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ABSTRACT. We establish a family of coercive Korn-type inequalities for generalised incompat-
ible fields in the superlinear growth regime under sharp criteria. This extends and unifies several
previously known inequalities that are pivotal to the existence theory for a multitude of mod-
els in continuum mechanics in an optimal way. Different from our preceding work [31], where
we focussed on the case p = 1 and incompatibilities governed by the matrix curl, the case
p > 1 considered in the present paper gives us access to substantially stronger results from har-
monic analysis but conversely deals with more general incompatibilities. Especially, we obtain
sharp generalisations of recently proved inequalities by the last two authors and MÜLLER [43] in
the realm of incompatible Korn-type inequalities with conformally invariant dislocation energy.
However, being applicable to higher order scenarios as well, our approach equally gives the first
and sharp inequalities involving KRÖNER’s incompability tensor inc .
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1. INTRODUCTION

1.1. Korn-Maxwell-Sobolev inequalities. Let Ω ⊂ Rn be an open and bounded set with Lip-
schitz boundary. A key device in the study of variational principles or non-linear partial dif-
ferential equations from elasticity or fluid mechanics are the so-called Korn inequalities. Such
inequalities allow us to control the Lq-norms of the full gradients by merely controlling their
symmetric parts (cf. e.g. [16, 17, 21, 38, 60]). There are different forms of such inequalities, and
in the following we shall focus on two such core inequalities that are distinguished by zero or
non-zero boundary values of the admissible competitors. Specifically, for any 1 < q <∞ there
exists a constant c = c(n, q) > 0 such that we have for all u ∈W1,q

0 (Ω;Rn)

‖Du‖Lq(Ω) ≤ c ‖sym Du‖Lq(Ω). (K1)

This inequality persists when Ω is replaced by Rn, in which case (K1) can be reduced to classical
Calderón-Zygmund estimates. In the sequel, we shall refer to (K1) and variants thereof to as
Korn inequalities of the first kind. It is easily seen that inequality (K1) does not hold true when
considering Sobolev maps u ∈ (W1,q \W1,q

0 )(Ω;Rn). Indeed, the set of rigid deformations R
(i.e., maps of the form u(x) = Ax+bwith a skew-symmetric matrixA ∈ Rn×n, which we also
express by writingA ∈ so(n), and b ∈ Rn) are contained in the nullspace of the symmetric, but
not of the full gradients. To arrive at a valid inequality, the corresponding estimates must keep
track of the rigid deformations. Such bounds are provided by the Korn-type inequalities of the
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second kind: For any connected open and bounded set Ω ⊂ Rn with Lipschitz boundary and
any 1 < q <∞, there exists a constant c = c(n, q,Ω) > 0 such that

inf
Π∈R
‖Du−Π‖Lq(Ω) ≤ c ‖sym Du‖Lq(Ω) (K2)

holds for all u ∈W1,q(Ω;Rn).
In many applications – so for instance in elastoplasticity models, fluid mechanical problems

and their numerical approximation through finite element methods, see Section 2 for an overview
– the underlying differential nature of Du or sym Du is not available. This requires refinements
of (K1) and (K2) which, by now, has been accomplished in different but only special situations
[6, 7, 29, 31, 32, 43, 44, 45, 46, 47, 55, 56] and still lacks a unifying perspective. To motivate
such inequalities in their easiest form, let us note that there are no constants c, c′ > 0 such that

‖P‖Lq(Ω) ≤ c ‖symP‖Lq(Ω),

inf
A∈so(n)

‖P −A‖Lq(Ω) ≤ c′‖symP‖Lq(Ω)
(1.1)

hold for all P ∈ Lq(Ω;Rn×n). For (1.1)1 this can be easily seen by considering maps that take
values in so(n). The failure of (1.1)2 can be established similarly: Pick an arbitrary continuous
function ζ : Ω → R with ζ 6≡ 0 and mean value (ζ)Ω = 0, so that in particular ‖ζ‖Lq(Ω) > 0.
Then we have for all α ∈ R:

0 < ‖ζ‖Lq = ‖ζ − (ζ)Ω‖Lq ≤ 2‖ζ −α‖Lq , so 0 < inf
α∈R
‖ζ −α‖Lq . (1.2)

Considering the matrix field P : Ω→ Rn×n defined by

P (x) :=

 0 −ζ(x)
ζ(x) 0

0
0 0

 ,

inequality (1.1)2 then yields the contradictory

0
(1.2)
< inf

α1,...,αn(n−1)
2

∈R

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0 −ζ(x)−α1 −α2 −α4

...

ζ(x) +α1 0 −α3 −α5

...

α2 α3 0 −α6

...

α4 α5 α6 0
...

· · · · · · · · · · · · 0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
Lq(Ω)

(1.1)2
≤ 0.

In light of the failure of (1.1), we see that it is indeed the gradient structure of the specific
matrix fields P = Du that make inequalities (K1) and (K2) work. Recalling that on simply
connected domains Ω ⊂ Rn a sufficiently smooth map P : Ω → Rn×n is a gradient – hence is
compatible – if and only if it satisfies CurlP = 0, it is natural to ask for substitutes of (1.1) that
account for the lack of curl-freeness of arbitrary matrix fields P . This is achieved by the Korn-
Maxwell-Sobolev inequalities (for brevity, KMS-inequalities). In such estimates, the non-valid
inequalities (1.1) are modified by an additive Curl-term on their right-hand sides as a corrector,
taking into account the non-Curl-freeness of generic competitor maps. Such inequalities, see
e.g. [46, 47], assert the existence of c = c(n, q) > 0 and c′ = c′(n, q,Ω) > 0

‖P‖Lq(Ω) ≤ c
(
‖symP‖Lq(Ω) + ‖CurlP‖Lp(Ω)

)
, P ∈ C∞c (Ω;Rn×n),

inf
A∈so(n)

‖P −A‖Lq(Ω) ≤ c′
(
‖symP‖Lq(Ω) + ‖CurlP‖Lp(Ω)

)
, P ∈ C∞(Ω;Rn×n).

(1.3)

Note that q determines the range of possible exponents p (and vice versa), and that the optimal
p for given q is given by the corresponding Sobolev- or Morrey conjugate exponent (also see
Section 1.2 below). These inequalities are the starting point for the present paper. Aiming
to generalise (1.3) in a basically optimal way and thereby to provide a unifying framework
for a wealth of coercive inequalities used in applications, we proceed by giving the detailled
underlying set-up of the desired inequalities first.
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1.2. Generalised incompatibilities. As discussed at length in [43] (also see Section 2 below),
applications from elasticity such as the so-called relaxed micromorphic model require estimates
that hinge on strictly weaker quantities than CurlP . To provide a unifying approach to the
matter, we shall thus consider more general

(i) parts A[P ] than the symmetric part as in (1.3), and
(ii) differential operators B than the matrix curl as in (1.3).

As such, the corresponding variants of (1.3) shall be referred to as generalised KMS-inequalites.
Specifically, let V,W, Ṽ be three finite dimensional real inner product spaces, k ∈ N and let B
be a k-th order, linear and homogeneous differential operator on Rn from V to W . By this we
understand that B has a representation

B =
∑
|α|=k

Bα∂α (1.4)

with fixed linear maps Bα : V → W for α ∈ Nn0 . Towards (i), we let A : V → Ṽ be a linear
part map. Let 1 < p <∞. Aiming to generalise (K1), we first work on the entire Rn and wish
to classify all partsA, differential operators B and exponents q for which we have validity of the
generalised Korn-Maxwell-Sobolev inequality of the first kind:

‖P‖Xk,p(Rn) ≤ c
(
‖A[P ]‖Xk,p(Rn) + ‖BP‖Lp(Rn)

)
, P ∈ C∞c (Rn;V ). (KMS1)

Here, the function spaces Xk,p (and consequently their norms ‖·‖Xk,p(Rn)) are chosen in a way
such that (KMS1) scales suitably. Specifically, if we choose k = 1 and work with Lebesgue
spaces, then validity of the inequality

‖P‖Lq(Rn) ≤ c
(
‖A[P ]‖Lq(Rn) + ‖BP‖Lp(Rn)

)
, P ∈ C∞c (Rn;V ),

with 1 < p < n directly determines q to equal np
n−p by considering maps Pλ(x) := P (xλ ) for λ >

0. More generally and hence for k > 1, suitable choices of Xk,p are given by1 Xk,p = Ẇk−1, npn−p

(homogeneous Sobolev spaces) if 1 < p < n or Xk,p = Ċk−1,1−np (homogeneous Hölder
spaces) if p > n. Also, validity of inequality (KMS1) immediately implies the corresponding
inequality

‖P‖Xk,p(Ω) ≤ c
(
‖A[P ]‖Xk,p(Ω) + ‖BP‖Lp(Ω)

)
, P ∈ C∞c (Ω;V ), (1.5)

for any open and bounded set Ω ⊂ Rn. This can be seen by trivially extending maps P ∈
C∞c (Ω;V ) to the entire Rn.

By the link to the classical Korn-type inequalities (K1), we shall put some emphasis on
inequalities involving Lebesgue norms. One retrieves the known Korn-Maxwell-Sobolev in-
equality (1.3)1 by specifying V = Ṽ = Rn×n, A = sym and B = Curl. Other inequalities
that appear as special cases and arise in concrete models shall be addressed in Section 2 below.
However, to explain some of the mechanisms underlying inequalities of the form (1.5), let us
note that there is some coupling between A and B: Heuristically, the stronger B becomes, the
weaker we may assume A to be, and vice versa. As an important instance of this effect, let us
compare the classical div-curl-complex with the SAINT VENANT or elasticity complex:

C∞(Rn;Rn) C∞(Rn;Rn×n) C∞(Rn;Rn×
n(n−1)

2 )

C∞(Rn;Rn) C∞(Rn; Sym(n)) C∞(Rn; Sym(n(n−1)
2 )),

D Curl

sym D Curl(Curl>)

(1.6)

with the symmetric (n × n)-matrices Sym(n); see CIARLET et al. [2, 3, 19] for more on the
complex (1.6)2 and [4, 5, 18, 20, 59] on its role in (in)compatible elasticity. Similarly as in
(1.6)1, where the exactness at the mid vector space implies that an Rn×n-valued map on Rn is
a gradient if and only if it is Curl-free, (1.6)2 expresses the fact that a Sym(n)-valued map is a
symmetric gradient if and only if it is Curl(Curl)>-free. However, if a map into the symmetric
matrices is already Curl-free, then it is already a symmetric gradient. Hence, the compatibility
condition incP := Curl((CurlP )>) = 0 is weaker than CurlP = 0 on the Sym(n)-valued

1Here we adopt the convention Ẇ0,q := Lq for 1 < q <∞.
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maps P ; inc is also referred to as KRÖNER’s strain incompatibility tensor [39] (see Sections
2, A for this terminology). There are two borderline cases that we wish to address explicitly: If
B is elliptic (see Section 3.1 for this terminology), then (1.5) is satisfied even for A ≡ 0. On
the other hand, if B ≡ 0, then (1.5) is only satisfied if A is injective2. In between the borderline
cases, a non-trivial obstruction to estimates (1.5) is given by the following examples:

Example 1.1. For P ∈ Rn×n, we define the deviatoric part devP := P − trP
n · 1n (with the

unit matrix 1n ∈ Rn×n). For ϕ ∈ C∞c (R3), we put Pϕ = ϕ · 13, so that

CurlPϕ =

 0 ∂3ϕ −∂2ϕ
−∂3ϕ 0 ∂1ϕ
∂2ϕ −∂1ϕ 0

 .

We consider (A,B) given by

• A = dev, B = sym Curl. Then devPϕ = 0, sym CurlPϕ = 0 but Pϕ 6≡ 0, so
that (KMS1) or (1.5) yield an immediate contradiction.

• A = dev sym and B = sym Curl or B = dev sym Curl. The requisite contradictions
directly follow from the previous item.

Example 1.2. Consider Pψ = Anti(∇ψ) for ψ ∈ C∞c (R3), where Anti : R3 → so(3) is the
canonical identification map (see the appendix for more detail). Using NYE’s formula (see (A.8)
in the appendix)

CurlPψ = ∆ψ · 13 −D∇ψ ∈ Sym(3) (1.7)

and for (A,B) = (sym, skew Curl) or (A,B) = (dev sym, skew Curl) we would obtain a
contradiction to the validity of (KMS1) or (1.5).

These examples show that the operator B might turn out non-elliptic on elements for which
the parts A vanish. As such, for inequalities (1.5) to hold, B must be elliptic on precisely such
elements. In Theorem A, to be stated and proved in Section 3.2, we will establish that this
is also sufficient. Especially, we recover all such KMS inequalities that are known so far for
1 < p <∞ and generalise them in an optimal way.

The preceding inequalities require zero boundary values in a suitable sense, as do the Korn
inequalities of the first kind (cf. (K1)). Therefore, our second focus is on generalised KMS
inequalities of the second kind, thereby dealing with the situation on domains. Working from
(K2) or (1.3)2, respectively, we let Ω ⊂ Rn be an open, bounded and connected Lipschitz
domain (e.g. with Lipschitz boundary ∂Ω), K be a fixed subspace of the V -valued polynomials
on Rn and consider, for a given part map A and differential operators B as introduced above,
validity of the inequality

inf
Π∈K
‖P −Π‖Lq(Ω) ≤ c

(
‖A[P ]‖Lq(Ω) + ‖BP‖Lp(Ω)

)
(KMS2)

for all P ∈ C∞(Ω;Rn×n). Here, 1 < p < ∞, which in turn determines the possible range
of q depending on the order k of B and the underlying space dimension n. Different from the
entire space case, we will then find that it does not suffice anymore for B to behave elliptically on
maps P for whichA[P ] vanishes identically. Indeed, as will be made precise in our second main
result, Theorem B below, such inequalities require to rule out a certain bad boundary behaviour.
As we shall establish in 3.3, this is equivalent to B behaving like a so-called C-elliptic operator
along maps for which A[P ] vanishes; we refer the reader to Section 3.1 for this terminology.

Remark 1.3 (p = 1). In contrast to the precursor [31] of the present paper, which focussed on
KMS-inequalities with B = Curl but particularly addressed the case p = 1 for the sharp class of
part mapsA, we here allow for joint maximal flexibility for both the part mapsA and differential
operators B, however, concentrate on the case 1 < p < ∞. For the integrability regime p = 1,
the techniques displayed in this paper allow to obtain inequalities involving the homogeneous
Hardy space H1 (cf. Corollary 3.9). Yet, this does not suffice to obtain inequalities with the
mere L1-norms of BP , see Remark 3.10, and we shall pursue this systematically in future work.

2IfA is not injective, take P ∈ ker(A) \ {0} and consider Pϕ := ϕP for ϕ ∈ C∞c (Rn) \ {0}.
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1.3. Structure of the paper. Away from this introduction, the paper is organised as follows:
After fixing notation, Section 2 discusses models for which the results of the present paper
provide a unifying perspective on the underlying inequalities. In Section 3 we then state and
prove the generalised KMS inequalities alluded to above. After discussing selected function
space implications in Section 3.4, we discuss in Section 4 how the results in the present paper
let us finally retrieve and extend previously known KMS-type inequalities.

