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Abstract. We study generalised Navier–Stokes equations governing the motion of

an electro-rheological fluid subject to stochastic perturbation. Stochastic effects are

implemented through (i) random initial data, (ii) a forcing term in the momentum
equation represented by a multiplicative white noise and (iii) a random character of

the variable exponent p = p(ω, t, x) (as a result of a random electric field). We show

the existence of a weak martingale solution provided the variable exponent satisfies
p ≥ p− > 3n

n+2
(p− > 1 in two dimensions). Under additional assumptions we obtain

also pathwise solutions.

1. Introduction

Electro-rheological fluids are special smart fluids which change their material properties
due to the application of an electric field firstly observed by Winslow [35] in 1949. Since
then a vast development in the chemical constitution of electro-rheological fluids has
taken place and nowadays dramatic changes by a factor of 103 in 1ms in the viscosity
are possible. This provides the opportunity for the gainful exploitation of this fact in
technological applications for instance in clutches, shock absorbers, valves, actuators and
exercise equipment.

The simplest approach for the modelling of such suspensions is to treat them in a
homogenised sense within the framework of continuum mechanics and in this respect, we
restrict ourself to incompressible fluids with density % > 0. The conservation of mass and
the balance of linear momentum are given by{

∂t(%v)− div S = − div(%v ⊗ v)−∇π + %f + fe in Q,
div v = 0 in Q.

(1.1)

where Q = O × (0, T ) denotes the parabolic cylinder (O is a bounded domain in Rn,
n = 2, 3). Here v : Q → Rn is the velocity field, π : Q → R the pressure, S : Q → Rn×n
the viscous stress tensor whereas f : Q → Rn is the external mechanical body force and
fe : Q → Rn the electromagnetic force. The material properties of an electro-rheological
fluid - according to Rajagopal and Růžička [26, 27] - are described by the relation

S = α21

(
(1 + |ε(v)|2)

p−1
2 − 1

)
E⊗E + (α31 + α33|E|2)(1 + |ε(v)|2)

p−2
2 ε(v)

+ α51(1 + |ε(v)|2)
p−2
2 (E⊗ ε(v)E + E⊗ ε(v)E).(1.2)

Here E : Q → Rn is the electric field (which is a solution to the quasi-static Maxwell
equations and is not influenced by the motion of the fluid), ε(v) = 1

2

(
∇v + ∇vT

)
the

symmetric gradient of the velocity field and αij are material constants. The exponent
p = p(|E|2) depends on the strength of the electric field (and hence on time and space)
and satisfies in Q

1 < p− ≤ p ≤ p+ <∞.(1.3)
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In the mathematical literature about electro-rheological fluids (starting with [29] and [10])
it is common to study the constitutive law

S = µ(1 + |ε(v)|)p(·)−2ε(v), µ > 0,(1.4)

which contains the same mathematical difficulties as (1.2) but simplifies the calculations.
Essentially, there are two parts in the model where randomness can occur:

• The electromagnetic force is mainly influenced by the gradient of the electric field
E and the electric polarization P such that fe = [∇E]P. All missing quantities
which are neglected here (for instance magnetic field and magnetic polarization)
can be summarized in some random perturbation. In addition, it can incorporate
physical uncertainties and turbulence in the fluid motion.

• The exponent p depends of the strength of the electric field which is a solu-
tion to Maxwell’s equation, the latter having been widely studied in literature.
Randomness naturally appears in the Maxwell equation (see, for instance [6, 7]
for stochastic Maxwell equations), and the randomness in the Maxwell equation
transfers to randomness in the exponent in the model (1.6). In conclusion, the
assumption of a random exponent is very reasonable and required by applications.

Second, it is not possible to give an explicit formula for the exponent p. Its dependence
on the electric field has to be determined via physical experiments. Hence some (random)
derivation from the “real” exponent shall is to be expected.

In this respect, the aim of this paper is to give a rigorous analysis of the following
stochastic model for electro-rheological fluids (without loss of generality we assume that
% = 1 and fe = 0) dv = div S dt− div(v ⊗ v) dt−∇π dt+ f dt+ Φ(v)dWt in Q,

div v = 0 in Q,
v(0) = v0 in O,

(1.5)

with S given by

S = µ(1 + |ε(v)|)p(·)−2ε(v), µ > 0.(1.6)

We suppose that the electric field E is given and that p = p(ω, t, x) satisfies (1.3). The
quantity W denotes a cylindrical Wiener process with values in some Hilbert space and
Φ is nonlinear in v with linear growth, cp. Section 2.2 for further details.

In the general three-dimensional case, regularity and uniqueness of solutions to (1.5)–
(1.6) is a longstanding open problem (already in the deterministic situation) even if p ≡ 2,
leading to the classical Navier–Stokes equations for Newtonian fluids. Consequently, the
solution is understood weakly in space-time (in the sense of distributions) and also weakly
in the probabilistic sense (i.e., the underlying probability space is part of the solution).
This concept of stochastically weak solutions already appears on the level of stochastic
ODEs if uniqueness fails.

As far as stochastic PDEs are concerned, a milestone was the existence of martingale
solutions to the stochastic Navier–Stokes equation ((1.5)–(1.6) with p ≡ 2) by Flandoli-
Gatarek [16]. Today there exists an abundant amount of literature concerning the dynam-
ics of incompressible Newtonian fluids driven by stochastic forcing. We refer to the lecture
notes by Flandoli [15], the monograph of Kuksin and Shyrikian [21], the survey by Romito
[28] as well as the references cited therein for a recent overview. Much less is known if
other fluid types are concerned. Just very recently, an analysis of non-Newtonian fluids
(see [36, 33, 3]) and compressible fluids (see [5] and [31]) subject to stochastic forcing
started.

The analysis the system (1.5)–(1.6) brings a completely new aspect into play: a random
variable exponent. As a consequence, solutions are located in a random function space
generated by the a priori information

E
[∫

Q

|ε(v)(ω, t, x)|p(ω,t,x) dxdt

]
<∞.
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So, we have

ε(v)(ω, ·) ∈ Lp(ω,·)(Q) for P-a.e. ω ∈ Ω,

where

Lp(·)(G) =
{
f ∈ L1(G) :

∫
G

|f(y)|p(y)
dy <∞

}
(1.7)

for G ⊂ Rm and p : G → (1,∞) measurable. Variable exponent Lebesgue spaces (and
Sobolev spaces) as in (1.7) have been studied extensively over the last two decades mo-
tivated by the model for electro-rheological fluids from [26, 27], and we refer to [11] for
a comprehensive treatment. As far as stochastic problems are concerned, a first analysis
of problems involving random variable exponents can be found in [34]. In this work,
the existence and uniqueness of weak solutions of a stochastic p(ω, t, x)-Laplacian type
equation is established by use of the variational approach, and problems connected to
compactness and non-uniqueness do not occur.

The boundary conditions in the real world applications are quite complicated and
of substantial influence on the fluid motion. Nevertheless, our goal is to focus on the
effect of a random variable exponent as well as stochastic perturbations imposed through
stochastic volume forces. So, for a first analysis we consider periodic boundary conditions,
where the physical domain is identified with the flat torus

Tn =
(

[0, 1]
∣∣∣
{0,1}

)n
.

The first main result of this paper is the existence of a weak martingale solution to
(1.5)–(1.6) under periodic boundary conditions where the variable exponent p is Lipschitz
continuous in x and satisfies

inf
Ω×Q

p >
3n

n+ 2
,(1.8)

see Theorem 2.2 for the precise statement. This generalises the results from [33] to the
case of variable exponents. As a consequence of the nature of martingale solutions we are
not able to describe the variable exponent as a given function defined on Ω×Q. Instead,
we rather describe a probability law on Cα([0, T ]× Tn) (we prefer Cα to C0,1 as C0,1 is
not a Polish space). The law is, however, concentrated on C0,1, cp. (4.4)).

Our approach is based on a finite-dimensional Galerkin approximation and a refined
stochastic compactness method involving Skorokhod’s representation theorem. Since the
system (1.5)–(1.6) is nonlinear in the gradient of the velocity field we have to demonstrate
its compactness in W 1,1(Tn) first. This is achieved by fractional estimates for ∇v inspired
by the results from [24, Chapter 5], where deterministic problems with constant p are
considered. Under more restrictive assumptions on the variable exponent p, we are able
to show pathwise uniqueness of solutions. As a consequence, we obtain pathwise solutions
(see Theorem 2.10) using the method by Gyöngy-Krylov. Eventually, we are concerned
with the existence of analytically strong solutions (see Definitions 2.6 and 2.12), where
equation (1.5)1 holds almost everywhere in space. This is based on the existence of second
derivatives of the velocity field. Because of the non-standard growth character of (1.6)
this is much more involved than the situation with constant p. By simply differentiating
equation (1.5)1 we are left with an a priori unbounded integral, cp. (5.9). This issue can
be overcome by combining a parabolic interpolation as in [2] with an improved moment
estimate, cp. Theorem 3.2. Consequently, we obtain weak (or even strong) pathwise
solutions to (1.5)–(1.6), see Theorem 2.7 and Corollary 2.13.

The paper is organised as follows. In Section 2 we present the mathematical framework,
the various solution concepts to (1.5)–(1.6) as well as the main results. In Section 3
we study the finite-dimensional approximation to (1.5)–(1.6) and derive uniform a prior
estimates. Section 4 is dedicated to the existence of martingale solutions. Under more
restrictive assumptions on the exponent p, we then show existence of pathwise solutions.
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In the ultimate section we establish the existence of analytically strong solutions subject
to suitable additional assumptions imposed on the data.

