumed
embedding implies ẆA,1(Rn) ↪→ Ẇk−1,n/(n−1)(Rn, V ) by a scaling argument, so that
cancellation follows by the necessity part of [52, Thm. 1.3]. Let u ∈ C∞c (Rn, V ) be such
that sptu ⊂ Br := B(0, r). Then ur(x) := u(rx) for x ∈ Rn is also a test function, with
sptur ⊂ B := B(0, 1). We estimate, with constants independent of r:

‖Dk−1u‖
L

n
n−1

=

(∫
Br

|Dk−1u(x)|
n
n−1 dx

)n−1
n

=

(∫
B

r
n(k−1)
n−1 |Dk−1ur(y)|

n
n−1 rn dy

)n−1
n

= rn−k
(∫

B

|Dk−1ur(y)|
n
n−1 dy

)n−1
n

6 crn−k
∫
B

|Aur(y)|+ |ur(y)|dy

= c

∫
Br

|Au(x)|dx+ cr−k
∫
Br

|u(x)|dx 6 c
∫
Br

|Au(x)|dx = c‖Au‖L1 ,

where the last inequality follows from a change of variable and the Poincaré–type inequal-
ity with zero boundary values (for elliptic operators)

‖v‖L1(Ω,V ) 6 c(diam Ω)k‖Av‖L1(Ω,W )(5.4)

for all v ∈ C∞c (Ω, V ). The proof is complete. �

The inequality (5.4) follows from an iteration of Poincaré’s Inequality, the Green–type
Formula (2.1), and Theorem 2.2(b), in the following way:

‖v‖L1(Ω) 6 c(diam Ω)k−1‖Dk−1v‖L1(Ω) = c(diam Ω)k−1‖KA ? (Av)‖L1(Ω)

6 c(diam Ω)k−1‖I1|Av|‖L1(Ω) 6 c(diam Ω)k‖Av‖L1(Ω)

A similar, straightforward argument also gives the inequality in Lemma 5.10 below.

Lemma 5.10. Let A as in (1.4) be elliptic, k = 1. Then for each 1 6 p < n/(n − 1),
there exists c > 0 such that

‖u‖Lp(B,V ) 6 c‖Au‖L1(B,W )

for all u ∈ C∞c (B, V ).
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