NOTATION

Our notation is fairly standard, but we wish to comment on certain aspects. Throughout, 1n
denotes the (n × n)-unit matrix and V,W finite dimensional real inner product spaces. Given
x0 ∈ Rn and r > 0, the open ball of radius r centered at x0 is denoted Br(x0) := {x ∈ Rn |
|x − x0| < r}. The n-dimensional Lebesgue and the (n − 1)-dimensional Hausdorff measure
are denoted L n and H n−1, respectively, and we set ωn−1 := H n−1(∂B1(0)). For a bounded
measurable set A ⊂ Rn with L n(A) > 0 and u ∈ L1

loc(Rn;V ), we write 
A

udx :=
1

L n(A)

ˆ
A

udx.

We moreover use the dot notation to denote homogeneous function spaces; e.g., we write
Ẇk,p(Rn;V ) to indicate the homogeneous Sobolev space of order (k, p) of V -valued maps,
so the closure of C∞c (Rn;V ) for the k-th order Lp-gradient norm ‖Dk · ‖Lp(Rn). This notation
also carries over to other space scales such as e.g. homogeneous Triebel-Lizorkin spaces, where
we consequently stick to the conventions of TRIEBEL [67, Chpt. 5].

Inner products on a linear space V will be denoted 〈·, ·〉V , and if it is clear from the context,
we shall omit the subscript. For m ∈ N and a finite dimensional inner product space V , the
symmetric,m-multilinear V -valued maps on Rn are denoted SLinm(Rn;V ). For completeness,
let us recall that the symmetric or skew-symmetric (n × n)-matrices are denoted Sym(n) or
so(n), respectively. We shall occasionally also apply some notation on underlying identification
maps and algebraic identities that we, for the convenience of the reader, have concisely gathered
in the Appendix, Section A. Lastly, we write c > 0 for a constant that might change from line
to line, and shall only be specified in case its precise value is required.

2. MODELS, CONTEXT AND PREVIOUSLY KNOWN RESULTS AS SPECIAL CASES

For a wealth of specific constellations (A,B, p, q), the generalised KMS-inequalities (KMS1)
and (KMS2), to be addressed in Theorems A and B below, provide inequalities that play instru-
mental roles in the well-posedness theory for a multitude of mathematical models. We now
proceed to contextualise the unifying approach of the present paper with previous contributions,
and how it extends and recovers key coercive inequalities in several recently studied models.

2.1. Contextualisation. KMS-inequalities and related inequalities have been studied in par-
ticular situations; see [7, 43, 44, 45, 46, 47, 55, 56] for a non-exhaustive list. Slightly more
systematically, in the specific case where 1 < p <∞ and B = Curl in n = 3 dimensions, [32]
establishes the equivalence

(1.5)⇐⇒ A induces an elliptic operator via Au := A[Du]. (2.1)

The latter condition can be expressed algebraically via⋃
ξ∈R3\{0}

ker(A[·⊗ ξ]) = {0} (⇔ (∀ξ 6= 0: A[v ⊗ ξ] = 0)⇒ v = 0). (2.2)

The equivalence (2.1) extends to arbitrary dimensions n ≥ 2, cf. [31]. In these contributions,
the underlying KMS-inequalities are approached by performing an analytic split embodied by
Helmholtz decompositions of generic maps P . Decomposing a map P into its div- and curl-
free parts then allows to use the fractional integration [1, §3] or Sobolev embedding theorem
on the former and Calderón-Zygmund theory on the latter. In particular, this split is dictated by
the differential operator B = Curl which is then viewed as the central object, hence the name
analytic split.
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Here we introduce a different approach and perform an algebraic split; see the proof of
Theorem A below. Namely, it is now the part mapA that motivates the pointwise decomposition
P = Πker(A)[P ] + Πker(A)⊥ [P ]. Contrary to Πker(A)⊥ [P ], which is a priori controllable by
A[P ], it is now the part Πker(A)[P ] that requires elliptic estimates and Sobolev’s embedding. In
contrast to the analytic one, this split is not dictated by the differential operator B = Curl but
the purely algebraic part map which is then viewed as central.

Let us note, though, that while the algebraic split approach in the present paper yields the
optimal result for the regime 1 < p < ∞, we do not see how it allows to obtain results in
the borderline case p = 1 which has been resolved recently [31] by the authors in the case of
B = Curl employing the analytic split.

In the following, we now proceed to discuss three illustrative models from continuum or
fluid mechanics where generalised KMS inequalities as described in Section 1.2 play a pivotal
role. As a key point, up to now these inequalities required single approaches, requiring different
intricate algebraic identities or analytic estimates each, whereas they now appear as special cases
of the results of the present paper. Throughout, let now Ω ⊂ R3 be open and bounded.

2.2. Gradient plasticity models. The modelling of plastic deformations in the geometrically
linear framework is based on the additive decomposition of the displacement gradient
Du = e + P into the non-symmetric elastic distortion e and the plastic distortion P . With
the presence of plastic deformations the (free) elastic energy describing the elastic response of
the material is of the form

F [u, P ; Ω] :=

ˆ
Ω

Welastic(sym(Du− P )) +Wplastic(symP,CurlP ) dx, (2.3)

whereby dislocations are modelled by the control of CurlP , which enters the plastic energy, see
[22, 27, 29, 34, 43, 50, 51, 63] for an incomplete list. ForX ∈ R3×3, we consider the orthogonal
decomposition

X = dev symX + 1
3 tr(X)13 + skewX ∈ (sl(3) ∩ Sym(3))⊕ R13 ⊕ so(3), (2.4)

where sl(3) = {X ∈ R3×3 | trX = 0}. Applying this pointwisely to Du for a displacement
u : Ω → R3, (2.4) decomposes Du into a shear part dev sym Du capturing the shape change
of the material, whereas 1

3 tr(Du) reflects purely volumetric infinitesimal changes and skew Du
describes rotations of the material; the latter two constituents hence do not give rise to shape
change of the material. The additive decomposition (2.4) is also meaningful for X = CurlP ,
cf. LAZAR [40, 41] and NEFF et al. [54]. Specifically, the diagonal entries of CurlP display
screw dislocations and the off-diagional entries describe edge dislocations. The single con-
stituents in (2.4) then describe, in this order, symmetric edge dislocations combined with single
screw edge dislocations, screw dislocations and skew-symmetric edge dislocations. In a phe-
nomenologically simple model, the plastic energy density can account for this particular split
via an additive description

Wplastic(symP,CurlP ) = W
(1)
plastic(symP ) +W

(2)
plastic(CurlP ),

where for suitable µ1, µ2, µ3 ≥ 0 and q, p1, p2, p3 > 1

W
(1)
plastic(symP ) = | symP |q−2〈Chard symP, symP 〉, (2.5)

W
(2)
plastic(CurlP ) = µ1 |dev sym CurlP |p1 + µ2 | tr CurlP |p2 + µ3 | skew CurlP |p3 ,

whereas the elastic energy density in (2.3) is given by the quadratic form

Welastic(sym(Du− P )) = 〈Celastic sym(Du− P ), sym(Du− P )〉. (2.6)

In (2.5) or (2.6), Celastic,Chard ∈ R(3×3)×(3×3) are positive definite elasticity or plastic hard-
ening tensors; the reader might notice that for q = 2, (2.5)1 reduces to the usual PRAGER

backstress term [25]. The choice of parameters µ1, µ2, µ3 leads to different models for certain
material aspects, and admitting exponents p1, p2, p3 6= 2 is natural (see e.g. WULFINGHOFF et
al. [69] or CONTI & ORTIZ [22] for a similar appearance of non-quadratic curl-terms). Coer-
civity of the functionals (and hereafter existence of minimizers) then relies on suitable KMS-
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inequalities of type (1.3). Specifically, as discussed by the second named authors and MÜLLER

[43], if µ2, µ3 = 0, then the specific KMS-type inequality

inf
Π∈K
‖P −Π‖Lq(Ω) ≤ c

(
‖ symP‖Lq(Ω) + ‖ dev sym CurlP‖Lp(Ω)

)
(2.7)

for P ∈ C∞(Ω;R3×3) is key to the coercivity of the associated energy functionals. On the other
hand, if µ1 = 0 and so only screw dislocations and edge dislocations are reflected in the model,
coercivity for the forced functional (for some suitably integrable force f : Ω→ R3)

Ff [u, P ; Ω] := F [u, P ; Ω]−
ˆ

Ω

〈f, u〉dx

subject to zero Dirichlet conditions necessitates a KMS-inequality that replaces the part map
dev sym in (2.7) by the part map R3×3 3 X 7→ skewX + tr(X)13. As a consequence of
Theorem A (see Section 4.1.3 and Figure 2), the requisite coercive KMS-inequalities are avail-
able for zero Dirichlet data and suitable choices of exponents p2, p3, but not immediately for
non-zero Dirichlet data on P . More generally, recalling that (2.4) provides a direct sum de-
composition of R3×3, other material aspects can be captured by admitting plastic potentials
|A[P ]|q + |B[CurlP ]|p with the choices of part maps A,B:

(A,B) ∈
{

(dev, Id), (sym, Id), (dev sym, Id), (dev,dev), (sym,dev), (2.8)

(dev sym,dev), (sym, sym), (sym,dev sym), (dev, skew + tr), (dev, tr)
}
,

and we refer the reader to Section 4 for more background on such constellations.

2.3. The relaxed micromorphic model. Another key application of KMS-type inequalities is
given by (extended continuum) micromorphic models. Here, a key modelling assumption is the
attachment of a microstructure to each single point of the material, with this microstructure in
turn deforming elastically. In analogy with the discussion in Section 2.2, in the relaxed micro-
morphic model the plastic distortion is replaced by the micro distortion [53, 54]. Specifically,
under suitable side constraints on the displacement field u : Ω → R3 and the (in general non-
symmetric) micro distortion P : Ω→ R3×3, one then aims to find minimizers of functionals

F [u, P ; Ω] :=

ˆ
Ω

Welastic(sym(Du− P )) +Wmicro(symP ) (2.9)

+Wcoupling(skew(Du− P )) +Wcurv(CurlP ) + 〈f, u〉dx =: I + ...+ V.

In (2.9), term I is as in (2.6), whereas the other parts II–IV are of the form 〈Cz, z〉. As to term
II, C = Cmicro for a suitable elasticity tensor Cmicro : Sym(3)→ Sym(3), whereas C = Cc for
a rotational coupling tensor on so(3). Term IV then is a curvature energy term, and a physically
meaningful reduction of the complexity of the tensor C = Ccurv then yields equality of IV
with the right-hand side of (2.5)2 with p1 = p2 = p3 = 2, see [43, 53, 54]. If the rotational
coupling Wcoupling is absent it is then clear that, similarly as in Section 2.2, generalised KMS-
type inequalities are instrumental for the existence of minimizers, where different part maps
A,B as in (2.8) then model different material aspects.

2.4. Pseudostress-velocity formulation for stationary Stokes. The stationary Stokes system
for incompressible fluids can be recast in a pseudostress formulation. To be more precise, let
Ω ⊂ R3 be open and bounded with Lipschitz boundary. Subject to f : Ω → R3 and suitable
boundary conditions, one aims to find a velocity function u : Ω→ R3, a corresponding pressure
function p : Ω → R and, in addition, a stress function σ : Ω → R3×3 such that the following
first order system is satisfied:

σ − µ sym Du+ p1 = 0 in Ω,

Div σ = f in Ω,

div u = 0 in Ω,

u = 0 on Γν ⊂ ∂Ω,

σ × ν = 0 on Γτ ⊂ ∂Ω,

(2.10)
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where Γν ,Γτ are relatively open subsets of ∂Ω and (2.10)5 is understood in the row-wise sense.
Taking the row-wise divergencence of both sides of (2.10)1, one recovers the usual stationary
Stokes system for incompressible fluids. Weak solutions, in a suitable yet canonical sense, for
(2.10) can be obtained variationally as the minimizer of the functional

F [σ, u; Ω] :=

ˆ
Ω

|dev σ − µ sym Du|2 + |Div σ − f |2dx over

{
σ ∈ H(Div; Γν ,Ω),

u ∈ H(Grad; Γτ ,Ω),

and the pressure function in (2.10) is then re-introduced via p = − 1
3 tr(σ). The underlying

spaces H(Div; Γν ,Ω) and H(Grad; Γτ ,Ω) are particular instances of the spaces WA,q,B,p0,Γ (Ω)
introduced in Section 3.4 below, see (3.60) below. The formulation (2.10) originally appeared
in CAI et al. [11] and has been studied from numerical perspectives in [12, 30]. As discussed
at length in BAUER et al. [7], the coercivity of the functional F and hence the existence of
minimizers in turn is based on the KMS-type inequality

‖P‖L2(Ω) ≤ c
(
‖ devP‖L2(Ω) + ‖DivP‖L2(Ω)

)
, P ∈ H(Div; Γν ,Ω), (2.11)

which we recover as a special case of Proposition 3.22 below. Inequalities (2.11) with non-
quadratic integrabilities also arise naturally in the realm of Non-Newtonian fluids, where the
viscosity of the fluid depends on the velocity. Imposing CARREAU’s law, the term µ sym Du

then is replaced by (1 + |sym Du|2)
q−2
2 sym Du and then corresponds to shear thickening (q >

2) or shear thinning fluids (q < 2); see [7, 28] and [48, 49] for recent numerical results.

2.5. Miscallaneous other models and applications. Variations of KMS-inequalities also enter
in different applications, and we here gather some of such results. First, a variant of inequality
(2.11) had been studied by ARNOLD et al. [6] in view of developing a mixed higher order
finite element method for dealing with planar elasticity and the corresponding error analysis;
in this context, see also BOFFI et al. [10] and CARSTENSEN et al. [13, 14]. Different from
(2.11), in this situation it is natural to not require maps to vanish on parts of the boundary but
to satisfy a certain normalisation condition. Here, such inequalities arise as special cases of
Corollary 3.19 below; also see Remark 3.20 for their link to the aforementioned contributions.
Moreover, BOTTI et al. [9] apply KMS inequalities of the second type to establish an adequate
discrete version of a Poincaré-Korn type inequality, which itself is used to justify a reduction
of mesh face degrees of freedom through serendipity techniques. It is worth mentioning that
their presented Korn type inequalities already follow from the C-ellipticity of the appearing
differential operators on the right-hand side of the estimates in [9, Prop. 25], see the definition
in the corresponding equation [9, Eq. (2.1)] and, in turn, [23, 37].