Acknowledgments. The authors gratefully acknowledge support through the Edin-
burgh Mathematical Society during a stay of the second author at Heriot Watt University
Edinburgh in November 2016, where this work had been commenced.

2. Framework and Main Results

2.1. Function Space Setup. In this section we briefly introduce the function spaces
to be dealt with in the main part of the paper. Incorporating the periodic boundary
conditions, all spatial function spaces are defined on the torus Tn. Specifically, we define
for 0 < κ <∞ and 1 < q <∞ the corresponding Bessel–Sobolev spaces by

Wκ,q(Tn) :=

{
v : Tn → Rn : ‖v‖qκ,q :=

∑
k∈Z
〈k〉κq|ck(v)|q <∞

}
,

Wκ,q
div(Tn) := Wκ,q(Tn)n ∩ {v ∈ L1(Tn;Rn) : div(v) = 0 in the sense of distributions},

where 〈ξ〉 :=
√

1 + |ξ|2 and ck(v) are the Fourier coefficients of v : Tn → Rn with respect
to the standard Fourier basis {x 7→ exp(i k · x)}k. Given a real Banach space (X, ‖ · ‖),
we moreover introduce the fractional Sobolev space Wκ,q(0, T ;X) as the collection of all
measurable v : [0, T ]→ X such that v ∈ Lq(0, T ;X) (in the sense of Bochner integrability)
and

[v]κ,q :=

∫ T

0

∫ T

0

‖v(s)− v(t)‖qX
|s− t|1+κq

dsdt <∞.

Let us note that the former space could be defined similarly by use of Fourier coefficients,
however, we refrained from doing so to emphasize the non–periodicity with respect to
time.

Lastly, we shall sometimes surpress the target space and write, e.g., Wκ,q(Tn) instead
of Wκ,q(Tn)n. However, no ambiguities will arise from this.

2.2. Probability Setup. Let (Ω,F ,P) be a probability space endowed with a filtration
(Ft) = (Ft)t≥0 which is a nondecreasing family of sub-σ-fields of F , i.e., Fs ⊂ Ft for
0 ≤ s ≤ t ≤ T . We further assume that (Ft)t≥0 is right-continuous and F0 contains all
the P-negligible events in F .

For a Banach space (X, ‖ · ‖X) and corresponding Borel σ-algebra B(X), we denote by
for 1 ≤ p < ∞ by Lp(Ω;X) the Banach space of all measurable functions v : (Ω,F ) →
(X,B(X)) such that

E
[
‖v‖pX

]
=

∫
Ω

‖v‖pX dP <∞.

Let U be a Hilbert space with orthonormal basis (ek)k∈N and let L2(U,L2(Tn)) be the
set of Hilbert-Schmidt operators from U to L2(Tn). Moreover, define the auxiliary space
U0 ⊃ U as

U0 :=

{
e =

∞∑
k=1

αkek :

∞∑
k=1

α2
k

k2
<∞

}
,

‖e‖2U0
:=

∞∑
k=1

α2
k

k2
, e =

∞∑
k=1

αkek.

(2.1)

Throughout the paper we consider a cylindrical (Ft)-Wiener process W = (Wt)t≥0 which
has the form

W =
∑
k∈N

βkek(2.2)
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with a sequence (βk) of independent real valued (Ft)-Wiener processes. The embedding
U ↪→ U0 is Hilbert-Schmidt and trajectories of W are P-a.s. continuous with values in U0

(see [8]). Now, for Ψ ∈ L2(Ω; L2(0, T ; L2(U,L2(Tn)))) (Ft)-progressively measurable we

have that
∫ t

0
Ψ dW defines a P-almost surely continuous L2(Tn)-valued (Ft)-martingale

(cp. [8] for stochastic calculus in infinite dimensions). Moreover, we can multiply with
test-functions because∫

Tn

∫ t

0

Ψ dW ·ϕdx =

∞∑
k=1

∫ t

0

∫
Tn

Ψek ·ϕ dxdβk, ϕ ∈ L2(Tn),

is well–defined.
In the SPDEs appearing in this paper we consider a noise coefficient Φ(v) (depending

on the solution v) with values in L2(U,L2(Tn)). We suppose the following linear growth
assumptions on Φ: For each z ∈ L2(Tn) there is a mapping Φ(z) : U → L2(Tn) defined
by Φ(z)ek = gk(z(·)). In particular, we suppose that gk ∈ C1(Rn) and the following
conditions for some L ≥ 0∑

k∈N
|gk(ξ)|2 ≤ L(1 + |ξ|2),

∑
k∈N
|∇gk(ξ)|2 ≤ L, ξ ∈ Rn.(2.3)

2.3. Martingale solutions. Now we are in position to give a precise formulation of the
meaning of a martingale solutions. We start with a weak martingale solution. This solu-
tion is weak on both senses. Derivatives have to be understood in the sense of distributions
(weak in the PDE-sense) and the underlying probability space is not a priori given but is
part of the problem (weak in the probabilistic sense). Accordingly, the initial condition
is given as a Borel probability measure on L2

div(Tn). The same applies for the forcing f
which will be given as a Borel probability measure on L2(Q) As usual the moments of
data measured via

Cr(Λ0,Λf ) =

∫
L2
div(Tn)

∥∥u∥∥2r

L2(Tn)
dΛ0(u) +

∫
L2(Q)

∥∥g∥∥2r

L2(Q)
dΛf (g)

transfer to the solution. Solutions as described above are called martingale solutions due
to the connection to the so-called Stroock–Varadhan martingale problem (see, e.g., [20,
Chap. 5.4]).

Definition 2.1 (Weak martingale solution). Let Λ0,Λf ,Λp be Borel probability measures

on L2
div(Tn), L2(Q) and Cα([0, T ]× Tn), respectively. Then a quintuple(

(Ω,F , (Ft),P),v, f , p,W )

is called a weak martingale solution to (1.5)–(1.6) with the initial datum Λ0, right-hand-
side Λf and exponent Λp provided

(a) (Ω,F , (Ft),P) is a stochastic basis with a complete right-continuous filtration,
(b) W is an (Ft)-cylindrical Wiener process,
(c) f ∈ L2(Ω,F ,P; L2(Q)) is (Ft)-progressively measurable and Λf = P ◦ f−1,
(d) p ∈ Cα([0, T ]× Tn) is (Ft)-progressively measurable and Λp = P ◦ p−1,

(e) the velocity field satisfies v ∈ Cw([0, T ]; L2(Tn)), ε(v) ∈ Lp(·)(Q), P-a.s. and is
(Ft)-progressively measurable,

(f) we have Λ0 = P ◦ v(0)−1,
(g) for all ϕ ∈ C∞div(Tn) and all t ∈ [0, T ] there holds P-a.s.∫

Tn
v(t) ·ϕ dx+

∫ t

0

∫
Tn
µ(1 + |ε(v)|)p(·)−2ε(v) : ε(ϕ) dxdσ −

∫ t

0

∫
Tn

v ⊗ v : ε(ϕ) dxdσ

=

∫
Tn

v(0) ·ϕ dx+

∫
Tn

∫ t

0

f ·ϕ dxdσ +

∫
Tn

∫ t

0

Φ(v) dW ·ϕ dx.

We obtain the following result.
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Theorem 2.2 (Weak martingale solution). Suppose that

(2.4)

∫
L2
div(Tn)

∥∥u∥∥2

W1,2(Tn)
dΛ0(u) <∞,

∫
L2(Q)

∥∥g∥∥2

L2(0,T ;W1,2(Tn))
dΛf (g) <∞

as well as Cr(Λ0,Λf ) <∞ for all 1 ≤ r <∞. Moreover, assume that

Λp
{
h ∈W1,∞(Q) : p− ≤ h ≤ p+, ‖h‖∞ + ‖∇h‖∞ ≤ cp

}
= 1,(2.5)

where cp <∞ and either

3n

n+ 2
< p− ≤ p+ <

n+ 2

n
p−.(2.6)

Finally, assume that Φ satisfies (2.3). Then there is a weak martingale solution to (1.5)–
(1.6) in the sense of Definition 2.1. We have the energy estimate

E
[

sup
t∈(0,T )

∫
Tn
|v(t)|2 dx+

∫
Q

|ε(v)|p(·) dx dt

]r
≤ c
(
1 + Cr(Λ0,Λf )

)
.(2.7)

for r ≥ 1 provided Cr(Λ0,Λf ) is finite.

Remark 2.3. Let us explain the assumptions on upper and lower bound on p in (2.6).

• The lower bound is the same as in the case of constant from [33] in the two
and three dimensional case (we do not consider higher dimensions as there is no
physical meaning).

• It will become clear from the proof of Theorem (2.2) that the assumption (2.6)
can be relaxed to

3n− 4

n
< p− ≤ p+ < np− + 4(2.8)

provided p− ≥ 2 (where the lower bound is redundant for n = 2, 3). We decided
for the version in (2.6) as it is physically meaningful that p− is as low as possible
whereas non-Newtonian fluids with growth-exponent higher than p = 3 are not
known (the case p = 3 refers to the the classical Smagorinsky model [32]).

Remark 2.4. By slightly refining our estimates it is possible to weaken the assumption
in (4.4) from a deterministic constant cp to a random variable cp with arbitrary high
moments. This seems more realistic in view of the random character of the exponent.

