Nov 22, 2019 Dr. F. GMEINEDER

Functional Analysis Revision Class

Problem 1: Terminology

Give examples of

- (a) Banach spaces which are not Hilbert,
- (b) Banach spaces which are not separable,
- (c) Banach spaces on which not any two norms are equivalent,
- (d) a linear operator T on some Banach space X which is bounded, but discontinuous,
- (e) a linear operator $T: X \to Y$ between two Banach spaces X, Y which is bounded and continuous,
- (f) a linear operator $T: X \to Y$ between two Banach spaces X, Y which is not bounded.

Moreover, decide whether the following are true or false – if they are false, give the correct statement:

- (g) For any $1 \leq p \leq \infty$ and any $f \in L^p(\mathbb{R}^n)$, there exists $(f_j) \subset C_c^{\infty}(\mathbb{R}^n)$ such that $f_j \to f$ in $L^p(\mathbb{R}^n)$.
- (h) For any $1 \leq p \leq \infty$ we have $L^p(\Omega)^* \cong L^{p'}(\Omega)$, where $p' = \frac{p}{p-1}$ if 1 .

Solution. Ad 1. This is the case, e.g., for any L^p-space for $p \in [1, \infty] \setminus \{2\}$. Note carefully that a necessary condition for a norm to stem from an inner product is the parallelogram identity / polarisation identity. Ad 2. Non-separable Banach space are given by $L^{\infty}((0,1))$ or ℓ^{∞} . Ad 3. Any infinite dimensional Banach space will do. Ad 4. Such an operator does not exist – for linear operator, boundedness is equivalent to continuity. Ad 5. Any bounded linear operator is continuous - so we may take the identity on X = Y, for instance. Ad 6. Take X = C([0,1]) and consider $W := C^1([0,1]), Y = C^1([0,1])$ and equip all the spaces with the usual supremum norm. Then the derivative operator $\frac{d}{dx} : W \ni f \mapsto \frac{d}{dx} f \in C([0,1])$ is a linear operator. However, it is not bounded: Consider $f_j(x) := \frac{1}{j} \sin(jx)$, which satisfies $||f_j||_{\infty} \to 0$ but $||f'_j||_{\infty} = 1$. Now note carefully that $(C^1([0,1]), \|\cdot\|_{\infty})$ is not (!) Banach. To overcome this issue, take an algebraic complement W of W in X, i.e., $X = W \oplus \widetilde{W}$ and extend the derivative operator by zero (on W) to the entire X. The operator that arises in this way then yields an example for 6.. Ad 7. Yes for $1 \le p < \infty$ – which is a classical result from Analysis 3 (keywords: cut-off and mollification) – but no for $p = \infty$. Recall the argument: Pick some $u \in (L^{\infty} \setminus C)(\mathbb{R}^n)$. Suppose such a sequence $(f_j) \subset C_c^{\infty}(\mathbb{R}^n)$ exists. Then (f_j) is Cauchy for $\|\cdot\|_{L^{\infty}}$, but on $C(\mathbb{R}^n)$ the L^{∞} -norm equals the supremum norm. Hence (f_j) converges to some element in the closure of $C_c^{\infty}(\mathbb{R}^n)$ for $\|\cdot\|_{\sup}$, which is $C_0(\mathbb{R}^n)$. This would imply that $u \in C_0(\mathbb{R}^n)$, a contradiction. Ad 8. This was discussed in class – yes for $1 \leq p < \infty$, no for $p=\infty$.

Problem 2:

Decide with proof which of the following are proper dense subspaces of $\ell^2(\mathbb{N})$:

$$\begin{split} \mathfrak{A} &:= \{x = (x_j) \in \ell^2(\mathbb{N}) \colon \ x_{2019} \geq 0\}, \\ \mathfrak{B} &:= \{x = (x_j) \in \ell^2(\mathbb{N}) \colon \ x_{2019} = 0\}, \\ \mathfrak{C} &:= \{x = (x_j) \in \ell^2(\mathbb{N}) \colon \ \sum_j |\sin(x_j)| < \infty\}. \end{split}$$

Solution. Given in class.

Problem 3:

Decide with proof whether the following subsests of $\ell^2(\mathbb{N})$ are bounded and/or precompact and/or compact:

$$\mathcal{A} := \{ x = (x_j) \colon ||x||_{\ell^2} \le 1 \},$$

$$\mathcal{B} := \{ x = (x_j) \colon |x_j| \le \frac{1}{\sqrt{j}} \text{ for all } j \in \mathbb{N} \},$$

$$\mathcal{C} := \{ x = (x_j) \colon |x_j| \le \frac{1}{j} \text{ for all } j \in \mathbb{N} \}.$$

Solution. Given in class.