Lastly, in incompatible elasticity, the symmetric strain field ε instead of the displacement field
is viewed as the primary quantity (see e.g. CIARLET [18, 20] or the non-variational models from
AMSTUTZ & VAN GOETHEM [4, 5]) and is not a priori assumed to be a symmetric gradient of
a displacement field. In terms of the complex (1.6)2ff., this is expressed via inc ε 6= 0, in which
case ε 6= sym Du for any displacement field u. The use of inc-based gradient plasticity models is
based on an additional invariance condition beyond isotropy [26, 66]. The associated kinematic
problems then naturally lead to Sobolev-type spaces defined in terms of inc , which then are
a special case of the general spaces introduced in Section 3.4. However, the corresponding
sharp KMS inequalities in Theorems A, B, Corollary 3.19, Proposition 3.22 and the results
from Section 4.3 in turn show that inc is often too weak to give suitable control over lower
order quantities which has only been conjectured so far. This also indicates that including lower
order Curl-terms might be necessary to obtain well-posedness in certain fourth order gauge
invariant variational plasticity models for polycrystals, cf. EBOBISSE et al. [26].

3. MAIN RESULTS

We now proceed to state and prove our main results, Theorem A and B, in Sections 3.2 and
3.3 below. Beforehand, we start by introducing the underlying terminology. Here we tacitly
adopt the conventions gathered in Section 1.2.
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3.1. Algebraically compatible ellipticities. In order to introduce the notions that are necessary
and sufficient for the generalised KMS inequalities (KMS1) and (KMS2), we start by recalling
some general terminology for vectorial differential operators. Thus, let A be an l-homogeneous,
linear, constant coefficient differential operator on Rn between V andW (two finite-dimensional
real inner product spaces), meaning that

Au :=
∑
|α|=l

Aα∂αu, u : Rn → V, (3.1)

for linear maps Aα : V → W and multi-indices α ∈ Nn0 with |α| = l. With this operator we
associate the symbol map

A[ξ] : V →W, A[ξ]v :=
∑
|α|=l

ξαAαv, ξ ∈ Rn,v ∈ V, (3.2)

where ξα = ξα1
1 · · · ξαnn for α = (α1, . . . , αn) ∈ Nn0 . An operator of the form (3.1) is then

called elliptic (in the sense of HÖRMANDER or SPENCER [35, 65]) or R-elliptic if

kerR(A[ξ]) = {0} for all ξ ∈ Rn\{0}, (3.3)

and is said to be C-elliptic if

kerC(A[ξ]) = {0} for all ξ ∈ Cn\{0}. (3.4)

Specifically, as Aα is a map between real vector spaces, let us point out that (3.4) has the inter-
pretation that, for any ξ ∈ Cn \ {0} and all v1,v2 ∈ V ,∑

|α|=l

ξαAαv1 + i
∑
|α|=l

ξαAαv2 = 0 =⇒ v1,v2 = 0. (3.5)

The following lemma is essentially due to SMITH [64]; also see KAŁAMAJSKA [37].

Lemma 3.1. Let A be an operator of the above form (3.1). The following are equivalent:
(a) A is C-elliptic.
(b) There exists another homogeneous, linear, constant coefficient differential operator L

on Rn and a number d ∈ N such that Dd = L ◦ A.
(c) For any open and connected set Ω ⊂ Rn we have

dim{P ∈ D ′(Ω;V )| AP = 0} <∞.
Moreover, the nullspace in (c) consists of V -valued polynomials and is independent of Ω.

3.2. Generalised KMS inequalities of the first kind. We directly start by displaying the first
main result of the present paper, providing the classification of all constellations (A,B, q) with
1 < p < ∞ that lead to validity of the corresponding generalised KMS-inequalities (KMS1)
of the first kind. For expository reasons, we start with the following basic version involving
Lebesgue spaces. This result can be generalised and then appears as a special case of a more
general statement on Triebel-Lizorkin spaces, cf. Theorem 3.8 below.

Theorem A (Generalised KMS-inequalities of the first kind). Let 1 < p < n and suppose
that the part map A and the k-th order differential operator B are as in Section 1.2. Then the
following are equivalent:

(a) There exists a constant c = c(A,B, p) > 0 such that the inequality

‖P‖
Ẇ
k−1,

np
n−p (Rn)

≤ c
(
‖A[P ]‖

Ẇ
k−1,

np
n−p (Rn)

+ ‖BP‖Lp(Rn)

)
(3.6)

holds for all P ∈ C∞c (Rn;V ).
(b) B is reduced elliptic (relative to A), meaning that

ker(A) ∩ ΛB =
⋃

ξ∈Rn\{0}

ker(A) ∩ ker(B[ξ]) = {0}, (3.7)

where ΛB :=
⋃
ξ∈Rn\{0} ker(B[ξ]) denotes the wave cone of B.

Equation (3.7) expresses the fact that B behaves like an elliptic operator on maps whose
image is contained in ker(A). This also shows the naturality of the condition, letting us control
the part of the field P which is contained in ker(A) by the operator B.
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Example 3.2. In the case (A,B) = (sym,Curl) we have ker(A) = so(n) and for all ξ 6= 0 that
ker(B[ξ]) = {a ⊗ ξ| a ∈ Rn}. Since there are no non-trivial skew-symmetric rank-1 matrices
the condition (3.7) is fulfilled and we recover (1.3)1.

Remark 3.3. For B = Curl the condition (3.7) is equivalent to A[D·] being an elliptic operator,
so that we recover the previously known conditions for the validity of KMS-inequalities with
B = Curl, cf. [32, 31], but only in the case p > 1.

The following lemma is almost trivial, but since it is crucial for our purposes, we give the
quick proof.

Lemma 3.4. Let (X, ‖·‖X), (Y, ‖·‖Y ) be two finite dimensional real, normed vector spaces. A
linear map A : X → Y is injective if and only if there exists λ > 0 such that

λ‖x‖X ≤ ‖Ax‖Y holds for all x ∈ X. (3.8)

Proof. It is clear that (3.8) implies the injectivity of A. Now suppose that A is injective. The
unit sphere SX := {z ∈ X| ‖z‖X = 1} is compact and, since z 7→ Az is continuous,

min
z∈SX
‖Az‖Y =: λ

is attained at some z0 ∈ SX . Since A is injective, this value cannot be equal to zero. We then
use the linearity of A to deduce (3.8). �

Proof of Theorem A. We start by proving ’(b)⇒(a)’ and put p∗ := np
n−p . Let Πker(A) : V →

ker(A) be the orthogonal projection onto ker(A) and accordingly Πker(A)⊥ : V → ker(A)⊥ be
the orthogonal projection onto ker(A)⊥. For the following, let P ∈ C∞c (Rn;V ) be arbitrary
but fixed.

Denoting the norms on V, Ṽ by ‖·‖V , ‖·‖Ṽ , let us note that it is possible to pointwisely
bound ‖Πker(A)⊥ [P ]‖V against ‖A[P ]‖Ṽ . To see this, note that A|ker(A)⊥ : ker(A)⊥ → Ṽ is
injective, whereby we may employ the Lemma 3.4. We thus have for any x ∈ Rn (where the
constant λ > 0 is provided by Lemma 3.4) and any α ∈ Nn0 :

λ‖∂αΠker(A)⊥ [P (x)]‖V = λ‖Πker(A)⊥ [∂αP (x)]‖V
≤ ‖A[Πker(A)⊥ [∂αP (x)]]‖Ṽ
= ‖A[Πker(A)⊥ [∂αP (x)] + Πker(A)[∂

αP (x)]]‖Ṽ
= ‖A[∂αP (x)]‖Ṽ = ‖∂αA[P (x)]‖Ṽ ,

(3.9)

noting that ∂α acts componentwisely and Πker(A),A are linear; note that (3.9)3 holds because
of A[Πker(A)[∂

αP (x)]] = 0.
We next claim that B, viewed as a differential operator on the ker(A)-valued maps

B : C∞c (Rn; ker(A))→ C∞c (Rn;W ) is elliptic. (3.10)

Indeed, let v ∈ ker(A) and let ξ ∈ Rn \ {0} be arbitrary. Then, using (b),

B[ξ]v = 0⇐⇒ v ∈ ker(B[ξ]) ∩ ker(A)
(3.7)
=⇒ v = 0.

By classical elliptic regularity, if L is a linear, homogeneous elliptic differential operator on
Rn between the finite dimensional vector spaces V1 and V2 of order k̃ ∈ N, we have for any
1 < p̃ <∞

‖u‖Lp̃(Rn) ≤ c ‖Lu‖Ẇ−k̃,p̃(Rn) for all u ∈ C∞c (Rn;V1), (3.11)
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where c = c(p̃,L) > 0 is a constant. Since Πker(A)[P ] is ker(A)-valued, we thereby obtain by
(3.11) for all α ∈ Nn0 with |α| = k − 1

‖∂αΠker(A)[P ]‖
L
np
n−p (Rn)

= ‖Πker(A)[∂
αP ]‖

L
np
n−p (Rn)

(3.11)
≤ c ‖BΠker(A)[∂

αP ]‖
Ẇ
−k, np

n−p (Rn)

= c ‖B(∂αP −Πker(A)⊥ [∂αP ])‖
Ẇ
−k, np

n−p (Rn)

≤ c ‖∂αBP‖
Ẇ
−k, np

n−p (Rn)
+ c ‖Πker(A)⊥ [∂αP ]‖

L
np
n−p (Rn)

(3.9)
≤ c ‖BP‖

Ẇ
−1,

np
n−p (Rn)

+ c ‖A[∂αP ]‖
L
np
n−p (Rn)

≤ c ‖BP‖Lp(Rn) + c ‖∂αA[P ]‖
L
np
n−p (Rn)

,

(3.12)

where we have used that Lp(Rn;W ) ↪→ Ẇ−1, npn−p (Rn;W ). In fact, this is equivalent to
Ẇ1, np

np−n+p (Rn;W ) ↪→ Lp
′
(Rn;W ), and since np

np−n+p < n, its Sobolev conjugate exponent
is well-defined and given by p′.

To conclude, we estimate

‖∂αP‖
L
np
n−p (Rn)

≤ ‖∂αΠker(A)[P ]‖
L
np
n−p (Rn)

+ ‖∂αΠker(A)⊥ [P ]‖
L
np
n−p (Rn)

,

employ (3.12) on ‖∂αΠker(A)[P ]‖
L
np
n−p (Rn)

, (3.9) on ‖∂αΠker(A)⊥ [P ]‖
L
np
n−p (Rn)

and then sum

the resulting inequalities over all α ∈ Nn0 with |α| = k − 1 to conclude (3.6). This settles
the sufficiency in the general case. For the necessity, we have to show that the restricted op-
erator B : C∞c (Rn; ker(A)) → C∞c (Rn;W ) is elliptic as this is clearly equivalent to (3.7) (cf.
(3.10)ff.). Applying inequality (KMS1) to maps P ∈ C∞c (Rn; ker(A)), we obtain

‖P‖
Ẇ
k−1,

np
n−p (Rn)

≤ c ‖BP‖Lp(Rn),

so that the requisite reduced ellipticity, and thus (b), follows from VAN SCHAFTINGEN [68, Cor.
5.2]. This completes the proof. �

Remark 3.5. In many applications, A : V → V is directly given by a (orthogonal) projection.
For instance, if we let V = Rn×n and let

• A[P ] := symP together with Ṽ = Sym(n), or
• A[P ] := dev symP together with Ṽ being the trace-free symmetric matrices,

then we have A2 = A in each of the cases. One may then directly work with Πker(A)⊥ = A
and Πker(A) = Id−A.

Remark 3.6. Assuming (3.7), the same proof as for Theorem A can be employed to obtain lower
order estimates. For instance, if j ∈ N0 and 1 < p < ∞ are such that j < k and p(k − j) < n,
then we obtain

‖DjP‖
L

np
n−(k−j)p (Rn)

≤ c
(
‖DjA[P ]‖

L
np

n−(k−j)p (Rn)
+ ‖BP‖Lp(Rn)

)
(3.13)

for all P ∈ C∞c (Rn;V ). One imitates the steps with the obvious modifications until (3.12),
which is then employed with α ∈ Nn0 with |α| = j. The only modification then takes place in
(3.12)4, leading to

‖∂αΠker(A)[P ]‖
L

np
n−(k−j)p (Rn)

≤ c ‖∂αBP‖
Ẇ
−k, np

n−(k−j)p (Rn)
+ c ‖Πker(A)⊥ [∂αP ]‖

L
np

n−(k−j)p (Rn)

(3.9)
≤ c ‖BP‖

Ẇ
j−k, np

n−(k−j)p (Rn)
+ c ‖A[∂αP ]‖

L
np

n−(k−j)p (Rn)

≤ c ‖BP‖Lp(Rn) + c ‖∂αA[P ]‖
L
np
n−p (Rn)

,

using that Lp(Rn;W ) ↪→ Ẇj−k, np
n−(k−j)p (Rn;W ) under the given assumptions.

Let us now briefly address other space scales. If we allow the exponent p to be larger than
n, n < p < ∞, then scaling suggests to work with the space Ċk−1,s(Rn;V ) with s = 1 − n

p .
One may then realise this Hölder space as the corresponding Besov space, Ċk−1,s(Rn;V ) '
Ḃk−1+s
∞,∞ (Rn;V ), cf. [67, §5]. Put t := k − 1 + s in the sequel. Given P ∈ C∞c (Rn;V ), we
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then estimate the Ḃt∞,∞(Rn;V )-norm of P by splitting P into Πker(A)[P ] and Πker(A)⊥ [P ].
As in the proof of Theorem A, we then only have to suitably bound ‖Πker(A)[P ]‖Ḃt∞,∞(Rn). To
conclude the requisite inequality in this case, we record as a substitute for (3.11)

‖u‖Ḃt∞,∞(Rn) ≤ c‖Lu‖Ḃt−k̃∞,∞(Rn)
, u ∈ C∞c (Rn;V1), (3.14)

and, moreover,

Lp(Rn) ↪→ Ḃt−k∞,∞(Rn). (3.15)

We now briefly explain the validity of (3.14) and (3.15). Inequality (3.14) is folklore, and one
may argue rigorously as follows: Since in the framework of (3.11) the k̃-th order operator L is
assumed elliptic, the Fourier multiplier operator

Tm1
(g) := F−1[m1(ξ)ĝ] := F−1[

(
|ξ|k̃(L∗[ξ]L[ξ])−1L∗[ξ]

)
ĝ],

is well-defined on maps g ∈ C∞c (Rn;V2), and defining for h ∈ S ′(Rn;V1)

Tm2
(h) := F−1[m2(ξ)ĥ] := F−1[|ξ|−k̃ĥ],

we have Tm2
Tm1

Lu = u for all u ∈ C∞c (Rn;V1). We then invoke TRIEBEL [67, Thm. 1,
§5.2.3] to find that Tm2 : Ḃt−k̃∞,∞(Rn;V1) → Ḃt∞,∞(Rn;V1) boundedly. On the other hand, the
symbol of Tm1 is componentwisely smooth off zero and homogeneous of degree zero. Under
these assumptions, [24, Thm. 4.13] implies that there exists z0 ∈ L (V2;V1 + iV1) and a
C∞-function Θ: Sn−1 → L (V2;V1) with zero mean for H n−1 Sn−1 such that we have the
representation

Tm1
g = z0g + p.v.