Remark 2.5. In contrast to the deterministic case we need assumptions between p− and
p+ to balance our estimates. In the deterministic case this case be avoided by localizing
the problem and arguing on small parabolic cube where p− and p+ are arbitrary close
(recall that p is continuous). This is not possible here because of the random character of
p.

The method we are using in the proof of Theorem 2.2 originates from [24, Chap.
5], where the deterministic problem with constant p is studied. The key ingredient are
fractional derivatives of the velocity gradient. This method is only very powerful in
the case of periodic boundary conditions, where a test with ∆vN (vN is the Galerkin
approximation of the velocity field) is possible. The situation in the two-dimensional
situation is much better than the 3D case as we have∫

Tn
vN ⊗ vN : ∇vN dx = 0.

Due to this we can expect solutions which are strong in PDE sense. Before we give a
proper definition we have to introduce the pressure function (as we need a formulation
which holds a.e. in space without test-functions).
Assume that

(
(Ω,F , (Ft),P),v, f , p,W ) is a weak martingale solution to (1.5)–(1.6) in

the sense of Definition 2.1. In particular, we have P-a.s.∫
Tn

v(t) ·ϕ dx+

∫ t

0

∫
Tn
µ(1 + |ε(v)|)p(·)−2ε(v) : ε(ϕ) dxdσ −

∫ t

0

∫
Tn

v ⊗ v : ε(ϕ) dxdσ
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=

∫
Tn

v(0) ·ϕ dx+

∫
Tn

∫ t

0

f ·ϕ dxdσ +

∫
Tn

∫ t

0

Φ(v) dW ·ϕ dx

for all ϕ ∈ C∞div(Tn) and all t ∈ [0, T ]. Now, for ϕ ∈ C∞(Tn) we can insert ϕ−∇∆−1 divϕ
and obtain∫
Tn

v(t) ·ϕ dx+

∫ t

0

∫
Tn
µ(1 + |ε(v)|)p(·)−2ε(v) : ε(ϕ) dxdσ −

∫ t

0

∫
Tn

v ⊗ v : ε(ϕ) dxdσ

=

∫
Tn

v(0) ·ϕ dx+

∫ t

0

∫
Tn
πdet divϕ dx dσ +

∫
Tn

∫ t

0

f ·ϕ dxdσ(2.9)

+

∫
Tn

∫ t

0

Φ(v) dW ·ϕdx+

∫
Tn

∫ t

0

Φπ dW ·ϕdx,

where

πdet = π1
det + π2

det + π3
det,

π1
det = ∆−1 div div

(
µ(1 + |ε(v)|)p(·)−2ε(v)

)
,

π2
det = −∆−1 div div

(
v ⊗ v

)
,

π3
det = ∆−1 div f ,

Φπ = −∇∆−1 divΦ(v).

This corresponds to the stochastic pressure decomposition introduced in [3, Chap. 3].
However, the situation with periodic boundary conditions we are considering here is much
easier as the harmonic component of the pressure disappears. From a strong solution (in
the PDE-sense) we expect that (2.9) holds without the use of the test-functions, i.e. we
have

v(t) = v(0) +

∫ t

0

[
div
(
µ(1 + |ε(v)|)p(·)−2ε(v)

)
− div

(
v ⊗ v

)
−∇πdet + f

]
dσ

+

∫ t

0

[
Φ(v) + Φπ

]
dW

P-a.s. for all t ∈ [0, T ]. We remark that already under the assumptions of Theorem
2.2 we have enough spatial regularity to define div

(
v ⊗ v

)
as an L1-function (in fact

p− ≥ 2n+2
n+2 is required). So, the critical point is whether second derivatives of v exists

and div
(
(κ + |ε(v)|)p−2ε(v)

)
is an L1-function. The required regularity of the pressure

terms follows immediately from this and continuity properties of ∆−1 on Lebesgue and
Sobolev spaces. Let us finally mention that regularity of v is usually measured via the
nonlinear function Fp(·, ε(v)), where

Fp(ω, t, x,η) = (1 + |η|)
p(ω,t,x)−2

2 η, η ∈ Rn×n.

Now we are ready to define a strong martingale solution.

Definition 2.6 (Strong martingale solution). Let Λ0,Λf ,Λp be Borel probability measures

on L2
div(Tn), L2(Q) and Cα([0, T ]× Tn), respectively. Then a quintuple(

(Ω,F , (Ft),P),v, f , p,W )

is called a strong martingale solution to (1.5)–(1.6) with the initial datum Λ0, right-
hand-side Λf and exponent Λp provided it is a weak martingale solution in the sense of
Definition 2.1 and the following holds.

(a) We have Fp(·, ε(v)) ∈ L2(0, T ; W1,2(Tn)) P-a.s.,
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(b) there are πdet and Φπ (Ft)-progressively measurable such that πdet ∈ L1(Q) and
Φπ ∈ L2(0, T ; L2(U; L2(Tn))) P-a.s. as well as

v(t) = v(0) +

∫ t

0

[
div
(
µ(1 + |ε(v)|)p(·)−2ε(v)

)
− div

(
v ⊗ v

)
−∇πdet + f

]
dσ

+

∫ t

0

[
Φ(v) + Φπ

]
dW

(2.10)

P-a.s. for all t ∈ [0, T ].

Theorem 2.7 (Strong martingale solution). Let the assumptions of Theorem 2.2 be
satisfied. Suppose that either we have

(i) n = 2 and 1 < p− ≤ p+ < 4 or;
(ii) n = 3 and 11

5 < p− ≤ p+ ≤ p− + 4
5 .

Then there is a strong martingale solution to (1.5)–(1.6) in the sense of Definition 2.6.
We have the estimate

E
[

sup
t∈(0,T )

∫
Tn
|∇v(t)|2 dx+

∫
Q

|∇Fp(·, ε(v))|2 dx dt

]
≤ c(Λ0,Λf ).(2.11)

Remark 2.8.

• We remark that the most interesting situation for physical applications is when p
can vary between 1 and 2 as assumed in part (i) of Theorem 2.7. This refers to
a range between a Newtonian fluid (p = 2) and a plastic material (p close to 1)
which has been observed in experiments on electro-rheological fluids.

• Similar to (2.7) ii) it is also possible to gain a result in two dimensions if p+ ≥ 4.
In this case the assumption reads as p+ < p− + 1. However this situation is
outside the range of physical interest and we leave the details to the reader.

2.4. Pathwise solutions. We are now concerned with the question whether a solution
to (1.5)–(1.6) can be constructed on a given probability space and a given initial velocity
v0 (which is a a random variable rather than a probability law). This goes hand in hand
with the question of unique solvability and holds already on the level of stochastic ODEs
(see, e.g., [20, Chap. 5]). We start with a formulation which is weak in the PDE-sense.

Definition 2.9 (Weak pathwise solution). Let (Ω,F , (Ft),P) be a stochastic basis with a
complete right-continuous filtration and let W be an (Ft)-cylindrical Wiener process. Let
v0 be an L2(Tn)-valued F0-measurable random variable. Let f and p be (Ft)-progressively
measurable processes such that f ∈ L2(Q) and p ∈ Cα([0, T ]×Tn) P-a.s. A function v is
called a weak pathwise solution to (1.5)–(1.6) provided

(a) the velocity field satisfies v ∈ Cw([0, T ]; L2(Tn)), ε(v) ∈ Lp(·)(Q), P-a.s. and is
(Ft)-progressively measurable,

(b) we have v(0) = v0 P-a.s.,
(c) for all ϕ ∈ C∞div(Tn) and all t ∈ [0, T ] there holds P-a.s.∫

Tn
v(t) ·ϕ dx+

∫ t

0

∫
Tn
µ(1 + |ε(v)|)p(·)−2ε(v) : ε(ϕ) dxdσ −

∫ t

0

∫
Tn

v ⊗ v : ε(ϕ) dxdσ

=

∫
Tn

v(0) ·ϕ dx+

∫
Tn

∫ t

0

f ·ϕ dxdσ +

∫
Tn

∫ t

0

Φ(v) dW ·ϕ dx.

We obtain the following result (recall Remark 2.3 for the assumptions on p below in
(2.14) below).

Theorem 2.10 (Weak pathwise solution). Let v0 be an L2(Tn)-valued F0-measurable
random variable. Let f and p be (Ft)-progressively measurable processes such that f ∈
L2(Q) and p ∈ Cα([0, T ]× Tn) P-a.s. Suppose that

(2.12) E
∥∥v0

∥∥2r

L2(Tn)
<∞, E

∥∥f∥∥2r

L2(Q)
<∞.
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for all 1 ≤ r <∞ as well as

(2.13) E
∥∥v0

∥∥2

W1,2(Tn)
<∞, E

∥∥f∥∥2

L2(0,T ;W1,2(Tn))
<∞.

Moreover, assume that we have P-a.s.

p− ≤ p ≤ p+, ‖p‖∞ + ‖∇p‖∞ ≤ cp,

where cp <∞ and

n+ 2

2
≤ p− ≤ p+ < np− + 4.(2.14)

Finally, assume that Φ satisfies (2.3). Then there is a weak pathwise solution to (1.5)–
(1.6) in the sense of Definition 2.9. We have the energy estimate

E
[

sup
t∈(0,T )

∫
Tn
|v(t)|2 dx+

∫
Q

|ε(v)|p(·) dx dt

]r
≤ cE

[ ∫
Tn
|v0|2 dx+

∫
Q

|f |2 dx dt

]r
.

(2.15)

Remark 2.11. As in the deterministic case (see [24] and [10]) the assumptions on p−

yielding uniqueness are rather restrictive. The same bounds are needed in Theorem 2.10
for the existence of pathwise solutions.

Having a look at Definitions 2.6 and 2.9 we can expect strong pathwise solutions if the
assumptions of Theorems 2.7 and 2.10 are satisfied. These solutions are strong in both
senses.

Definition 2.12 (Strong pathwise solution). Let (Ω,F , (Ft),P) be a stochastic basis
with a complete right-continuous filtration and let W be an (Ft)-cylindrical Wiener pro-
cess. Let v0 be an L2(Tn)-valued F0-measurable random variable. Let f and p be (Ft)-
progressively measurable processes such that f ∈ L2(Q) and p ∈ Cα([0, T ]× Tn). A func-
tion v is called a strong pathwise solution to (1.5)–(1.6) provided it is a weak pathwise
solution in the sense of Definition 2.9 and the following holds.

(a) We have Fp(·, ε(v)) ∈ L2(0, T ; W1,2(Tn)) P-a.s.,
(b) there are πdet and Φπ (Ft)-progressively measurable such that

πdet ∈ L1(0, T ; W1,1(Tn)) and Φπ ∈ L2(0, T ; L2(U; L2(Tn))) P-a.s. as well as

v(t) = v(0) +

∫ t

0

[
div
(
µ(1 + |ε(v)|)p(·)−2ε(v)

)
− div

(
v ⊗ v

)
−∇πdet + f

]
dσ

+

∫ t

0

[
Φ(v) + Φπ

]
dW

(2.16)

P-a.s. for all t ∈ [0, T ].

By combining the ideas of the proofs of Theorems 2.7 and 2.10 we obtain the following
corollary (see end of Section 5 for the proof).

Corollary 2.13. Let the assumptions of Theorem 2.7 be satisfied. Suppose in addition
that p− ≥ n+2

2 . Then there is a strong pathwise solution to (1.5)–(1.6) in the sense of
Definition 2.12.

3. Galerkin approximation

Our approach is a stochastic variant of the usual Galerkin ansatz, thereby reducing
the problem of interest to an stochastic ordinary differential equation. In this respect,
we firstly record the following fundamental fact on eigenvector expansions for the Stokes
operator, the proof of which can be found in the appendix of [24]:

Lemma 3.1. There is a sequence (λk) ⊂ R and a sequence of functions (wk) ⊂W1,2
div(Tn)

such that the following hold:
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(a) For each k ∈ N, wk is an eigenvector to the eigenvalue λk of the Stokes–operator
in the sense that

〈wk,ϕ〉W1,2(Tn) = λk

∫
Tn

wk ·ϕ dx for all ϕ ∈W1,2
div(Tn),

(b)
∫
Tn wk ·wm dx = δkm for all k,m ∈ N,

(c) 1 ≤ λ1 ≤ λ2 ≤ ... and λk →∞,
(d) 〈 wk√

λk
, wm√

λm
〉W1,2(Tn) = δkm for all k,m ∈ N,

(e) (wk) is a Hilbert space basis of W1,2
div(Tn).

We consider the Skorokhod representation of the law Λ0 × Λf × Λp × Γ, where Γ is
the law of a cylindrical Wiener process on U. We obtain a probability space (Ω,F ,P),
random variables v0, f and p with laws Λ0,Λf and Λp, respectively, as well as a cylindrical
Wiener process W =

∑
k βkek. Finally, we set

Ft := σ
(
σt[p] ∪ σt[f ] ∪

∞⋃
k=1

σt[Wk]
)
, t ∈ [0, T ].

Our objective for the rest of the section is to establish the existence of solutions vN of
the system (1.1) in the particular form

vN =

N∑
k=1

cNk wk = CN · ωN , ωN = (w1, ...,wN ),(3.1)

where CN = (cNi ) : Ω× (0, T )→ RN . Our aim is hereafter to solve (k = 1, ..., N)∫
Tn

dvN ·wk dx+

∫
Tn

Sp(·, ε(vN )) : ε(wk) dxdt

=

∫
Tn

vN ⊗ vN : ∇wk dxdt+

∫
Tn

f ·wk dxdt+

∫
Tn
Φ(vN ) dWN ·wk dx,

vN (0) = PNv0.

(3.2)

with

Sp(ω, t, x,η) = µ(1 + |η|)p(ω,t,x)−2η.

Here PN : L2
div(Tn)→ XN := span {w1, ...,wN} is the orthogonal projection, i.e.

PNu =

N∑
k=1

〈u,wk〉L2wk.

The equation above is to be understood P a.s. and for a.e. t and we set

WN =

N∑
k=1

ekβk = eN · βN .

It is equivalent to solving{
dCN =

[
µ(t,CN )

]
dt+ Σ(CN ) dβNt

CN (0) = C0

(3.3)

with the abbreviations

µ(CN ) =

(
−
∫
Tn

Sp(·,CN · ε(wN )) : ε(wk) dx+

∫
Tn

(CN ·wN )⊗ (CN ·wN ) : ∇wk dx

)N
k=1

+

(∫
Tn

f(t) ·wk dx

)N
k=1

,

Σ(CN ) =

(∫ n

T
Φ(CN ·WN )el ·wk dx

)N
k,l=1

,
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C0 =
(
〈v0,wk〉L2(Tn)

)N
k=1

.

We apply the results from [25], Thm. 3.1.1. In the following we will check the assumptions.
We have by the monotonicity of Sp(

µ(t,CN )− µ(t, C̃N )
)
·
(
CN − C̃N

)
= −

∫
Tn

(
Sp(·, ε(vN ))− Sp(·, ε(ṽN ))

)
:
(
ε(vN )− ε(ṽN )

)
dx

+

∫
Tn

(
vN ⊗ vN − ṽN ⊗ ṽN

)
:
(
ε(vN )− ε(ṽN )

)
dx

≤
∫
Tn

(
vN ⊗ vN − ṽN ⊗ ṽN

)
:
(
ε(vN )− ε(ṽN )

)
dx.

If |CN | ≤ R and |C̃N | ≤ R there holds(
µ(t,CN )− µ(t, C̃N )

)
·
(
CN − C̃N

)
≤ c(R,N)|CN − C̃N |2.

Here we took into account boundedness of wk and ∇wk. This implies weak monotonicity
in the sense of [25], (3.1.3) using Lipschitz continuity Σ in CN , cp. (2.3). On account of∫
Tn vN ⊗ vN : ε(vN ) dx = 0 there holds further

µ(t,CN ) ·CN = −
∫
Tn

Sp(·, ε(vN )) : (ε(vN ) dx+

∫
Tn

f(t) · vN dx ≤ c (1 + ‖f(t)‖2‖vN‖2)

≤ (1 + ‖f(t)‖2)(1 + ‖vN‖2) ≤ c (1 + ‖f(t)‖2)(1 + |CN |2).

So we have using the linear growth of Σ which follows from 2.3

µ(CN ) ·CN + |Σ(CN )|2 ≤ c(+‖vN‖22)
(
1 + |CN |2

)
.

As the integral
∫ T

0
(1 + ‖f(t)‖2) dt is finite P-a.s. this yields weak coercivity in the sense

of [25], (3.1.4). We obtain a unique strong solution CN ∈ L2(Ω;C[0, T ]) to the SDE (3.3).

We obtain the following a priori estimate.

Theorem 3.2. Assume (1.6) with p : Ω×Q→ (1,∞), (2.3) and for some r ≥ 1

(3.4)

∫
L2
div(Tn)

∥∥u∥∥2r

L2(Tn)
dΛ0(u) <∞,

∫
L2(Q)

∥∥g∥∥2r

L2(Q)
dΛf (g) <∞.

Then there holds uniformly in N

E
[

sup
t∈(0,T )

∫
Tn
|vN (t)|2 dx+

∫
Q

|ε(vN )|p(·) dxdt

]r
≤ Cr(Λ0,Λf ),

Cr(Λ0,Λf ) = c

(
1 +

∫
L2
div(Tn)

∥∥u∥∥2r

L2(Tn)
dΛ0(u) +

∫
L2(Q)

∥∥g∥∥2r

L2(Q)
dΛf (g)

)
,

(3.5)

provided Cr(Λ0,Λf ) is finite.

Proof. We apply Itô’s formula to the function f(C) = 1
2 |C|

2 which shows

1

2
‖vN (t)‖2L2(Tn) =

1

2
‖CN (0)‖2L2(Tn) +

N∑
k=1

∫ t

0

cNk d(cNk ) +
1

2

N∑
k=1

∫ t

0

d〈〈cNk 〉〉

=
1

2
‖PNv0‖2L2(Tn) −

∫ t

0

∫
Tn

Sp(·, ε(vN )) : ε(vN ) dx dσ

+

∫ t

0

∫
Tn

f · vN dxdσ +

∫
Tn

∫ t

0

vN · Φ(vN ) d WN dx

+
1

2

∫
Tn

∫ t

0

d
〈〈∫ ·

0

Φ(vN ) d WN
〉〉

dx.
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Here we used dvN =
∑N
k=1 dcNk wk,

∫
Tn vN ⊗ vN : ∇vN dx = 0 and property (ii) of

the base (wk). Now we can follow, taking the r-th power, and the supremum, building
expectations and using (1.6) that

E
[

sup
(0,T )

∫
Tn
|vN (t)|2 dx+

∫ T

0

∫
Tn
|ε(vN )|p(·) dxdσ

]r
≤ cE

[
1 + ‖v0‖2L2(Tn) + J1(T ) + sup

(0,T )

J2(t) + J3(T )

]r
.