Θ( x
|x| )

|x|n
∗ g for all g ∈ C∞c (Rn;V2). (3.16)

This particularly implies that the kernel K(x) := |x|−nΘ( x
|x| ) satisfies for some constants

A1, A2, A3 > 0

sup
0<R<∞

1

R

ˆ
BR(0)

|K(x)| |x|dx ≤ A1 (size condition),

sup
y∈Rn\{0}

ˆ
Rn\B2|y|(0)

|K(x− y)−K(x)|dx ≤ A2 (Hörmander’s condition), (3.17)

sup
0<R1<R2<∞

∣∣∣∣∣
ˆ

BR2
(0)\BR1

(0)

K(x)dx

∣∣∣∣∣ ≤ A3 (cancellation condition)

in the terminology of GRAFAKOS [33, §6.7.1]. In consequence, [33, Cor. 6.7.2] yields that
Tm1 : Ḃt−k̃∞,∞(Rn;V2)→ Ḃt−k̃∞,∞(Rn;V1) boundedly. Summarising,

‖u‖Ḃt∞,∞(Rn) = ‖Tm2
(Tm1

(Lu))‖Ḃt∞,∞(Rn)

≤ c‖Tm1
(Lu)‖

Ḃt−k̃∞,∞(Rn)
≤ c‖Lu‖

Ḃt−k̃∞,∞(Rn)
,

(3.18)

which is (3.14). On the other hand, (3.15) follows from [67, Thm. 2.7.1]

Lp(Rn) ' Ḟ0
p,2(Rn) ↪→ Ḃ0

p,∞(Rn) ↪→ Ḃt−k∞,∞(Rn)

upon recalling the definition of t and s in terms of k, p and n. Recalling that Ċk−1,s(Rn;V ) '
Ḃk−1+s
∞,∞ (Rn;V ) and using Lemma 3.4 on Πker(A)⊥ [P ] in the second inequality, we have

‖Πker(A)⊥ [P ]‖Ḃs∞,∞(Rn) ≤ c
∑

|α|=k−1

‖Πker(A)⊥ [∂αP ]‖Ċ0,s(Rn) (3.19)

≤ c

λ

∑
|α|=k−1

‖A[∂αP ]‖Ċ0,s(Rn) =
c

λ

∑
|α|=k−1

‖∂αA[P ]‖Ċ0,s(Rn)
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so that estimates (3.14) and (3.15) combine to the corresponding KMS-type inequality3

‖Dk−1P‖Ċ0,s(Rn) ≤ c
(
‖Dk−1A[P ]‖Ċ0,s(Rn) + ‖BP‖Lp(Rn)

)
(3.20)

for all P ∈ C∞c (Rn;V ).
This scheme of proof also persists for other Besov spaces and Triebel-Lizorkin spaces, and

it is possible to directly argue via Fourier multipliers and avoid (3.19). Since they provide us
with a limiting case of independent interest, we focus on the Ḟγp,q-spaces in the sequel. Here, the
modification of our above approach hinges on the following Mihlin-Hörmander multiplier-type
and embedding result:

Lemma 3.7 ([15, Thm. 5.1], [67, Thm. 2.7.1]). Let 0 < q ≤ ∞. Then the following hold:
(a) Let α, γ ∈ R and 0 < p < ∞. Given ` ∈ N with ` > max{np ,

n
q } + n

2 , let m ∈
C`(Rn\{0}) be a function that satisfies the generalised Hörmander condition, meaning
that we have for all σ ∈ Nn0 with |σ| ≤ `

sup
R>0

(
R−n+2α+2|σ|

ˆ
{R<|ξ|<2R}

|∂σξm(ξ)|2dξ
)
≤ Cσ <∞. (3.21)

Then the Fourier multiplier operator Tmu := F−1(mû), originally defined on C∞c (Rn),
extends to a bounded linear operator

Tm : Ḟγp,q(Rn)→ Ḟα+γ
p,q (Rn). (3.22)

(b) Let 0 < p1 < p2 <∞ and −∞ < s2 < s1 <∞. Then we have

Ḟs1p1,q(R
n) ↪→ Ḟs2p2,q(R

n) provided s1 −
n

p1
= s2 −

n

p2
.

Note that in the previous theorem, (b) is actually a consequence of (a), but we prefer to state
the theorem in this way to facilitate future referencing. We now have

Theorem 3.8 (Generalised KMS-inequalities of the first kind in the TL-scales). Let 0 < p1 <
p2 <∞ and −∞ < s2 < s1 <∞ be such that

s1 − s2 ≤ k and s1 −
n

p1
= k + s2 −

n

p2
, (3.23)

Moreover, let the part mapA and the k-th order differential operator B as introduced in Section
1.2 satisfy ⋃

ξ∈Rn\{0}

ker(A) ∩ ker(B[ξ]) = {0}. (3.24)

Then for any 0 < q <∞ there exists a constant c = c(s1, p1, q,A,B) > 0 such that

‖P‖Ḟs1p1,q(Rn) ≤ c
(
‖A[P ]‖Ḟs1p1,q(Rn) + ‖BP‖Ḟs2p2,q(Rn)

)
. (3.25)

Proof. Let P ∈ C∞c (Rn;V ). Similarly as in the proof of Theorem A, we start with the algebraic
split P = Πker(A)[P ] + Πker(A)⊥ [P ]. Now consider the operator B which, by (3.24), is elliptic
on C∞c (Rn; ker(A)) just as in the proof of Theorem A. Now consider the Fourier multiplier
operator

TmQ := F−1
(
(B[ξ]∗B[ξ])−1B∗[ξ]Q̂

)
,

the symbol of which is C∞ in Rn \ {0} and homogeneous of degree (−k). Therefore, all its
β-th partial derivatives, β ∈ Nn0 , are homogeneous of degree (−k−|β|). Thus, (3.21) is fulfilled
for any ` ∈ N. We now apply Lemma 3.7 (a) to γ := s1 − k and α := k which, by virtue of
Πker(A)[P ] = Tm[BΠker(A)[P ]], gives us

‖Πker(A)[P ]‖Ḟs1p1,q(Rn) = ‖Tm[BΠker(A)[P ]]‖Ḟs1p1,q(Rn)

≤ c ‖BΠker(A)[P ]‖
Ḟ
s1−k
p1,q

(Rn)
.

(3.26)

3Strictly speaking, inequality (3.20) should be referred to as a generalised Korn-Maxwell-Morrey inequality; note
that, if we put A ≡ 0 and B := Dk , then (3.7) is certainly fulfilled and the resulting inequality is just MORREY’s
inequality underlying the embedding Ẇ1,p(Rn) ↪→ Ċ0,1−n/p(Rn) for p > n.
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We then estimate the homogeneous Triebel-Lizorkin norm of the key term as follows:
‖Πker(A)[P ]‖Ḟs1p1,q(Rn) ≤ c(‖BΠker(A)[P ]‖

Ḟ
s1−k
p1,q

(Rn)

≤ c(‖BP‖
Ḟ
s1−k
p1,q

(Rn)
+ ‖BΠker(A)⊥ [P ]‖

Ḟ
s1−k
p1,q

(Rn)
)

≤ c(‖BP‖
Ḟ
s1−k
p1,q

(Rn)
+ ‖Πker(A)⊥ [P ]‖Ḟs1p1,q(Rn)).

(3.27)

Condition (3.23) implies that s1 − k ≤ s2 and, in particular,

Ḟs2p2,q(R
n) ↪→ Ḟs1−kp1,q (Rn). (3.28)

We thus obtain

‖P‖Ḟs1p1,q1 (Rn) ≤ c
(
‖Πker(A)⊥ [P ]‖Ḟs1p1,q1 (Rn) + ‖BP‖Ḟs2p2,q1 (Rn)

)
,

and, realising that Idker(A)⊥ = (A∗A|ker(A)⊥)−1(A∗A|ker(A)⊥), we obtain

‖Πker(A)⊥ [P ]‖Ḟs1p1,q1 (Rn) ≤ c ‖A[P ]‖Ḟs1p1,q1 (Rn), (3.29)

and thereby conclude (3.25). The proof is complete. �

The sufficiency part of Theorem A can then be retrieved from Theorem 3.8 as follows. For the
Lebesgue scale, we set s1 = k − 1, s2 = 0 (whereby (3.23)1 is fulfilled), and then put p2 = p,
letting us compute p1 via (3.23)2 as p1 = np

n−p provided p < n. Realising that Ḟ0
p,2(Rn) '

Lp(Rn) for 1 < p < ∞, we recover the sufficiency part of Theorem A in the Lebesgue scale.
If p = 1, we have instead Ḟ0

1,2(Rn) ' H1(Rn) for p = 1 with the (homogeneous) Hardy
space H1(Rn) (see, e.g. [33, Rem. 6.5.2] ). This observation gives us the following borderline
inequality:

Corollary 3.9 (Inequalities involving H1). Let the part map A and the first order differential
operator B as introduced in Section 1.2 satisfy (3.24). Then there exists a constant c > 0 such
that we have

‖P‖
L

n
n−1 (Rn)

≤ c
(
‖A[P ]‖

L
n
n−1 (Rn)

+ ‖BP‖H1(Rn)

)
for all P ∈ C∞c (Rn;V ). (3.30)

Remark 3.10. The Hardy norm appearing on the right-hand side of (3.30) is basically the best
which one can obtain by the general Fourier multiplier techniques employed in this paper, and
cannot be improved to be taken as the L1-norm. Specifically, as discussed by the authors in [31,
Ex. 2.2], if one takes n = 2, V = R2×2 and B = Curl, then condition (3.24) is tantamount
to ellipticity of the differential operator A[Du] acting on u ∈ C∞c (R2;R2). This is satisfied by
A = dev sym, but by [31, Ex. 2.2] the resulting KMS-inequality is false.

We finally provide a variant of Theorem A for open and bounded sets. Here, we stick to the
Lebesgue scale for simplicity; based on the above arguments, it is clear that analogous results
can be obtained for other space scales.

Corollary 3.11. Let 1 < p < n, 1 < q ≤ p∗ and Ω ⊂ Rn be open and bounded. Moreover, let
the part map A and the k-th order differential operator B as defined in Section 1.2 satisfy (3.7).
Then there exists a constant c = c(p, q,Ω,A,B) > 0 such that we have

‖P‖Wk−1,q(Ω) ≤ c
(
‖A[P ]‖Wk−1,q(Ω) + ‖BP‖Lp(Ω)

)
for all P ∈ C∞c (Ω;V ). (3.31)

If Ω = Br(x0) for some x0 ∈ Rn and r > 0, then we have( 
Br(x0)

|Dk−1P |qdx
) 1
q ≤ c

((  
Br(x0)

|Dk−1A[P ]|qdx
) 1
q

+ r
( 

Br(x0)

|BP |pdx
) 1
p
)

(3.32)

for all P ∈ C∞c (Br(x0);V ) with a constant c = c(p, q,A,B) > 0.

Proof. If q = p∗, this is immediate from Theorem A by extending C∞c (Ω;V ) trivially to Rn.
Hence let 1 < q < p∗. As in the proof of Theorem A, we split P ∈ C∞c (Ω;V ) as P =
Πker(A)⊥ [P ] + Πker(A)[P ]. It is then clear that we have to only control the Lq(Ω)-norm of
Πker(A)[P ]. Extending P trivially to Rn, we replace the Sobolev exponent p∗ = np

n−p in (3.12)1–
(3.12)4 by q. Since supp(BP ) ⊂ Ω, we only require Lp(Ω;W ) ↪→W−1,q(Ω;W ) to conclude,
but this is a direct consequence of q < p∗ (if q > n

n−1 , we use Sobolev’s embedding theorem
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and the John-Nirenberg inequality otherwise). Now, (3.32) follows from (3.31) by scaling and
the proof is complete. �

Clearly, the scaled variant (3.32) also holds for more general domains, but we confine our-
selves to balls here for simplicity. The exponent restriction on q, however, is strict:

Remark 3.12. We cannot allow q = 1 in the previous inequality in general. This is visible best in
the situation where B = Curl, V = Rn×n and so the B-free fields are precisely gradient fields.
Following Example 3.3, we may send r → ∞ in (3.32) and recover the Korn-type inequality
‖Du‖Lq(Rn) ≤ c‖A[Du]‖Lq(Rn) for all u ∈ C∞c (Rn;Rn). It is well-known that this inequality
only persists for q = 1 if one has the pointwise inequality |Du| ≤ c|A[Du]| (cf. [58, 36]), and
the latter is clearly not the case subject to the sole assumption (3.7).

3.3. Generalised KMS inequalities of the second kind. Opposed to the inequalities studied in
the previous paragraph, we now turn to generalised KMS inequalities on domains. In particular,
we drop the assumption of our competitor maps vanishing (to some order) at the boundary. Our
main result then is as follows:

Theorem B (Generalised KMS-inequalities of the second kind). Let p > 1, j ∈ N0, k ∈ N
with j < k satisfy (k − j)p < n and let q ∈ (1, np

n−(k−j)p ]. Moreover, suppose that the part
map A and the k-th order differential operator B are as in Section 1.2. Then the following are
equivalent:

(a) There exists a finite dimensional subspace K of the V -valued polynomials such that for
any open, bounded and connected subset Ω ⊂ Rn with Lipschitz boundary ∂Ω there
exists a constant c = c(p, q,A,B,Ω) > 0 such that the inequality

min
Π∈K
‖Dj(P −Π)‖Lq(Ω) ≤ c

(
‖DjA[P ]‖Lq(Ω) + ‖BP‖Lp(Ω)

)
, (3.33)

holds for all P ∈ C∞(Ω;V ).
(b) B is reduced C-elliptic (relative to A), meaning that⋃

ξ∈Cn\{0}

kerC(A) ∩ kerC(B[ξ]) = {0}. (3.34)

Here, we have set kerC(A) = {v1 + iv2 ∈ V + iV | A[v1] + iA[v2] = 0}.

The notion of reduced C-ellipticity as displayed in Theorem B is actually already implic-
itly contained in the very general situation considered by SMITH [64], and we only use this
terminology to stress its difference to the (full) C-ellipticity.

Remark 3.13. For B = Curl the condition (3.34) is equivalent to A[D·] being a C-elliptic
operator.

Other space scales are equally possible, but we stick to the present formulation of Theorem
B for ease of exposition. For its proof, we recall the following

Lemma 3.14 (Nečas-Lions estimate, [52]). Let Ω ⊂ Rn be a bounded Lipschitz domain,m ∈ Z
and 1 < q <∞. Denote by Dlf the collection of all distributional derivatives of order l. Then
f ∈ D ′(Ω;Rd) and Dlf ∈Wm−l, q(Ω; SLinl(Rn;Rd)) imply f ∈Wm, q(Ω;Rd). Moreover,

‖f‖Wm, q(Ω) ≤ c
(
‖f‖Wm−1, q(Ω) + ‖Dlf‖Wm−l, q(Ω)

)
, (3.35)

with a constant c = c(m, q, d,Ω) > 0.

The second ingredient is

Lemma 3.15. Let A and B as in Section 1.2. Then the following are equivalent:

(a) Condition (3.34) holds.
(b) There exist M ∈ N0 and an isomorphism T : RM → ker(A) such that the operator

C∞(Rn;RM ) 3 a 7→ BTa is C-elliptic.
(c) There exists M ∈ N0 such that, for any isomorphism T : RM → ker(A), the operator

C∞(Rn;RM ) 3 a 7→ BTa is C-elliptic.
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Proof. We first establish ’(a)⇒(b)’. Let M := dim(ker(A)) and choose an arbitrary R-linear
isomorphism T : RM → ker(A). Let D = BT and suppose that, for v = v1 + iv2 ∈ CM and
ξ ∈ Cn \ {0}, we have

0 =
∑
|α|=k

ξαBαTv1 + i
∑
|α|=k

ξαBαTv2 (3.36)

as in (3.5). Then Tv1 + iTv2 ∈ kerC(A) ∩ kerC(B[ξ]), so that Tv1 + iTv2 = 0 by (a). Since
T is an isomorphism, we conclude v1,v2 = 0 and hence D is C-elliptic. Ad (b)⇒(c). If T is
the isomorphism provided (b) and T1 another such isomorphism, we write BT1 = BT(T−1T1),
from where (c) follows at once. Ad (c)⇒(a). Put M := dim(ker(A)) and suppose that there
exists an isomorphism T : RM → ker(A) for which D := BT is not C-elliptic. Then there exists
ξ ∈ Cn \ {0} and v = v1 + iv2 ∈ CM \ {0} for which (3.36) holds. It then suffices to note that
0 6= Tv = Tv1 + iTv2 belongs to the union on the left-hand side of (3.34). Thus, (a) follows
and the proof is complete. �

Proof of Theorem B. We begin by establishing that (b) implies (a). Let P ∈ C∞(Ω;V ) and
consider the decomposition P = Πker(A)[P ] + Πker(A)⊥ [P ]. Now fix a parametrising isomor-
phism T : RM → ker(A) as in Lemma 3.15, so that we may write P = Πker(A)⊥ [P ] + Ta for
some suitable a ∈ C∞(Ω;RM ). By our assumption (3.34), the operator a 7→ BTa is C-elliptic
by Lemma 3.15, whereby Lemma 3.1 (b) implies the existence of a number ` ∈ N0 and a linear,
homogeneous, constant coefficient differential operator L of order ` such that

Dk+`(Tϕ) = (LB)(Tϕ) (3.37)

holds for all ϕ ∈ C∞(Ω;RM ). Applying this to ϕ = a, we then obtain for an arbitrary β ∈ Nn0
with |β| ≤ k − 1

‖Dk+`∂βΠker(A)[P ]‖W−k−`,q(Ω) = ‖∂β Dk+`(Ta)‖W−k−`,q(Ω)

(3.37)
= ‖∂βLB(Ta)‖W−k−`,q(Ω)

= ‖L(∂βB)(Ta)‖W−k−`,q(Ω)

≤ c ‖∂βBTa‖W−k,q(Ω)

≤ c
(
‖∂βBP‖W−k,q(Ω) + ‖B∂βΠker(A)⊥ [P ]‖W−k,q(Ω)

)
≤ c

(
‖BP‖W−k+|β|,q(Ω) + ‖∂βΠker(A)⊥ [P ]‖Lq(Ω)

)
,

(3.38)

where the constant c > 0 only depends on A,B and q (and hence implicitly on L, ` and k).
Invoking the Nečas-Lions Lemma 3.14, we consequently arrive at

‖∂βΠker(A)[P ]‖Lq(Ω) ≤ c
(
‖∂βΠker(A)[P ]‖W−1,q(Ω) + ‖Dk+`∂βΠker(A)[P ]‖W−k−`,q(Ω)

)
(3.38)
≤ c

(
‖∂βΠker(A)[P ]‖W−1,q(Ω) + ‖∂βΠker(A)⊥ [P ]‖Lq(Ω)

+ ‖BP‖W−k+|β|,q(Ω)

)
(3.39)

and thus, summing over all multi-indices β ∈ Nn0 with |β| := j ≤ k − 1, conclude

‖DjP‖Lq(Ω) ≤ c
(
‖DjΠker(A)[P ]‖W−1,q(Ω) + ‖DjΠker(A)⊥ [P ]‖Lq(Ω)

+ ‖BP‖W−k+j,q(Ω)

)
.

(3.40)

We now define
K := {Π ∈ Lq(Ω;V ) | Πker(A)⊥ [Π] = 0 a.e. and BΠ = 0 in D ′(Ω;W )}

= {Ta ∈ Lq(Ω;V ) | BTa = 0 in D ′(Ω;W )}.
(3.41)

Since B ◦ T is a C-elliptic operator and Ω is connected, we obtain from Lemma 3.1 (c) that
m0 := dimK < ∞ and, in particular, K is contained in a fixed finite dimensional subspace of
polynomials. We now claim that we have

min
Π∈K
‖Dj(P −Π)‖Lq(Ω) ≤ c

(
‖DjA[P ]‖Lq(Ω) + ‖BP‖W−k+j,q(Ω)

)
, (3.42)
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for which, by a similar argument as in (3.9), it suffices to establish

min
Π∈K
‖Dj(P −Π)‖Lq(Ω) ≤ c

(
‖DjΠker(A)⊥ [P ]‖Lq(Ω) + ‖BP‖W−k+j,q(Ω)

)
. (3.43)

To see (3.43), we first note that that K ⊂ L2(Ω;V ) and DjK ⊂ L2(Ω; SLinj(Rn;V )) so that
we may choose an orthonormal basis {e1, . . . , em}, m ≤ m0, of DjK for the usual L2-inner
product 〈·, ·〉L2(Ω); it is then easy to see that we have ej = Djfj for all j ∈ {1, . . . ,m} for
suitable f1, . . . , fm ∈ K. We then put

(DjK)⊥ :=
{

DjΠ | Π ∈Wj,1(Ω;V ) and 〈DjΠ, ej〉L2(Ω) = 0 for all j ∈ {1, . . . ,m}
}

and subsequently claim that there exists a constant c > 0 such that

‖DjP‖Lq(Ω) ≤ c
(
‖DjΠker(A)⊥ [P ]|‖Lq(Ω) + ‖BP‖W−k+j,q(Ω)

+

m∑
j=1

∣∣∣ˆ
Ω

〈DjP, ej〉dx
∣∣∣) (3.44)

holds for all P ∈ C∞(Ω;V ). To this end, we assume towards a contradiction that (3.44) does
not hold. We then are provided with a sequence (Pi)i∈N ⊂ C∞(Ω;V ) such that

‖DjPi‖Lq(Ω) = 1 and

‖DjΠker(A)⊥ [Pi]‖Lq(Ω) + ‖BPi‖W−k+j,q(Ω) +

m∑
j=1

∣∣∣ˆ
Ω

〈DjPi, ej〉dx
∣∣∣ < 1

i

(3.45)

for all i ∈ N. Since we assume 1 < q < ∞, the Banach-Alaoglu theorem provides us with
(a here non-relabeled) subsequence and some Q ∈ Lq(Ω; SLinj(Rn;V ))) such that DjPi ⇀
Q in Lq(Ω; SLinj(Rn;V )) as i → ∞. Note that we may write Q = DjP for some P ∈
Wj,q(Ω;V ). In fact, by connectedness of Ω, ∂Ω being Lipschitz, and hereafter the Poincaré
inequality, for each i ∈ N, there exists a polynomial Pi : Ω → V such that, for some constant
c > 0 independent of i,

DjPi = 0 and
∑
|γ|≤j−1

‖∂γ(Pi −Pi)‖Lq(Ω) ≤ c‖DjPi‖Lq(Ω).

We then conclude that (Fi)i∈N := (Pi − Pi)i∈N is bounded in Wj,q(Ω;V ), whereby we may
pass to another subsequence (Fil)l∈N such that, for some F ∈ Wj,q(Ω;V ), we have Fil ⇀
F in Wj,q(Ω;V ) as l → ∞. Then we especially have DjPil = DjFil ⇀ DjF weakly in
Lq(Ω; SLinj(Rn;V )). Since DjPil ⇀ Q weakly in Lq(Ω; SLinj(Rn;V )), we conclude Q =
DjF by uniqueness of weak limits. We set P := F in the sequel.

The convergence DjPi ⇀ DjP in Lq(Ω; SLinj(Rn;V )) already suffices to conclude BPi
∗
⇀

BP in W−k+j,q(Ω;W ). Indeed, let ϕ ∈ Wk−j,q′
0 (Ω;W ). We write BP = B[DkP ] with some

B ∈ L (SLink(Rn;V );W ). Since B is homogeneous of order k and j ≤ k − 1, we have
BPi = 0 in Ω and thus, recalling divk−jB

∗[ϕ] ∈ Lq
′
(Ω; SLinj(Rn;V )) with divk−j being the

formal L2-adjoint of Dk−j,ˆ
Ω

〈BPi, ϕ〉dx =

ˆ
Ω

〈B[DkPi], ϕ〉dx =

ˆ
Ω

〈Dk−j DjPi, B
∗[ϕ]〉dx

= (−1)k−j
ˆ

Ω

〈DjPi,divk−jB
∗[ϕ]〉dx→ (−1)k−j

ˆ
Ω

〈DjP,divk−jB
∗[ϕ]〉dx

= 〈BP,ϕ〉
W−k+j,q(Ω)×Wk−j,q′

0 (Ω)

as i→∞. By routine lower semicontinuity results for weak*-convergence, we then use (3.45)2
to deduce BP = 0 as an equality in W−k+j,q(Ω;W ). Let β ∈ Nn0 be arbitrary with |β| = j.
Since Πker(A)⊥ : V → ker(A)⊥ is linear and bounded, the convergence ∂βPi ⇀ ∂βP weakly
in Lq(Ω;V ) implies ∂βΠker(A)⊥ [Pi] ⇀ ∂βΠker(A)⊥ [P ] weakly in Lq(Ω;V ), whereby (3.45)2
gives DjΠker(A)⊥ [P ] = 0 again by lower semicontinuity of norms for weak convergence and
arbitrariness of |β| = j.
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Moreover, ej ∈ Lq
′
(Ω; SLinj(Rn;V )) ∩ DjK for all j ∈ {1, . . . ,m}, and so DjPi ⇀ DjP

weakly in Lq(Ω; SLinj(Rn;V )) yields that P ∈ (DjK)⊥ by (3.45)2. Summarising, we have

BP = 0, (3.46a)

DjΠker(A)⊥ [P ] = 0, (3.46b)

P ∈ (DjK)⊥. (3.46c)

By (3.46b) and the connectedness of Ω, Πker(A)⊥ [P ] is a polynomial P of degree j−1 ≤ k−2,
whereby BP = 0. Since P = P+Πker(A)[P ], we conclude 0 = BP = BΠker(A)[P ] by (3.46c).
Therefore, Πker(A)[P ] ∈ K and so DjΠker(A)[P ] ∈ DjK. But then DjP ∈ DjK ∩ (DjK)⊥ =
{0}.

In particular, DjΠker(A)[Pi] ⇀ (∂βΠker(A)[P ])|β|=j = (Πker(A)[∂
βP ])|β|=j = 0 weakly in

Lq(Ω; SLinj(Rn;V )). Since the embedding Lq(Ω; SLinj(Rn;V )) ↪→W−1,q(Ω; SLinj(Rn;V ))
is compact, we deduce that (again for a non-relabeled subsequence) DjΠker(A)[Pi]→ 0 strongly
in W−1,q(Ω; SLinj(Rn;V )). Inserting Pi into (3.40), we then arrive at the desired contradiction
for sufficiently large i and thus have established (3.44).

The passage from (3.44) to (3.43) is then accomplished as follows: We set

ΠP :=

m∑
j=1

〈DjP, ej〉L2(Ω)fj ,

whereby clearly ΠP ∈ K and apply (3.44) to P − ΠP . Then we have Πker(A)⊥ [P − ΠP ] =

Πker(A)⊥ [P ], B(P−ΠP ) = BP and, by the orthonormality of the ej = Djfj’s, the third term on
the right-hand side of (3.44) vanishes. In consequence, the proof of (3.43) is complete. To finally
deduce (KMS2) from (3.43), we realise that, under the exponent condition 1 < q ≤ np

n−(k−j)p ,

we have Lp(Ω;W ) ↪→W−k+j,q(Ω;W ). This completes the proof of direction ’(b)⇒(a)’.
We now turn to the direction ’(a)⇒(b)’, and hence suppose that (3.33) holds. Letting M :=

dim ker(A), we pick an arbitrary isomorphism T : RM → ker(A). Since Πker(A)[Ta] = 0, we
obtain by applying (KMS2) to P = Ta

min
Π∈K
‖Dj(Ta−Π)‖Lq(Ω) ≤ c ‖BTa‖Lp(Ω) for all a ∈ C∞(Ω;RM ).

Now suppose that BTa = 0. Then the previous inequality implies that DjTa and so Ta and
hence, writing a = T−1(Ta), a is a polynomial too. Hence the nullspace of B ◦ T is finite
dimensional and consists of polynomials of a fixed maximal degree on Rn. Thus, by Lemma
3.1 (c) we conclude the C-ellipticity of B ◦ T, and the proof is complete. �

Remark 3.16. Let us briefly explain the consistency of the preceding theorem with previous
results. To this end, consider the particular inequality

min
Π∈K
‖P −Π‖Lq(Ω) ≤ c

(
‖ symP‖Lq(Ω) + ‖CurlP‖Lp(Ω)

)
, P ∈ C∞(Ω;R3×3)

as established in [47]. Then K = so(3), which can be seen by taking P to be gradients. Then
Theorem B yields precisely the same set of correctors K: Namely, in this case we have j = 0
so that, letting P belong to K given by (3.41), we may write P = Ta with BTa = 0, where
now T = Anti : R3 → so(3) is the canonical identification map (see (A.6) in the appendix for
the details). By NYE’s formula (see (A.8)2 in the appendix), Curl Anti a = 0 is equivalent to
Da = 0. Since Ω is connected, a is constant, and hence K from (3.41) reduces to so(3) indeed.

Remark 3.17. Under the assumptions of Theorem B, the same proof with the obvious modifica-
tions yields equivalence of (3.34) to validity of the inequality

min
Π∈K
‖P −Π‖Wj,q(Ω) ≤ c

(
‖A[P ]‖Wj,q(Ω) + ‖BP‖Lp(Ω)

)
, (3.47)

for all j ∈ {0, . . . , k − 1} and p > 1 with (k − j)p < n and q ∈ (1, np
n−(k−j)p ], where K is a

suitable finite dimensional nullspace of the V -valued polynomials.