Here we abbreviated

J1(t) =

∫ t

0

∫
Tn
|f ||vN |dx dσ,

J2(t) =

∫
Tn

∫ t

0

vN · Φ(vN ) dWN dx,

J3(t) =

∫
Tn

∫ t

0

d
〈〈∫ ·

0

Φ(vN ) dWN
〉〉

dx.

We obviously have

J1 ≤
∫ t

0

∫
Tn
|f |2 dxdσ +

∫ t

0

∫
Tn
|vN |2 dxdσ.

Straightforward calculations show on account of (2.3)

E[J3]r = E
[ N∑
k=1

∫ t

0

(∫
Tn
Φ(vN )ek dx

)2

dσ

]r
≤ E

[ ∞∑
k=1

∫ t

0

∫
Tn
|gk(vN )|2 dx dσ

]r
≤ cE

[
1 +

∫ t

0

∫
Tn
|vN |2 dx dσ

]r
.

On account of Burgholder-Davis-Gundi inequality, Young’s inequality and (2.3) we gain

E
[

sup
t∈(0,T )

|J2(t)|
]r

= E
[

sup
t∈(0,T )

∣∣∣∣ ∫ t

0

∫
Tn

vN · Φ(vN ) dxdWN

∣∣∣∣]r
= E

[
sup

t∈(0,T )

∣∣∣∣ ∫ t

0

N∑
k=1

∫
Tn

vN · gk(vN ) dxdβk

∣∣∣∣]r

≤ cE
[ ∫ T

0

N∑
k=1

(∫
Tn

vN · gk(vN ) dx

)2

dt

] 1
2

≤ cE
[(∫ T

0

( ∞∑
k=1

∫
Tn
|vN |2 dx

∫
Tn
|gk(vN )|2 dx

)
dt

] r
2

≤ cE
[
1 +

∫ T

0

(∫
G

|vN |2 dx

)2

dt

] r
2

≤ δ E
[

sup
t∈(0,T )

∫
G

|vN |2 dx

]r
+ c(δ)E

[
1 +

∫ T

0

∫
G

|vN |2 dxdt

]r
,

where δ > 0 is arbitrary. This finally proves the claim by Gronwall’s lemma for δ suffi-
ciently small using Λ0 = P ◦ v−1

0 and Λf = P ◦ f−1. �
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4. Analytically weak solutions

This section is devoted to the proof of Theorems 2.2 and 2.10. In view of compactness,
our main concern is the derivation of fractional estimates for ∇vN . Based on this we are
able to apply the stochastic compactness method employing Skorokhod’s theorem to pass
to the limit in the Galerkin approximation from the previous section.

4.1. Fractional differentiability. To set up fractional estimates in a convenient man-
ner, we introduce the concave function for θ ≥ 0

g(θ) = gλ(θ) :=

{
1

1−λ (1 + θ)1−λ, λ 6= 1

ln(1 + θ), λ = 1

for

λ = 2(q−p−)
np−−qn+4 ,

where q = max{3, p+ + %} with % > 0 arbitrarily small. The additional power % arises
from the elementary inequality

ln(1 + |ξ|) ≤ c%(1 + |ξ|%) ξ ∈ Rn×n.(4.1)

Note that the denominator in the definition of λ is positive as long as

p− >
qn− 4

n
.(4.2)

Similar to [33, section 3] we have the following theorem.

Theorem 4.1. Suppose that

(4.3)

∫
L2
div(Tn)

∥∥u∥∥2

W1,2(Tn)
dΛ0(u) <∞,

∫
L2(Q)

∥∥g∥∥2

L2(0,T ;W1,2(Tn))
dΛf (g) <∞.

Moreover, assume that P-a.s. p ∈W 1,∞(Tn) such that P-a.s. we have

1 < p− ≤ p ≤ p+, ‖∇p‖∞ ≤ cp,(4.4)

where cp <∞ and that (4.2) holds. Finally, assume that Φ satisfies (2.3). Then we have

a) If p− ≥ 2 then there holds uniformly in N :

E
[ ∫ T

0

‖∇2vN (t)‖22
(1 + ‖∇vN (t)‖22)λ

dt

]
≤ C1(Λ0,Λf ).

a) If p− < 2 then there holds uniformly in N :

E
[ ∫ T

0

‖∇2vN (t)‖2p−
(1 + ‖∇vN (t)‖22)λ(1 + ‖∇vN (t)‖p−)2−p− dt

]
≤ C1(Λ0,Λf ).

Proof. We start with the evolution of ‖∇vN (t)‖2
L2(Tn)

. Applying Itô’s formula to the

mapping C 7→ ‖∇v‖22, where C = (c1, ..., cN ) and v are related through v =
∑N
k=1 ckwk.

We obtain

1

2
‖∇vN (t)‖2L2(Tn) =

1

2
‖∇PNv0‖2L2(Tn) −

∫ t

0

∫
Tn
DξS(·, ε(vN ))(∂γε(v

N ), ∂γε(v
N )) dxdσ

−
∫ t

0

∫
Tn
DxS(·, ε(vN )) : ∂γ∇vN dxdσ +

∫ t

0

∫
Tn

div
(
vN ⊗ vN

)
: ∆vN dxdσ

+

∫ t

0

∫
Tn
∂γv

N · ∂γ
(
Φ(vN ) dW

)
dx+

1

2

∫
Tn

∫ t

0

d
〈〈∫ ·

0

∂γ
(
Φ(vN ) dW

)〉〉
dx,

where the sum is taken over all γ ∈ {1, . . . , n}. Now we apply Itô’s formula to the mapping
CN 7→ gλ(‖∇v‖22) and obtain

gλ(‖∇vN (t)‖22) = gλ(‖∇vN (0)‖22) +

∫ t

0

1

(1 + ‖∇vN‖22)λ
d‖∇vN‖22
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− λ

2

∫ t

0

1

(1 + ‖∇vN‖22)λ+1
d
〈〈
‖∇vN‖22

〉〉
,

where we have∫ t

0

2

(1 + ‖∇vN‖22)λ
d‖∇vN‖22

=−
∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn
DξS(·, ε(vN ))(∂γε(v

N ), ∂γε(v
N )) dxdσ

−
∫ t

0

2

(1 + ‖∇vN‖22)λ

∫
Tn
DxS(·, ε(vN )) : ∂γ∇vN dxdσ

+

∫ t

0

2

(1 + ‖∇vN‖22)λ

∫
Tn

div
(
vN ⊗ vN

)
: ∆vN dx dσ

+

∫ t

0

2

(1 + ‖∇vN‖22)λ

∫
Tn
∂γv

N · ∂γ
(
Φ(vN ) dW

)
dx

+

∫ t

0

∫
Tn

1

(1 + ‖∇vN‖22)λ
d
〈〈∫ ·

0

∂γ
(
Φ(vN ) dW

)〉〉
dx

= −J1 − J2 + J3 + J4 + J5.

Moreover, there holds

−λ
2

∫ t

0

1

(1 + ‖∇vN‖22)λ+1
d
〈〈
‖∇vN‖22

〉〉
≤ 0.

P-a.s. such that this term can be neglected. We start with the lower estimate

J1 ≥ c
∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn

(1 + |ε(vN )|)p(·)−2|∇ε(vN )|2 dxdσ

≥ c
∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn

(1 + |ε(vN )|)p
−−2|∇ε(vN )|2 dxdσ.

All other terms will be estimate form above. By Young’s inequality we obtain using (4.1)

J2 ≤ c
∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn

ln(1 + |ε(vN )|)(1 + |ε(vN )|)p(·)−1|∇ε(vN )|dxdσ

≤ κ
∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn

(1 + |ε(vN )|)p(·)−2|∇ε(vN )|2 dx dσ

+ c(κ)

∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn

(
1 + |∇vN |q

)
dxdt,

where κ > 0 is arbitrary. For κ small enough we will be able to absorb the corresponding
term in J1. Moreover, we have

J3 ≤
∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn
|∇vN |3 dxdσ

≤
∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn

(
1 + |∇vN |q

)
dx dσ

using integration by parts. Finally, we obtain from (2.3)

J5 =
∑
k

∫ t

0

1

(1 + ‖∇vN‖22)λ

(∫
Tn
∇gk(vN ) dx

)2

dt

≤
∑
k

∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn
|∇gk(vN )|2 dx dt

≤ c

∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn
|∇vN |2 dxdt
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≤ c

∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn

(
1 + |∇vN |q

)
dxdt.