The following corollary is obtained by scaling the inequalities from Theorem B and can be
obtained in the same way as Corollary 3.11 follows from Theorem A:
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Corollary 3.18 (Scaled inequalities). Let p > 1, j ∈ N0, k ∈ N with j < k satisfy (k− j)p < n
and let q ∈ (1, np

n−(k−j)p ]. Moreover, let the part map A and the k-th order differential operator
B as defined in Section 1.2 satisfy (3.34). Then there exists a finite dimensional space K of
V -valued polynomials and a constant c = c(j, p, q,A,B) > 0 such that we have

min
Π∈K

rj
( 

Br(x0)

|Dj(P −Π)|qdx
) 1
q ≤ c

(
rj
( 

Br(x0)

|DjA[P ]|qdx
) 1
q

+ rk
(  

Br(x0)

|BP |pdx
) 1
p
)

for all x0 ∈ Rn, r > 0 and P ∈ C∞(Br(x0);V ).

We conclude this subsection with a result on alternative normalisation conditions. To con-
nect this to the statements alluded to in Section 2.5, see Remark 3.20 below, we here choose a
slightly different statement involving negative norms on BP that still can be extracted from the
corresponding proofs of Theorems A and B.

Corollary 3.19 (Generalised normalised KMS-inequalities). Let 1 < q < ∞, k ∈ N, and
the part map A and the k-th order differential operator B be as in Section 1.2. Moreover, let
Ω ⊂ Rn be an open, bounded and connected subset with Lipschitz boundary ∂Ω. If for a j ∈ N0

with j ≤ k − 1 we have the conclusion

(Πker(A)⊥ [Π] = 0 and BΠ = 0)⇒ DjΠ = const., (3.48)

then there exists a constant c = c(q,A,B,Ω) > 0 such that we have

‖DjP‖Lq(Ω) ≤ c
(
‖DjΠker(A)⊥ [P ]‖Lq(Ω) + ‖BP‖W−k+j,q(Ω)

)
(3.49)

for all P ∈ C∞(Ω;V ) subject to the normalisation condition
´

Ω
DjΠker(A)[P ]dx = 0.

Proof. By (3.48) we deduce that if both Πker(A)⊥ [Π] = 0 and BΠ = 0 hold, then Π is a
polynomial of a fixed maximal degree. In particular, taking T as in Lemma 3.15(c), BT is
C-elliptic. From the proof of Theorem B we then infer that we have

min
Π∈K
‖Dj(P −Π)‖Lq(Ω) ≤ c

(
‖DjΠker(A)⊥ [P ]‖Lq(Ω) + ‖BP‖W−k+j,q(Ω)

)
(3.50)

for all P ∈ C∞(Ω;V ), where K is given by (3.41). Now suppose that such a map P satisfies´
Ω
∂βΠker(A)[P ]dx = 0 for all β ∈ Nn0 with |β| = j. Then we have

‖∂βΠker(A)[P ]‖Lq(Ω) = ‖∂βΠker(A)[P ]−
ffl

Ω
∂βΠker(A)[P ]dx‖Lq(Ω)

≤ c(Ω, q) ‖∂β(Πker(A)[P ]−Π)‖Lq(Ω) for all Π ∈ K,

where we have used that ∂βΠ ≡ const for all Π ∈ K. We then conclude

‖∂βP‖Lq(Ω) ≤ ‖∂βΠker(A)[P ]‖Lq(Ω) + ‖∂βΠker(A)⊥ [P ]‖Lq(Ω)

≤ c ‖∂β(Πker(A)[P ]−Π)‖Lq(Ω) + ‖∂βΠker(A)⊥ [P ]‖Lq(Ω)

= c ‖Πker(A)[∂
β(P −Π)]‖Lq(Ω) + ‖Πker(A)⊥ [∂β(P −Π)]‖Lq(Ω)

≤ c ‖∂β(P −Π)‖Lq(Ω)

for all Π ∈ K. Summing over all multi-indices β with |β| := j we obtain

‖DjP‖Lq(Ω) ≤ c ‖Dj(P −Π)‖Lq(Ω) for all Π ∈ K. (3.51)

Thus, taking the minimum over all Π ∈ K we conclude (3.49) in view of (3.50). �

Remark 3.20. In case (n, q, j,A,B) = (3, 2, 0, sym,Curl) the normalisation condition for gra-
dient fields P = Du reads

´
Ω

skew Dudx = 0 and is equivalent to
´

Ω
curludx = 0 the

condition which was imposed also originally by KORN [38] so that we recover his statement:

‖Du‖L2(Ω) ≤ c ‖sym Du‖L2(Ω) for all u satisfying
ˆ

Ω

curludx = 0. (Korn)

For the particular choice (n, q, j,A,B) = (n, 2, 0,dev,Div) we recover the required estimate
needed for error analysis in higher order mixed finite element methods for plane elasticity, cf.
[6, Lemma 3.1] or [10, Proposition 9.1.1].
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Moreover, a higher order relation, namely in the case (n, q, j,A,B) = (3, q, 1,dev, sym inc )
is discussed in the examples Section 4.3.

3.4. Implications for function spaces. The inequalities obtained in the previous paragraphs
directly translate to embeddings for function spaces. Let 1 < p, q < ∞. Given a part map A
and a k-th order differential operator B as in Section 1.2 and ` ∈ N0 with ` ≤ k − 1, we define
for an open set Ω ⊂ Rn the Sobolev-type spaces

WA,`,q,B,p(Ω) := {P ∈ L1
loc(Ω;V ) | A[P ] ∈W`,q(Ω; Ṽ ) and BP ∈ Lp(Ω;W )}. (3.52)

Note that

‖P‖WA,`,q,B,p(Ω) := ‖A[P ]‖W`,q(Ω) + ‖BP‖Lp(Ω) (3.53)

defines a seminorm on WA,`,q,B,p(Ω) for which WA,`,q,B,p(Ω) is closed. Let us note that, sub-
ject to (3.7), (3.53) is a norm on C∞c (Ω;V ) by Corollary 3.11. Hence, if we define WA,`,q,B,p0 (Ω)
as the closure of C∞c (Ω;V ), Corollary 3.11 directly translates to

WA,`,q,B,p0 (Ω) 'WId,`,q,B,p
0 (Ω). (3.54)

If ∂Ω is sufficiently regular, it is clear that membership in WA,`,q,B,p0 (Ω) corresponds to certain
combinations of partial derivatives vanishing along ∂Ω in a suitable sense. However, appli-
cations from elasticity and material science (see e.g. [27, 43, 54]) sometimes necessitate to
incorporate partial boundary conditions for which (3.54) proves insufficient. This can be made
precise by virtue of trace operators which, for ease of exposition, shall be executed for first or-
der operators B in the sequel; see Proposition 3.22 below. In this situation, ` = 0, and we put
Wq,B,p(Ω) := WId,0,q,B,p(Ω) for brevity. We begin with

Lemma 3.21. Let B be a first order, linear and homogeneous differential operator on Rn from
V to W . Moreover, let Ω ⊂ Rn be open and bounded with Lipschitz boundary ∂Ω and let

q >
n

n− 1
, p > 1 and

1

p
≤ 1

q
+

1

n
or 1 < q ≤ n

n− 1
and p > 1. (3.55)

Then there exists a bounded, linear trace operator trB∂Ω : Wq,B,p(Ω)→W−1/q,q(∂Ω;W ) such
that we have

〈trB∂Ω(P ), Q〉∂Ω =

ˆ
∂Ω

〈B[ν]P,Q〉WdH n−1 (3.56)

for any P ∈ C1(Ω;V ). Here, 〈·, ·〉∂Ω denotes the dual pairing between W -valued W−1/q,q-
and W1/q,q′ -maps on the boundary, and ν is the outer unit normal to ∂Ω.

Proof. We start by recalling that there exists a bounded, linear, surjective trace operator
tr∂Ω : W1,q′(Ω;W )→W1−1/q′,q′(∂Ω;W ) with a corresponding bounded, linear right-inverse
E : W1−1/q′,q′(∂Ω;W )→W1,q′(Ω;W ). Now consider the map

trB∂Ω : Wq,B,p(Ω)→W−1/q,q(∂Ω;W )

defined by

〈trB∂Ω(P ), Q〉∂Ω :=

ˆ
Ω

〈BP, EQ〉W + 〈P,B∗(EQ)〉V dx (3.57)

for Q ∈ W1/q,q′(∂Ω;W ). Noting that ((q′)∗)′ ≤ p by condition (3.55) if q > n
n−1 , we have

that Lp(Ω;W ) ↪→ L((q′)∗)′(Ω;W ) and so, by Sobolev’s embedding theorem,

|〈trB∂Ω(P ), Q〉∂Ω| ≤ ‖BP‖Lp(Ω)‖EQ‖L(q′)∗ (Ω) + ‖P‖Lq(Ω)‖EP‖W1,q′ (Ω)

≤ c(p, q,Ω)‖P‖Wq,B,p(Ω)‖EQ‖W1,q′ (Ω)

≤ c(p, q,Ω)‖P‖Wq,B,p(Ω)‖Q‖W1/q,q′ (∂Ω).

The same conclusion remains valid for 1 < q ≤ n
n−1 , then invoking the John-Nirenberg theorem

since then W1,q′(Ω;W ) ↪→ Lp
′
(Ω;W ). This implies that trB∂Ω(P ) ∈ W−1/q,q(∂Ω;W ). Now

let P ∈ C1(Ω;V ). Then the Gauß-Green theorem implies that

〈trB∂Ω(P ), tr∂Ω(Q)〉∂Ω =

ˆ
∂Ω

〈B[ν]P, tr∂Ω(Q)〉WdH n−1
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for all Q ∈ C1(Ω;W ) and hence, by density, for all Q ∈W1,q′(Ω;W ). Since the trace operator
tr∂Ω is surjective as a map W1,q′(Ω;W ) → W1−1/q′,q′(∂Ω;W ), this suffices to conclude
(3.56), and the proof is complete. �

As the reader might notice, this construction is completely analogous to the definition of
weak normal or tangential traces for the spaces H1(div) or H1(curl) (see, e.g. [10, Chapter 2]).
Now let Ω be as in the preceding lemma and Γ ⊂ ∂Ω be relatively open. In the situation of the
previous lemma, we may then define

Wq,B,p
0,Γ (Ω) :=

{
P ∈Wq,B,p(Ω) | trB∂Ω(P )|Γ = 0

}
, (3.58)

where we say as usual that F ∈ W−1/q,q(∂Ω;W ) ' (W1/q,q′(∂Ω;W ))′ vanishes on Γ,
in formulas F |Γ = 0, if 〈F,ϕ〉W−1/q,q ×W1/q,q′ = 0 for every ϕ ∈ W1/q,q′(∂Ω;W ) with
supp(ϕ) ⊂ Γ. By continuity of trB∂Ω : Wq,B,p(Ω) → W−1/q,q(∂Ω;V ), cf. Lemma 3.21, we
have that

Wq,B,p
0,Γ (Ω) is a closed subspace of Wq,B,p(Ω). (3.59)

The best known special instances of such spaces are given by

H(Div; Γν ; Ω) :=
{
u ∈ L2(Ω;R3×3) | Div u ∈ L2(Ω;R3), trDiv

Γν (u)|Γν = 0
}
,

H(Curl; Γτ ; Ω) :=
{
u ∈ L2(Ω;R3×3) | Curl u ∈ L2(Ω;R3×3), trCurl

Γτ (u)|Γτ = 0
}
,

(3.60)

for relatively open sets Γν ,Γτ ⊂ ∂Ω, the indices indicating vanishing of the (weak) normal or
tangential traces, respectively. Using the spaces Wq,B,p

0,Γ (Ω), we may now formulate the main
result of this section:

Proposition 3.22 (Partially vanishing boundary conditions). Let the part map A and the first
order differential operator B be as in Section 1.2. Moreover, let 1 < p < n and 1 < q ≤
p∗ = np

n−p . Then for any connected, open and bounded set Ω with Lipschitz boundary and any
relatively open, non-empty subset Γ ⊂ ∂Ω there exists a constant c = c(A,B,Ω,Γ, p, q) > 0
such that we have

‖P‖Lq(Ω) ≤ c
(
‖A[P ]‖Lq(Ω) + ‖BP‖Lp(Ω)

)
for all P ∈Wq,B,p

0,Γ (Ω). (3.61)

For the proof of Proposition 3.22, we require the following additional ingredient:

Lemma 3.23 (POMPE, [61, Thm. 2.4]). Let 1 < p < ∞ and let A be a first order, linear
C-elliptic differential operator of the form (3.1) and let Ω ⊂ Rn be an open, bounded and
connected set with Lipschitz boundary. If Γ is a non-empty, relatively open subset of ∂Ω and
u ∈W1,q

0,Γ(Ω) := {v ∈W1,p(Ω;V ) | tr∂Ω(v) = 0 H n−1-a.e. on Γ} is such that Au = 0, then
u = 0. Here, tr∂Ω denotes the trace operator on W1,p(Ω;V ) as usual.

By the different function space setting, the preceding lemma is not directly applicable to our
objectives; for this, we record the following consequence of Lemma 3.23:

Corollary 3.24. In the situation of Lemma 3.21, suppose moreover that Ω is connected, A is as
in Section 1.2 and that B satisfies (3.34). Then we have

{P ∈Wq,B,p
0,Γ (Ω) | A[P ] = 0 and BP = 0} = {0}. (3.62)

Proof. Let P be an element of the left-hand side of (3.62) and pick a parametrising isomorphism
T : RM → ker(A) from Lemma 3.15, so that P = Ta for some polynomial a. Since P belongs
to the left-hand side of (3.62), we have BTa = 0 and since B ◦ T is C-elliptic, Lemma 3.1
implies that a, and thus Ta, is a polynomial of a fixed maximal degree. Especially, a and so Ta

have classical traces, for which the condition P ∈Wq,B,p
0,Γ (Ω) implies by virtue of (3.56)

0 = B[ν]Ta =

n∑
j=1

νjBjTa = (B ◦ T)[ν]a H n−1-a.e. on Γ.

Since BT is C- and thus, in particular, R-elliptic, we conclude by ν 6= 0 H n−1-a.e. on ∂Ω that
a = 0 H n−1-a.e. on Γ. On the other hand, since P is a polynomial and thus trivially belongs
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B1(0)

Rn

(a) (b)

{f = 1}

{f = 0}
{f = 0}

L

Ω

Rn

FIGURE 1. The geometric situation of Remark 3.26.

to W1,p(Ω;V ), this implies that Ta ∈W1,p
0,Γ(Ω;V ) and so a ∈W1,p

0,Γ(Ω;RM ). In consequence,
Lemma 3.23 gives us a = 0 and so P = Ta = 0. This completes the proof. �

We now come to the

Proof of Proposition 3.22. We work from (3.40) and subsequently claim that

‖P‖Lq(Ω) ≤ c
(
‖Πker(A)⊥ [P ]‖Lq(Ω) + ‖BP‖Lp(Ω)

)
(3.63)

holds for all P ∈ Wq,B,p
0,Γ (Ω). Suppose that (3.63) does not hold. Similarly as in the proof of

Theorem B, we then find (Pi) ⊂Wq,B,p
0,Γ (Ω) such that

‖Pi‖Lq(Ω) = 1,

‖Πker(A)⊥ [Pi]‖Lq(Ω) + ‖BPi‖Lp(Ω) <
1

i
.

(3.64)

By routine techniques, it is clear that C∞(Ω;V ) is dense in Wq,B,p(Ω) and that, as (3.34) is in
action, (3.33) also holds for Wq,B,p(Ω)-maps. In the present situation, the set K from Theorem
B, cf. (3.41), is given by the finite dimensional space

K = {Ta | BTa = 0 in D ′(Ω;W )},

and in conjunction with (3.64)2 this now implies that for each i ∈ N there exists Πi ∈ K such
that ‖Pi − Πi‖Lq(Ω) <

c
i with c > 0 independent of i. Combining this with (3.64)1, we infer

that (Πi) ⊂ K is bounded in Lq(Ω;V ) and so, recalling that dimK < ∞, there exists Π ∈ K
and a (non-relabeled) subsequence such that Πi → Π strongly in Lq(Ω;V ). This, in turn, yields
that Pi → Π strongly in Lq(Ω;V ). We now establish that Π = 0, since then Pi → 0 strongly in
Lq(Ω;V ) (for a suitable subsequence) and this clearly contradicts (3.64)1. Since BΠ = 0, we
conclude

‖Pi −Π‖Lq(Ω) + ‖B(Pi −Π)‖Lp(Ω) ≤ ‖Pi −Π‖Lq(Ω) + ‖BPi‖Lp(Ω) → 0, i→∞.

On the other hand, Wq,B,q
0,Γ (Ω) is a closed subspace of Wq,B,q

0,Γ (Ω) by (3.59). We hence conclude
Π ∈Wq,B,p

0,Γ (Ω) ∩ K = {0} by Corollary 3.24, and the proof is complete. �

We conclude this section by discussing the assumptions underlying Proposition 3.22.

Remark 3.25. We first address the standing of assumption (3.34) for the validity of (3.61). To
this end, note that C-ellipticity of A is not necessary for the conclusion of Lemma 3.23. To see
this, we identify C ' R2 via ι : R2 3 (x1, x2)→ x1 + ix2 ∈ C. Given an open set Ω ⊂ R2, we
put dev sym(Du) := sym Du − 1

2 tr(Du)12 for u ∈ C1(Ω;R2), leading to an operator which
fails to be C-elliptic (see, e.g., [8, Ex. 2.2(c)]). We have

u = (u1, u2)> ∈ ker dev sym D⇔ u1 + iu2 : ι(Ω)→ C is holomorphic (3.65)

by virtue of the Cauchy-Riemann equations. Let Γ be an arc in ∂D := {z ∈ C | |z| = 1} and
suppose that the holomorphic function u1 + iu2 : D → C vanishes identically on Γ. Then the
Schwarz reflection principle and the maximum principle imply that u1+iu2 vanishes identically
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on D. As such, (3.65) implies that the conclusion of Lemma 3.23 persists without C-ellipticity
of A. In a different language, this has also been observed in [7, 62]. Because of this, it is not
clear to us whether assumption (3.34) is necessary for Proposition 3.22 to hold true.

Remark 3.26. We only discussed the first order case in Proposition 3.22, as the tools for the
higher order case are beyond the scope of this paper. The main reason for this is Lemma 3.23,
which does not extend to the higher order scenario even for C-elliptic operators and necessitates
higher order conditions for the (normal) traces to be satisfied. This can be seen

(a) for the C-elliptic operator A = D2 (the Hessian) acting on u : Rn → R, for which every
affine-linear map f : Rn → R is in its nullspace. In consequence, f might vanish on an
(n − 1)-dimensional hyperplane L. Especially, if a non-empty, relatively open subset
Γ of L is contained in ∂Ω, then we find a map f vanishing on Γ but not vanishing
identifically in Ω (see Figure 1 (a)). Such a behaviour clearly can be ruled out by
posing additional conditions on certain combinations of normal and tangential traces,
which shall pursued in a future work. Let us note, though, that there is an interplay with
the geometry of ∂Ω, since for instance there are no non-trivial affine linear maps that
vanish on relatively open sets of spheres.

(b) for the non-C-elliptic operator ∆ (the Laplacian) acting on u : Rn → R, for which we
may take any continuous f : ∂B1(0) → R with H n−1({f = 0}) > 0, H n−1({f =
1}) > 0 (see Figure 1 (b)) and solve the corresponding homogeneous Dirichlet problem
with boundary data f through Poisson’s formula:

u(x) =
1

ωn−1

ˆ
∂B1(0)

1− |x|2

|x− ζ|n
f(ζ)dH n−1(ζ).

Clearly, u is non-constant, satisfies u|{f=0} = 0 and ∆u = 0 in B1(0).

4. EXAMPLES: OLD AND NEW INEQUALITIES

In this concluding section we discuss how specific constellations, among others underlying
the models sketched in Section 2, can be retrieved from the general theory outlined above.
Moreover, we obtain several new inequalities and non-inequalities that we proceed to outline
now. The principal finding in case V = R3×3 for Curl-based operators are gathered in Figure
2.

4.1. Curl-based operators in three space dimensions. In this section we consider the con-
stellation n = 3, k = 1, V = Ṽ = R3×3 for operators of the form B = B[Curl]. This is not
only the most interesting constellation from the point of view of applications but also from an
algebraic one, since only in three space dimensions the matrix Curl of a (3× 3)-matrix returns
again a (3× 3)-matrix. Furthermore, we always have here the restriction 1 < p < 3 and display
the results on open, bounded and connected Lipschitz domains Ω ⊂ R3. To abbreviate notation

in the following, let us setW := W
3p

3−p ,B, p(Ω;R3×3) andWΓ := W
3p

3−p ,B,p
0,Γ (Ω;R3×3) for any

relatively open and non-empty Γ ⊂ ∂Ω. Let A,B : R3×3 → R3×3 with the possible choices4

A,B ∈ {Id,dev, sym,dev sym, skew + tr, skew, tr}. Applying Lemma 3.15, we investigate
in the (C-)ellipticity of B[Curl] : C∞c (Rn; ker(A))→ C∞c (Rn;R3×3).

4.1.1. For the sake of completeness we start with the trivial case A = Id. Here, we have
ker(A) = 0, so that (3.7) and (3.34) are trivially fulfilled.

4.1.2. The first interesting case is A = dev. Then, ker(A) = {α · 1 |α ∈ R}. In this
case we consider part maps of Curl(ζ · 1) = −Anti(∇ζ). Since tr Curl(ζ · 1) ≡ 0 the
operator B[Curl(· 1)] with B ∈ {Id,dev, skew + tr, skew} behaves like the usual gradient
∇ζ and, thus, is C-elliptic in these cases. On the contrary for B ∈ {sym,dev sym, tr} the
corresponding operator B[Curl(· 1)] is not elliptic, since we also have sym Curl(ζ · 1) ≡ 0.
We display exemplarily two KMS-type inequalities both of first and second type which hence
follow by Proposition 3.22 and Theorem B:

‖P‖
L

3p
3−p
. ‖devP‖

L
3p

3−p
+ ‖dev CurlP‖Lp for all P ∈ WΓ,

4Whenever the underlying dimension n is fixed, we understand tr(A) := tr(A)1n in the sequel.
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A
B

Id dev sym dev sym skew + tr skew tr

Id X X X X X X X
dev X X   X X  

sym X X X X
R-X

C-   

dev sym X X   R-X
C-   

skew + tr
R-X

C- 
R-X

C-      

skew        
tr        

FIGURE 2. Overview when B[Curl]|C∞c (Rn;ker(A)) is (C-)elliptic, where
Xmeans C-ellipticity,  denotes non-ellipticity, R-X/ C- means R-ellipticity
but no C-ellipticity.

but also

min
Π∈K1

‖P −Π‖
L

3p
3−p
. ‖devP‖

L
3p

3−p
+ ‖dev CurlP‖Lp for all P ∈ W,

these estimates can also be deduced from any of [31, 32, 44]. However, we also retrieve the
following new inequalities, which, to the best of our knowledge, have not been observed in the
literature so far:

‖P‖
L

3p
3−p
. ‖devP‖

L
3p

3−p
+ ‖skew CurlP‖Lp for all P ∈ WΓ,

but also

min
Π∈K2

‖P −Π‖
L

3p
3−p
. ‖devP‖

L
3p

3−p
+ ‖skew CurlP‖Lp for all P ∈ W.

By our theorems we cannot replace skew Curl by sym Curl here, also see Example 1.1.
Here we have K1 = K2 = {γ · 1 | γ ∈ R} so that the normalised KMS-inequalities hold for

j = 0 in these cases, cf. Corollary 3.19, so e.g. we have:

‖P‖Lq(Ω) ≤ c (‖devP‖Lq(Ω) + ‖skew CurlP‖W−1,q(Ω)) for all P subject to
´

Ω
trPdx = 0.

4.1.3. The most prominent Korn-type inequalities focus on part maps A = sym. Here,
ker(A) = so(3) = {Antia |a ∈ R3}, so that we have to investigate the (C-)ellipticity of

Curl Anti a = (div a) · 1− (Da)>.

We discuss the situation of each part map B separately, whereby we assume that ellipticity
properties of gradient based operators are well known:

• For B = Id we consider the full operator Curl ◦Anti above, which is C-elliptic: On
the symbol level we have:

〈ξ,a〉 · 1− ξ ⊗ a !
= 0

tr(·)
=⇒ 2〈ξ,a〉 = 0 ⇒ 〈ξ,a〉 = 0

ξ 6=0
=⇒
ξ⊗a=0

a = 0,

and we recover the Korn-Maxwell-Sobolev inequalities from (1.3).
• For B = dev we obtain −(dev Da)> = div a

3 − (Da)> a C-elliptic operator. Indeed,
since ξ 6= 0 there exists an index i such that ξi 6= 0. Then considering the i-th column
we obtain that aj = 0 for all j 6= i. Hence, in the (j, j)th entry it remains 1

3aiξi = 0
so that also ai = 0. Thus, we can apply Proposition 3.22 and Theorem B to conclude

‖P‖
L

3p
3−p
. ‖symP‖

L
3p

3−p
+ ‖dev CurlP‖Lp for all P ∈ WΓ,

but also

min
Π∈K3

‖P −Π‖
L

3p
3−p
. ‖symP‖

L
3p

3−p
+ ‖dev CurlP‖Lp for all P ∈ W,

estimates which also follow from each of the papers [31, 32, 44], whereby for the ex-
pression of K3 we refer the reader to [44, Lemma 11 (b)].
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• With B = sym we consider div a · 1 − sym Da a C-elliptic operator (same argument
as in the penultimate item) and the discussion here is postponed to the next item.

• For B = dev sym we obtain−dev sym Da a C-elliptic operator (we are in three space
dimensions), thus with this and the previous item we recover the results from [43]:

‖P‖
L

3p
3−p
. ‖symP‖

L
3p

3−p
+ ‖dev sym CurlP‖Lp for all P ∈ WΓ,

but also

min
Π∈K4

‖P −Π‖
L

3p
3−p
. ‖symP‖

L
3p

3−p
+ ‖dev sym CurlP‖Lp for all P ∈ W.

Since for the latter combination the kernelK4 consists of special quadratic polynomials,
cf. [43, Lemma 2.9], the normalised KMS-inequalities hold for j = 2 here, cf. Corollary
3.19:

‖D2P‖Lq(Ω) ≤ c (‖D2 symP‖Lq(Ω) + ‖dev sym CurlP‖W1,q(Ω)),

for all P satisfying
´

Ω
D2 skewPdx = 0.

• The situation changes for B = skew + tr. The corresponding operator here reads
2 div a ·1+skew Da, which is related to the div + curl-operator, both are R-elliptic but
not C-elliptic: For the ellipticity, let v ∈ R3, ξ ∈ R3 \ {0} and consider on the symbol
level:

2〈v, ξ〉 · 1 + skew(v ⊗ ξ) !
= 0⇔ skew(v ⊗ ξ) = 0 and 〈v, ξ〉 = 0

⇔ v × ξ = 0 and 〈v, ξ〉 = 0.
(4.1)

Since, the cross-product satisfies the area property we obtain:

0 = |v × ξ|2 = |v|2|ξ|2 − 〈v, ξ〉2 = |v|2|ξ|2 ξ∈R3\{0}
=⇒ v = 0,

meaning that the corresponding operator is (R-)elliptic. This operator is not C-elliptic:

2

〈1
i
0

 ,

− i
1
0

〉 · 1 + skew

1
i
0

⊗
− i

1
0

 = 0.

Hence, only the Korn-Maxwell-Sobolev inequality of the first kind (cf. Theorem A)
applies for this combination: for all P ∈ W∂Ω it holds

‖P‖
L

3p
3−p
. ‖symP‖

L
3p

3−p
+ ‖skew CurlP‖Lp + ‖tr CurlP‖Lp .

The combination of both Curl-terms is needed on the right hand side, cf. the next items.
• For B = skew we obtain skew Da which behaves like curl a and both are not elliptic.

The case B = skew is also covered by the above Example 1.2.
• Finally, for B = tr it remains only div a which is not elliptic.

4.1.4. To obtain trace-free symmetric Korn-type inequalities we considerA = dev sym. Then
ker(A) = {Antia+α · 1|a ∈ R3, α ∈ R} and the corresponding operator has the form

Curl [Anti a+ ζ · 1] = div a · 1− (Da)> −Anti(∇ζ).

We distinguish the part maps B:

• With B = Id we have the full operator, which is C-elliptic (consider its symmetric and
skew-symmetric parts to this end). Hence, we recover from any of [31, 32, 44]:

‖P‖
L

3p
3−p
. ‖dev symP‖

L
3p

3−p
+ ‖CurlP‖Lp for all P ∈ WΓ,

but also

min
Π∈K5

‖P −Π‖
L

3p
3−p
. ‖dev symP‖

L
3p

3−p
+ ‖CurlP‖Lp for all P ∈ W,

and the elements of K5 are described in [44, Lemma 11 (a)].
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• For B = dev we obtain −(dev Da)> − Anti(∇ζ) also a C-elliptic operator (again
consider its symmetric and skew-symmetric parts). Thus, it holds

‖P‖
L

3p
3−p
. ‖dev symP‖

L
3p

3−p
+ ‖dev CurlP‖Lp for all P ∈ WΓ,

but also

min
Π∈K6

‖P −Π‖
L

3p
3−p
. ‖dev symP‖

L
3p

3−p
+ ‖dev CurlP‖Lp for all P ∈ W,

whereby both results also follow from any of the three articles [31, 32, 44] and K6

consists of special affine linear polynomials, cf. [44, Lemma 11 (c)].
• When B ∈ {sym,dev sym} we obtain div a · 1− sym Da and −dev sym Da, respec-

tively, which are both not elliptic since they do not see the operation on ζ, so that there
are no KMS inequalities for these combinations, see also Example 1.1.