Applying expectations (note that E[J4] = 0) and choosing κ small enough we end up with

Egλ(‖∇vN (t)‖22) + E
∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn

(1 + |ε(vN )|)p(·)−2|∇ε(vN )|2 dxdσ

≤ cE
[
gλ(‖∇vN (0)‖22) +

∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn

(
1 + |∇vN |q

)
dxdt

]
.(4.5)

The last term on the right-hand side cannot be controlled so far. In order to suitably
bound ‖∇vN‖qq, let 2 > q ≥ n(q− p−)/q, existence of which follows from (4.2) and q > 2,
and put

α :=
p−(np− + 2q − qn)

2(np− + qq − qn)
so that 1− α =

(q − p−)(np− + 2q − 2n)

2(np− + qq − qn)
(4.6)

so that, in particular, np−/(n−q) ≥ q. By Lyapunov’s interpolation inequality, we obtain

‖∇vN‖q ≤ ‖∇vN‖θ12 ‖∇vN‖θ2np−/(n−q)
‖∇vN‖q ≤ ‖∇vN‖θ3p−‖∇vN‖θ4np−/(n−q),

(4.7)

where

θ1 :=
2(np− + qq − qn)

q(np− + 2q − 2n)
, θ2 :=

(q − 2)np−

q(np− + 2q − 2n)
, θ3 :=

np− + qq − qn
qq

, θ4 :=
n(q − p−)

qq
.

We then obtain

‖∇vN‖qq = ‖∇vN‖q(1−α)
q ‖∇vN‖qαq

≤ ‖∇vN‖q(1−α)θ1
2 ‖∇vN‖q(1−α)θ2+qαθ4

np−/(n−q) (1 + ‖∇vN‖p−)qαθ3

= ‖∇vN‖2q12 (1 + ‖∇vN‖p−)q2(‖∇vN‖np−/(n−q))q3 = (∗),

(4.8)

where q1, q2, q3 are defined in the obvious manner. To estimate (∗), we note that for
P⊗L 1-a.e. (ω, t) ∈ Ω× [0, T ] there holds by Korn’s inequality.

‖∇u(ω, t, ·)‖np−
n−q
≤ c‖ε(u(ω, t, ·))‖np−

n−q

Next we claim that there exists a constant C > 0 independent of N ∈ N such that

‖∇vN‖np−/(n−q) ≤ C
(∫

Tn
DξS(·, ε(vN ))(∂γε(v

N ), ∂γε(v
N )) dx

) q

2p−

×

×
(
1 + ‖∇vN‖p−)

2−q
2

(4.9)

holds P–a.e. in Ω. The estimate (4.9) is a consequence of the interpolation of L
np−
n−q (Tn)

between Lp
−

(Tn) and L
np−
n−2 (Tn), Sobolev’s embedding W 1,2(Tn) ↪→ L

2n
n−2 (Tn) (if n = 2

we have to replace n
n−2 by an arbitrary finite exponent) and the inequality∣∣∇(1 + |ε(vN )|)

p−
2

∣∣2 ≤ c(1 + |ε(vN )|)
p−−2

2 |∇ε(vN )|2

≤ cDξS(·, ε(vN ))(∂γε(v
N ), ∂γε(v

N )).

Using (4.9), we further estimate (4.8) by use of Young’s inequality for any r > 1 and
κ > 0

(∗) ≤ C‖∇vN‖q(1−α)θ1
2

(
1 + ‖∇vN‖p−)

2−q
2 (q(1−α)θ2+qαθ4)+qαθ3

×
(∫

Tn
DξS(·, ε(vN ))(∂γε(v

N ), ∂γε(v
N )) dx

) q

2p−
(q(1−α)θ2+qαθ4)

≤ C(κ, r)
(
‖∇vN‖q(1−α)θ1

2

(
1 + ‖∇vN‖p−)

2−q
2 (q(1−α)θ2+qαθ4)+qαθ3

) r
r−1
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+ κ

(∫
Tn
DξS(·, ε(vN ))(∂γε(v

N ), ∂γε(v
N )) dx

) q

2p−
(q(1−α)θ2+qαθ4)r

.

To determine the relevant parameters, we shall now require

q

2p−
(q(1− α)θ2 + qαθ4)r = 1,

(2− q
2

(q(1− α)θ2 + qαθ4) + qαθ3

) r

r − 1
= p−.(4.10)

Indeed (4.10) is satisfied indeed provided α is defined by (4.6) and we have

r =
4

qn− np−
und r′ =

4

np− − qn+ 4
.(4.11)

On the other hand, this implies

q(1− α)θ1r
′ =

4(q − p−)

np− − qn+ 4
.

We obtain

(∗) ≤ C(κ, r)‖∇vN‖q(1−α)θ1
r
r−1

2

(
1 + ‖∇vN‖p−)p

−

+ κ

∫
Tn
DξS(·, ε(vN ))(∂γε(v

N ), ∂γε(v
N )) dx.

Inserting this into (4.5), choosing κ small enough can recalling the definition of λ yields
by Korn’s inequality

Egλ(‖∇vN (t)‖22) + E
∫ t

0

1

(1 + ‖∇vN‖22)λ

∫
Tn

(1 + |ε(vN )|)p(·)−2|∇ε(vN )|2 dx dσ

≤ cE
[
gλ(‖∇v0‖22) +

∫ t

0

∫
Tn

(
1 + |∇vN |p

−)
dx dt

]
≤ cE

[
gλ(‖∇v0‖22) +

∫ t

0

∫
Tn

(
1 + |ε(vN )|p

−)
dx dt

]
≤ cE

[
gλ(‖∇v0‖22) +

∫ t

0

∫
Tn

(
1 + |ε(vN )|p(·)

)
dx dt

]
(4.12)

where the right-hand side is uniformly bounded by C1(Λ0,Λf ), cp. Theorem 3.2. If
p− ≥ 2 the claim follows directly by Korn’s inequality. If p− < 2 we estimate using again
Korn’s inequality

‖∇2vN (t)‖2p− ≤ c

(∫
Tn
|∇ε(vN )|p

−
dx

) 2

p−

= c

(∫
Tn

(1 + |ε(vN )|)p
− p−−2

2 |∇ε(vN )|p
−

(1 + |ε(vN )|)p
− 2−p−

2 dx

) 2

p−

≤ c

∫
Tn

(1 + |ε(vN )|)p
−−2|∇ε(vN )|2 dx

(∫
Tn

(1 + |∇vN |)p
−

dx

) 2−p−

p−

.

So, the claim follows again from (4.12) and p− ≤ p. �

Corollary 4.2. Let assumptions of Theorem 4.1 be satisfied. Assume in addition that
p− > qn

n+2 if p− < 2. Then for any p < min{p−, 2n
n−2} there is β > 0 such that

E
[ ∫ T

0

‖∇vN‖pβ,p dt

]
≤ C1(λ0,Λf )

uniformly in N .

Proof. If p− < 2 we set (recall that p− > qn
n+2 )

β =
((n+ 2)p− − qn)p−

2((n+ 5)p− − qn− (p−)2)
∈
(

0,
1

2

)
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and obtain

E
[ ∫ T

0

‖∇2vN (t)‖2βp−
]

= E
[ ∫ T

0

(
(1 + ‖∇vN (t)‖22)λ(1 + ‖∇vN (t)‖p−)2−p−

)β
×
( ‖∇2vN (t)‖2p−

(1 + ‖∇vN (t)‖22)λ(1 + ‖∇vN (t)‖p−)2−p−

)β
dt

]
≤ E

[ ∫ T

0

(
(1 + ‖∇vN (t)‖22)

λβ
1−β (1 + ‖∇vN (t)‖p−)(2−p−) β

1−β dt

]1−β

× E
[ ∫ T

0

‖∇2vN (t)‖2p−
(1 + ‖∇vN (t)‖22)λ(1 + ‖∇vN (t)‖p−)2−p− dt

]β
≤ C1(λ0,Λf )

βE
[
I1 + I2

]1−β
(4.13)

where

I1 =

∫ T

0

(1 + ‖∇vN (t)‖p−)(2−p−) β
1−β dt,

I2 =

∫ T

0

‖∇vN (t)‖
2λβ
1−β
2 (1 + ‖∇vN (t)‖p−)(2−p−) β

1−β dt.

We can estimate I1 by

E[I1] ≤ cE
∫ T

0

∫
Tn

(
1 + |∇vN (t)|p

−)
dxdt

≤ cE
∫ T

0

(
1 + |∇vN (t)|p(·)

)
dxdt ≤ C1(λ0,Λf )

(4.14)

using (2− p−) β
1−β ≤ p− and Theorem 3.2. For I2 we use the interpolation interpolation

inequality

‖v‖2 ≤ ‖v‖
(n+2)p−−2n

2p−

p− ‖v‖
n(2−p−)

2p−

np−
n−p−

,

which holds for p− ∈ ( 2n
n+2 , 2), and the continuous embedding

W 2,p−(Tn) ↪→W
1, np

−

n−p− (Tn).

As a consequence of Theorem 3.2 (setting δ = 2p−

n(2−p−)
1−β
λ ) we can estimate I2 by

E[I2] ≤ cE
∫ T

0

‖∇2vN (t)‖
n(2−p−)

p−
λβ
1−β

p− (1 + ‖∇vN (t)‖p−)

[
(2−p−)+

(n+2)p−−2n

p−
λ
]

β
1−β dt

≤ cE
(∫ T

0

‖∇2vN (t)‖2βp−
) 1
δ
(∫ T

0

(1 + ‖∇vN (t)‖p−)p
−

dt

) 1
δ′

≤ κE
∫ T

0

‖∇2vN (t)‖2βp− dt+ c(κ)E
∫ T

0

∫
Tn

(
1 + |∇vN |p

−)
dxdt

≤ κE
∫ T

0

‖∇2vN (t)‖2βp− dt+ c(κ)E
∫ T

0

(
1 + |∇vN |p(·)

)
dxdt

≤ κE
∫ T

0

‖∇2vN (t)‖2βp− + C1(Λ0,Λf ),(4.15)

where κ > 0 is arbitrary. Combining (4.13)–(4.15) and choosing κ small enough we have
shown

E
[ ∫ T

0

‖∇2vN‖2βp− dt

]
≤ C1(Λ0,Λf ).(4.16)
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In order to proceed we use the interpolation inequality

‖v‖1+σ,p− ≤ ‖v‖1−σ1,p−‖v‖
σ
2,p−

for σ = 2β(p−−p)
p(p−−2β) . We obtain

E
∫ T

0

‖vN‖p1+σ,p− dt ≤ E
∫ T

0

‖vN‖(1−σ)p
1,p− ‖vN‖σp2,p− dt

≤
(
E
∫ T

0

‖vN‖p
−

1,p− dt

) (1−σ)p
p−

(
E
∫ T

0

‖vN‖2β2,p− dt

)1− (1−σ)p
p−

≤ C1(Λ0,Λf )

as a consequence of Theorem 3.2 and (4.17).
If p− ≥ 2 estimate (4.17) can be shown much easier. Indeed, we have by Theorems 3.2
and 4.1

E
[ ∫ T

0

‖∇2vN‖2β2 dt

]
= E

[ ∫ T

0

(1 + ‖∇vN (t)‖22)λβ
‖∇2vN (t)‖2β2

(1 + ‖∇vN (t)‖22)λβ
dt

]
≤
[
E
∫ T

0

‖∇2vN (t)‖22
(1 + ‖∇vN (t)‖22)λ

dt

]β[
E
∫ T

0

(1 + ‖∇vN (t)‖22)
p−
2 dt

]1−β

≤ C1(Λ0,Λf ).

(4.17)

In order to proceed we use the interpolation inequality

‖v‖1+σ,p ≤ ‖v‖
1−σs
1,p ‖v‖

σ
s

1+s,p

which holds for any 0 < σ < s. Combining this with the embedding (recall that p < 2n
n−2 )

W 2,2(Tn) ↪→W 1+s,p(Tn), s =
2n− (n− 2)p

2p
,

we obtain for σ = s 2β(p−−p)
p(p−−2β)

E
∫ T

0

‖vN‖p1+σ,p dt ≤ E
∫ T

0

‖vN‖p(1−
σ
s )

1,p ‖vN‖
σp
s

2,2 dt

≤
(
E
∫ T

0

‖∇vN (t)‖p
−

p dt

) p

p−
(1−σs )(

E
∫ T

0

‖∇2vN (t)‖2β2 dt

)1− p

p−
(1−σs )

.

The claim follows again from Theorem 3.2 combined with Korn’s inequality (recall that
p < p−) and (4.17). �

4.2. Compactness. Before we can apply the stochastic compactness method we need to
gain some information concerning the time regularity of vN . We go back to the system
(3.2) and see that for any ϕ ∈ C∞div(Tn)n there holds∫

Tn
dvN · PN` ϕdx+

∫
Tn

S(·, ε(vN )) : ε(PN` ϕ) dxdt

=

∫
Tn

vN ⊗ vN : ∇PN` ϕ dxdt

+

∫
Tn

f · PN` ϕ dxdt+

∫
Tn
Φ(vN ) dWN · PN` ϕdx.

(4.18)

Here PN` denotes the orthogonal projection on XN with respect to the W `,2(Tn) inner

product, where ` is chosen such that W`,2
div(Tn) ↪→W1,∞

div (Tn). We now define for t ∈ [0, T ]
the functionals HN (t, ·) on C∞div(Tn) by

HN (t,ϕ) := −
∫ t

0

∫
Tn

HN : ∇PNϕ dxdσ, ϕ ∈ C∞div(Tn),(4.19)

where for N ∈ N
HN := −Sp(·, ε(vN )) + vN ⊗ vN −∇∆−1f ,(4.20)
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so that by Theorem 3.2 and the hypotheses collected in Definition 2.1, there holds

HN ∈ Lp0(Ω,F ,P; Lp0(0, T ; Lp0(Tn)))(4.21)

uniformly in N ∈ N for some p0 > 1. Here, ∆−1 is the solution operator of the Poisson
problem on the torus as has been recalled in section 2.1. Now we claim that

sup
N∈N

E
[
‖HN‖

W1,p0 ([0,T ];W
−`,p0
div (Tn))

]
<∞.(4.22)

Recall that ` ∈ N is chosen so large such that W`,2
div(Tn)n ↪→ W1,∞

div (Tn)n. To see (4.22),
note that∥∥∥∥ d

dt
HN (t, ·)

∥∥∥∥
Lp0 (0,T ;W

−`,p0
div (Tn)))

=

∥∥∥∥ sup
‖ϕ‖`,p′0≤1

d

dt
HN (t,ϕ)

∥∥∥∥
Lp0 (0,T )

=

∥∥∥∥ sup
‖ϕ‖`,p′0≤1

∫
Tn

HN : ∇PN` ϕdx

∥∥∥∥
Lp0 (0,T )

≤
∥∥∥∥ sup
‖ϕ‖`,p′0≤1

‖HN (t, ·)‖Lp0 ‖∇PN` ϕ‖Lp′0

∥∥∥∥
Lp0 (0,T )

≤ C

(∫ T

0

‖HN (t, ·)‖p0Lp0 dσ

) 1
p0

.

In consequence, raising the previous inequality to the p0–th power and taking expectations
in conjunction with (4.21) gives (4.22). On the other hand, we have for all 0 ≤ s < t ≤ T

E

[∥∥∥∥∫ t

0

Φ(vN ) dWN
σ −

∫ s

0

Φ(vN ) dWN

∥∥∥∥θ
L2(Tn)

]
= E

[∥∥∥∥∫ t

s

Φ(vN ) dWN

∥∥∥∥θ
L2(Tn)

]

= E

∥∥∥∥∥
∫ t

s

∞∑
k=1

Φ(vN )ek dβNk

∥∥∥∥∥
θ

L2(Tn)


≤ E

∥∥∥∥∥
∫ t

s

∞∑
k=1

gk(vN ) dβNk

∥∥∥∥∥
2· θ2

L2(Tn)


= E

[(∫ t

s

∞∑
k=1

‖gk(vN )‖2L2(Tn) dσ
) θ

2

]
(2.3)

≤ CE
[(∫ t

s

(1 + ‖vN‖2L2(Tn)) dσ
) θ

2

]

= C|t− s| θ2
(
E

[
sup

t∈(0,T )

(1 + ‖vN‖2L2(Tn)

]) θ
2

(3.5)

≤ C|t− s| θ2 .

At this point we are in position to apply the Kolmogorov continuity criterion to conclude
that there exists 0 < κ < 1 such that

sup
N∈N

E

[∥∥∥∥∫ ·
0

Φ(vN ) dWN

∥∥∥∥
Cκ([0,T ];L2(Tn))

]
<∞.(4.23)

Let us note that since W
`,p′0
div (Tn) ↪→ W1,2

div(Tn) ↪→ L2(Tn) and 1 < p0 < ∞ we have

L2(Tn) ↪→W−`,p0(Tn). Hence (4.23) implies that E
[∥∥∫ ·

0
Φ(vN ) dWN

∥∥
Cκ([0,T ];W−`,p0 (Tn))

]
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is uniformly bounded in N . Combining this with (4.22), a straightforward interpolation
argument yields some 0 < µ < 1 such that

sup
N∈N

E
[∥∥vN∥∥

Cµ([0,T ];W
−`,p0
div (Tn)n)

]
<∞.(4.24)

In view of compactness, let us now define the path space

X := Xv ⊗Xp ⊗Xf ⊗XW ,(4.25)

where

Xv := C([0, T ]; W−`,p0div (Tn)n) ∩ Lp(0, T ;W 1,p
div (Tn)),

Xp := Cβ([0, T ]× Tn), 0 < β < α,

Xf := L2(0, T ;W 1,2(Tn)),

XW := C([0, T ];U0).

Here p is some fixed but arbitrary number in
(
1,min{p−, 2n

n−2}
)
. We obtain the following.

Proposition 4.3. The set {L[vN , p, f ,W ]; N ∈ N} is tight on X .

Proof. By a fractional version of Aubin–Lions theorem (see [16, Thm. 5.1.22]) we have
compactness of the embedding

Cµ([0, T ];W−`,p0div (Tn)) ∩ Lp(0, T ; W1+β,p
div (Tn)n)

↪→↪→ Lp(0, T ; W1,p
div(Tn)n).

(4.26)

On the other Arcelà-Ascoli’s theorem yields

Cµ([0, T ];W−`,p0div (Tn)) ↪→↪→ C([0, T ];W−`,p0div (Tn)).

So, we obtain tightness of L[vN ] on Xv from (4.24), Corollary 4.2 and Tschebyscheff’s
inequality. Finally the laws p, f and W of on their corresponding path spaces are tight
as being Radon measures on Polish spaces. �

Prokhorov’s Theorem (see [19, Thm. 2.6]) implies that {L[vN , p, f ,W ]; N ∈ N} is also
relatively weakly compact. This means we have a weakly convergent subsequence. Now
we use Skorohod’s representation theorem [19, Thm. 2.7] to infer the following result.