• For B = skew + tr we consider the operator

2 div a · 1 + skew Da−Anti(∇ζ) = 2 div a · 1 + Anti
[
curl

a

2
−∇ζ

]
.

We show that it is R-elliptic but not C-elliptic. Indeed, considering first the symmetric
part on the symbol level we obtain 〈a, ξ〉 = 0. Then, for the skew-symmetric part on
the symbol level we have

a

2
× ξ +α · ξ !

= 0
ξ 6=0⇐⇒
〈a,ξ〉=0

α = 0, a = 0 over R,

whereby over C we have with a = (2 + 2 i, 0, 0)>, ξ = (0, 1, i)>, α = i−1:

2〈a, ξ〉 · 1−Anti
(a

2
× ξ +α · ξ

)
= 0.

Hence, only Theorem A applies here, i.e. for all P ∈ W∂Ω the following new estimate
holds:

‖P‖
L

3p
3−p
. ‖dev symP‖

L
3p

3−p
+ ‖skew CurlP‖Lp + ‖tr CurlP‖Lp .

Note that the combination of both Curl-terms is needed on the right hand side, cf. the
next items.

• With B = skew we have skew Da − Anti(∇ζ) = Anti
[
curl a2 −∇ζ

]
which is not

elliptic (set ζ ≡ 0, the non-ellipticity follows from the non-ellipticity of the usual curl).
Also our Example 1.2 gives the non-inequality in this case.

• For B = tr we obtain 2 div a which is not elliptic.

4.1.5. An intricate constellation appears for A = skew + tr mapping P 7→ skewP + trP · 1.
Its kernel consists of trace-free symmetric matrices. For the corresponding operator we have on
the symbol level:δ α β

α ε γ
β γ −δ − ε

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0


=

 αξ3 − βξ2 βξ1 − δξ3 δξ2 −αξ1
εξ3 − γξ2 γξ1 −αξ3 αξ2 − εξ1

γξ3 + (δ + ε)ξ2 −βξ3 − (δ + ε)ξ1 βξ2 − γξ1

 =: P .

We show that ellipticity occurs only for B = Id or B = dev:

• We start with B = Id and consider P = 0. Subtracting the (1, 3)th from the (3, 1)th
entry we obtain 0 = γξ3 + εξ2 + αξ1. Hence, multiplying with ξ1, ξ2 and ξ3 we have
over R:

0 = γξ1ξ3 + εξ1ξ2 +αξ2
1
P 23=0,P 22=0

= α|ξ|2 ξ 6=0
=⇒ α = 0,

0 = γξ2ξ3 + εξ2
2 +αξ1ξ2

P 21=0,P 23=0
= ε|ξ|2 ξ 6=0

=⇒ ε = 0,

0 = γξ3
3 + εξ2ξ3 +αξ1ξ3

P 21=0,P 22=0
= γ|ξ|2 ξ 6=0

=⇒ γ = 0,
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and the condition P = 0 becomes−βξ2 βξ1 − δξ3 δξ2
0 0 0
δξ2 −βξ3 − δξ1 βξ2

 = 0 ⇔
(
ξ1 −ξ3
ξ3 ξ1

)(
β
δ

)
= 0, δξ2 = 0,βξ2 = 0

which for ξ 6= 0 only has β = δ = 0 as solution over R, meaning that the corresponding
operator is R-elliptic. On the contrary, the induced operator is not C-elliptic:− i 0 1

0 0 0
1 0 i

0 − i 0
i 0 −1
0 1 0

 = 0.

• For B = dev note that trP = 0 so that we can argue as in the last item. Thus, only the
Korn-Maxwell-Sobolev inequality of the first kind, Theorem A, holds true here:

‖P‖
L

3p
3−p
. ‖skewP‖

L
3p

3−p
+ ‖trP‖

L
3p

3−p
+ ‖dev CurlP‖Lp

for all P ∈ W∂Ω, an estimate which also follows from either of [31, 32]. This is the
best possible result involving the part map A = skew + tr, cf. the following items.

• For B = sym or B = dev sym. The corresponding operator is not elliptic. Indeed, on
the symbol level we have

sym

0 1 1
1 0 1
1 1 0

 0 −1 1
1 0 −1
−1 1 0

 = sym

 0 1 −1
−1 0 1
1 −1 0

 = 0

• Also for B = skew or B = skew + tr the induced operator is not elliptic. Indeed, on
the symbol level we have

skew

1 0 0
0 −1 0
0 0 0

0 −1 0
1 0 0
0 0 0

 = skew

 0 −1 0
−1 0 0
0 0 0

 = 0.

• Finally, for B = tr the corresponding operator is not elliptic since we always have
trP = 0.

4.1.6. For the part mapA = skew we have ker(A) = Sym(3) and already in the case B = Id
the induced operator is not elliptic since on the symbol level we have:1 1 0

1 1 0
0 0 0

0 0 −1
0 0 1
1 −1 0

 = 0. (4.2)

Thus, we cannot replace the symmetric part in (1.3) only by the skew-symmetric part.

4.1.7. The linear part mapA = tr maps P 7→ tr(P ) ·1, so that the kernel consists of trace-free
matrices. Again, already in the case B = Id the corresponding operator is not elliptic since on
the symbol level we have:  1 1 0

−1 −1 0
0 0 0

0 0 −1
0 0 1
1 −1 0

 = 0. (4.3)

4.2. Div-operator in all dimensions. Let n ≥ 2, k = 1, V = Ṽ = Rn×n and consider
the operator B = Div. We will see that the most interesting part map for this constellation is
A = dev. Then, ker(A) = {α · 1n | α ∈ R} and we have Div(ζ · 1n) = ∇ζ which is a
C-elliptic operator, so that we even strengthen the result from [7] for 1 < p < n:

‖P‖
L
np
n−p
. ‖devP‖

L
np
n−p

+ ‖DivP‖Lp for all P ∈W
np
n−p ,Div,p

0,Γ (Ω;Rn×n),

and moreover:

min
Π∈K7

‖P −Π‖
L
np
n−p
. ‖devP‖

L
np
n−p

+ ‖DivP‖Lp for all P ∈W
np
n−p ,Div,p(Ω;Rn×n).
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A
B

Id dev sym dev sym skew + tr skew tr

Id X X X X X X X

dev X X X X
R-X

C-  R-X
C- 

sym        
dev sym        
skew + tr        

skew        
tr        

FIGURE 3. Overview when B[inc ]|C∞c (Rn;ker(A)) is (C-)elliptic, where
Xmeans C-ellipticity,  denotes non-ellipticity, R-X/ C- means R-ellipticity
but no C-ellipticity.

We have K7 = {γ · 1n | γ ∈ R} so that with the normalised KMS-inequality in case j = 0,
cf. Corollary 3.19, we recover [10, Proposition 9.1.1]:

‖P‖Lq(Ω) ≤ c (‖devP‖Lq(Ω) + ‖DivP‖W−1,q(Ω)) for all P satisfying
´

Ω
trPdx = 0.

Considering now A = sym, then ker(A) = so(n). In case n = 2 the corresponding operator is
C-elliptic:

Div

(
0 ζ
−ζ 0

)
=

(
∂2ζ
−∂1ζ

)
,

but in two space dimensions the divergence is just a rotated curl. For n ≥ 3 the corresponding
operator is not elliptic. Indeed, on the symbol level we have 0 1

−1 0
0

0 0




0
0
1
0

 = 0.

4.3. inc-based operators in three space dimensions. Finally, let us focus on some higher
order operators and for presentation reasons remain in three space dimensions, let n = 3, k = 2,
V = Ṽ = R3×3 and consider the inc -based operators B = B[inc ]. We will see that the only
nontrivial case where ellipticity plays a role is for the part map A = dev.

4.3.1. With A = dev we have ker(A) = {α · 1 | α ∈ R}, so that the corresponding operator
becomes inc (ζ · 1) = ∆ζ · 13 −D∇ζ ∈ Sym(3). Thus,

• For B ∈ {Id, sym} we obtain a C-elliptic operator. Indeed, on the symbol level we
consider

α 〈ξ, ξ〉 · 13 −α ξ ⊗ ξ
!
= 0

ξ∈C\{0}
=⇒ α = 0.

For the corresponding kernel we consider inc (ζ · 1) = ∆ζ · 13 − D∇ζ = 0, thus,
taking the trace 2∆ζ = 0, so that we have D∇ζ = 0 and we obtain here for the kernel
K = {(〈a, x〉+α) · 13 | a ∈ R3,α ∈ R}. Corollary 3.19 is applicable with j = 1:

‖DP‖Lq(Ω) ≤ c (‖DdevP‖Lq(Ω) + ‖sym incP‖W−1,q(Ω))

for all P that satisfy
´

Ω
D(trP )dx = 0.

• With B ∈ {dev,dev sym} we consider also a C-elliptic operator. Indeed, again on the
symbol level we conclude

1

3
α 〈ξ, ξ〉 · 13 −α ξ ⊗ ξ

!
= 0

ξ∈C\{0}
=⇒ α = 0.

Thus, with 1 < p < 3 the strongest estimates among the previous combinations read:
for all P ∈ C∞c (R3;R3×3) it holds

‖P‖
Ẇ

1,
3p

3−p (R3)
. ‖devP‖

Ẇ
1,

3p
3−p (R3)

+ ‖dev sym incP‖Lp(R3),
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and for all P ∈ C∞(Ω;R3×3):

min
Π∈K8

‖P −Π‖
W

1,
3p

3−p (Ω)
. ‖devP‖

W
1,

3p
3−p (Ω)

+ ‖dev sym incP‖Lp(Ω),

and to the best of our knowledge, these estimates are new.
• If B = skew then skew inc (ζ · 1) ≡ 0 and the operator is not elliptic.
• For B ∈ {skew + tr, tr} the corresponding operator is R-elliptic but not C-elliptic,

since on the symbol level we have:

2α〈ξ, ξ〉 !
= 0,

which over R only has the trivial solution, whereby over C we can take ξ = (1, i, 0)>.
Thus, only Theorem A applies here, so that for all 1 < p < 3 and allP ∈ C∞c (R3;R3×3)
we have

‖P‖
Ẇ

1,
3p

3−p (R3)
. ‖devP‖

Ẇ
1,

3p
3−p (R3)

+ ‖tr incP‖Lp(R3).

4.3.2. The corresponding operators in case of the part maps

A ∈ {sym,dev sym, skew + tr, skew, tr}

are all non-elliptic:

• If A = sym then ker(A) = so(3) = {Antia | a ∈ R3}, and the corresponding
operator becomes

inc (Anti a) = −Anti(∇ div a),

which is not elliptic, since the divergence is already not elliptic.
• ForA = dev sym we have ker(A) = {Antia+α·13 | (a,α)> ∈ R4} and the operator

is
inc (Anti a+ ζ · 13) = −Anti(∇ div a) + ∆ζ · 13 −D∇ζ,

which is not elliptic.
• If A = skew + tr then ker(A) consists of trace-free symmetric matrices and already in

the case B = Id the induced operator is not elliptic since on the symbol level we have 0 −1 1
1 0 0
−1 0 0

0 1 1
1 0 0
1 0 0

 0 −1 1
1 0 0
−1 0 0

 = 0.

• WhenA ∈ {skew, tr} the non-ellipticity of the induced operator follows with the same
examples as in (4.2) and (4.3), respectively.

A. APPENDIX: DIFFERENTIAL OPERATORS AND ALGEBRAIC IDENTITIES

In this paragraph we briefly revisit some differential operators and the underlying algebraic
identities that have been employed in the main part of the paper. In order to elaborate on potential
links to applications, we thus put a special emphasis on the three-dimensional case.

Let us start with the general case n ≥ 2. To define for P : Rn → Rn×n the matrix curl
CurlP , we recall from [42, 45] the inductive definition of the generalised cross product ×n :

Rn × Rn → R
n(n−1)

2 via

a×n b :=

(
a×n−1 b

bn · a− an · b

)
∈ R

n(n−1)
2 with

(
a1

a2

)
×2

(
b1

b2

)
:= a1 b2 − a2 b1. (A.1)

for

a = (a,an)> ∈ Rn and b = (b, bn)> ∈ Rn where a, b ∈ Rn−1.

Due to the linearity in the second component of the generalised cross product a ×n · it can be
expressed by a multiplication with a matrix, which we denote JaK×n ∈ R

n(n−1)
2 ×n, so that

a×n b =: JaK×n b for all b ∈ Rn. (A.2)
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Thus, for a vector field a : Rn → Rn or a matrix field P : Rn → Rr×n, with r ∈ N, we define
curl a and row-wise CurlP by

curl a := a×n (−∇) = J∇K×n a, CurlP := P ×n (−∇) = P J∇K>×n , (A.3)

meaning that the corresponding symbol maps read for ξ ∈ Rn:

− a×n ξ = JξK×n a, and − P ×n ξ = P JξK>×n , (A.4)

for a ∈ Rn and P ∈ Rr×n. Furthermore, for square matrix fields P : Rn → Rn×n the
incompatibility operator is defined by

incP := Curl
(
[CurlP ]>

)
= J∇K×n P

> J∇K>×n = −∇×n P> ×n ∇ (A.5)

and is also referred to as Curl Curl> in the literature; see KRÖNER [39] for the continuum
mechanical background.

Let us now draw particular attention to the three-dimensional case n = 3. Here, this con-
struction is usually related to the classical cross product, so that for P =

(
a b c

)>
with

a, b, c : R3 → R3, we here denote Curl the row-wise classical curl, so

CurlP :=
(
curl a curl b curl c

)>
.

However, it follows from our main theorems below, that in three dimensions it does not matter
which curl operator (i.e. related to the classical cross product or to the generalised one) we
require on the right-hand side, since both matrix curl operators have the same wave cone. For
the following, it is useful to define the linear map Anti : R3 → so(3) via

Anti : (α,β,γ)> 7→

 0 −γ β
γ 0 −α
−β α 0

 . (A.6)

This special identification was chosen in such a way that it is related to the usual cross product.
Thus, the matrix Curl has as corresponding symbol map that arises as the multiplication with
Anti(−ξ) from the right:

− P Anti ξ, for ξ ∈ R3,P ∈ R3×3. (A.7)

We then have, for differentiable maps a : R3 → R3, NYE’s formulas [57]

Curl Anti a = div a · 13 −Da>,

Da =
tr Curl Anti a

2
· 13 − (Curl Anti a)>.

(A.8)

Especially, this implies the identity: dev sym Curl Anti a = −dev sym Da.
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