Proposition 4.4. There exists a complete probability space (Ω̃, F̃ , P̃) with X -valued Borel

measurable random variables (ṽN , p̃N , f̃N , W̃N ), N ∈ N, and (ṽ, p̃, f̃ , W̃ ) such that (up to
a subsequence)

(a) the law of (ṽN , p̃N , f̃N , W̃N ) on X is given by L[vN , p, f ,W ], N ∈ N,

(b) the law of (ṽ, p̃, f , W̃ ) on X is a Radon measure,

(c) (ṽN , p̃N , f̃N , W̃N ) converges P̃-almost surely to (ṽ, p̃, f̃ , W̃ ) in the topology of X ,
i.e.

ṽN → ṽ in C([0, T ];W−`,p0div (Tn)) P̃-a.s.,

ṽN → ṽ in Lp(0, T ;W 1,p
div (Tn)) P̃-a.s.,

p̃N → p̃ in Cβ([0, T ]× Tn) P̃-a.s.,

f̃N → f̃ in L2(0, T ;W 1,2(Tn)) P̃-a.s.,

W̃N → W̃ in C([0, T ];U0) P̃-a.s.

(4.27)
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4.3. Conclusion. The variables ṽ, p̃, f̃ , W̃ are progressively measurable with respect to
their canonical filtration, namely,

F̃t := σ
(
σt[ṽ] ∪ σt[p̃] ∪ σt[f̃ ] ∪ ∪∞k=1σt[W̃k]

)
, t ∈ [0, T ].

In view of Lemma [4, Chapter 2, Lemma 2.1.35], the process W̃ is a cylindrical Wiener
processes with respect to its canonical filtration. It follows from Corollary [4, Chapter 2,

Corollary 2.1.36] that W̃ is a cylindrical Wiener process with respect to (F̃t)t≥0.
Modifying slightly the proof, the result of [5, Chapter 2, Theorem 2.9.1] remains valid in
the current setting. Hence, as a consequence of the equality of laws from Proposition 4.4,
the approximate equation (3.2) is satisfied on the new probability space, i.e. we have∫

Tn
ṽN ·wk dx+

∫ t

0

∫
Tn
µ(1 + |ε(ṽN )|)p̃(·)−2ε(ṽN ) : ε(wk) dx dt

=

∫
Tn

ṽN (0) ·wk dx+

∫ t

0

∫
Tn

ṽN ⊗ ṽN : ∇wk dxdt

+

∫ t

0

∫
Tn

f̃N ·wk dxdt+

∫ t

0

∫
Tn
Φ(ṽN ) dW̃N ·wk dx

P̃-a.s. for all t ∈ [0, T ]. Using the convergence from (4.27) it is easy to pass to the limit
and we obtain∫

Tn
ṽ(t) ·ϕ dx+

∫ t

0

∫
Tn
µ(1 + |ε(ṽ)|)p̃(·)−2ε(ṽ) : ε(ϕ) dxdσ

=

∫
Tn

ṽ(0) ·ϕ dx+

∫ t

0

∫
Tn

ṽ ⊗ ṽ : ε(ϕ) dxdσ

+

∫
Tn

∫ t

0

f̃ ·ϕ dxdσ +

∫
Tn

∫ t

0

Φ(ṽ) dW̃ ·ϕ dx

(4.28)

for all ϕ ∈ C∞div(Tn) and all t ∈ [0, T ] P̃-a.s. where, for the limit passage in the stochastic
integral, we use [9, Lem. 2.1].

4.4. Pathwise solutions. Let us start by showing pathwise uniqueness.

Proposition 4.5 (Pathwise uniqueness). Let the assumptions of Theorem 2.10 be valid.
In particular, we suppose p− ≥ n+2

2 . Let v1, v2 be two weak pathwise solutions to (1.5)–
(1.6) in the sense of Definition 2.9 defined on the same stochastic basis with the same
Wiener process W , the same forcing f and the same exponent p. If

P
[
v1(0) = v2(0)

]
= 1,

then

P
[
v1(t) = v2(t), for all t ∈ [0, T ]

]
= 1.

Proof. We set w = v1 − v2 and apply Itô’s formula to w 7→ 1
2

∫
Tn |w|

2 dx. Recall that

by our assumptions on p− the solutions can be used as test-functions. In particular, the
term

∫
Tn v ⊗ v : ∇v dx is well-defined. We obtain using w(0) = 0

1

2
‖w(t)‖2L2(Tn) = −

∫ t

0

∫
Tn

(
Sp(·, ε(v1))− Sp(·, ε(v2))

)
: ε(v1 − v2) dxdσ

+

∫ t

0

∫ (
(∇v1)v1 − (∇v2)v2) ·w dx

+
1

2

∫
Tn

∫ t

0

d
〈〈∫ ·

0

(
Φ(v1)− Φ(v2)

)
dW

〉〉
dx

+

∫
Tn

∫ t

0

w ·
(
Φ(v1)− Φ(v2)

)
dW dx.
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By monotonicity of Sp the first term on the right-hand side is non-negative and we have
by Korn’s inequality∫

Tn

(
Sp(·, ε(v1))− Sp(·, ε(v2))

)
: ε(v1 − v2) dx ≥ µ‖ε(w)‖22 ≥

µ
c ‖∇w‖22

as p− ≥ 2. The critical part is the term arising from the convective term. Here, we follow
ideas of [24][Thm. 4.29] and write∫

Tn

(
(∇v1)v1 − (∇v2)v2) · (v1 − v2) dx =

∫
Tn

(∇v1)w ·w dx ≤ ‖∇v1‖p−‖w‖22p−
p−−1

.

Now, we use the interpolation

‖v‖q ≤ ‖v‖α2 ‖∇v‖1−α2 , α =
2n− q(n− 2)

2q
,

valid for all q ∈ [2, 2n
n−2 ] if n ≥ 3 and q ∈ [2,∞) if n = 2, cp. [24][Lemma 4.35]. Choosing

q = 2p−

p−−1 we obtain∫
Tn

(
(∇v1)v1 − (∇v2)v2) · (v1 − v2) dx ≤ ‖∇v1‖p−‖w‖

2p−−n
p−

2 ‖∇w‖
n

p−

2

≤ µ‖∇w‖22 + c(µ)‖∇v1‖
2p−

2p−−n
p− ‖w‖22

using also Young’s inequality. Finally, we estimate the correction term by∫
Tn

∫ t

0

d
〈〈∫ ·

0

(
Φ(v1)− Φ(v2)

)
dW

〉〉
dx =

∞∑
k=1

∫ t

0

(∫
Tn

(
gk(v1)− gk(v2)

)
dx

)2

dσ

≤
∞∑
k=1

∫ t

0

∫
Tn

∣∣gk(v1)− gk(v2)
∣∣2 dxdσ

≤
∫ t

0

∫
Tn
|v1 − v2|2 dxdσ

using (2.3). Summarising, we obtain

d‖w‖2L2 ≤ c
(
‖∇v1‖

2p−

2p−−n
p− + 1

)
‖w‖22 dt+

∫
Tn

w ·
(
Φ(v1)− Φ(v2)

)
dW dx(4.29)

for some finite constant c > 0. We now define G : Ω× [0, T ]→ R by

G(ω, t) := c
(
‖∇v1(ω, t)‖

2p−

2p−−n
p− + 1

)
so that in particular G ∈ L1(0, T ) for P–a.e. ω ∈ Ω. This is a consequence of 2p−

2p−−n ≤ p
−

(which follows from the assumption p− ≥ n+2
n ) and ∇v1 ∈ Lp−(Q) P-a.s. (which follows

from ε(v1) ∈ Lp(·)(Q) P-a.s. and Korn’s inequality). We then obtain by use of Itô’s
formula (similar to [30])

d
(

e−
∫ t
0
G ds ‖w‖2L2

)
= −G e−

∫ t
0
G ds ‖w‖2L2 dt+ e−

∫ t
0
G ds d‖w‖2L2

(4.29)

≤ e−
∫ t
0
G ds

∫
Tn

w ·
(
Φ(v1)− Φ(v2)

)
dW dx

(4.30)

by definition of G. Now we apply the expectation to both sides of the inequality and
consequently obtain

E
[
e−

∫ t
0
G ds ‖w‖2L2

]
= 0.

Consequently we obtain v1 = v2 P-a.s. and the proof of Proposition 4.5 is complete. �
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Based on the pathwise uniqueness we will employ the Gyöngy–Krylov characterization
of convergence in probability introduced in [18]. It applies to situations when pathwise
uniqueness and existence of a martingale solution are valid and allows to establish exis-
tence of a pathwise solution. We consider two sequences (Nn), (Nm) ⊂ N diverging to
infinity. Let vn := vNn and vm := vNm . We consider the collection of joint laws of
(vn,vm, p, f ,W ) on the extended path space

X J = X 2
v ⊗Xp ⊗Xf ×XW ,

Similarly to Proposition 5.3 we obtain the following result.

Proposition 4.6. The set

{L[vn,vm, p, f ,W ]; n,m ∈ N}

is tight on X J .

Let us take any subsequence (vnk ,vmk , p, f ,W ). By the Skorokhod representation
theorem we infer (for a further subsequence but without loss of generality we keep the
same notation) the existence of a probability space (Ω̄, F̄ , P̄) with a sequence of ran-
dom variables (v̂nk , v̌mk , p̄k, f̄k, W̄k) converging almost surely in X J to a random variable
(v̂, v̌, p̄, f̄ , W̄ ). Moreover,

L[v̂nk , v̌mk , p̄k, f̄k, W̄ k] = L[vnk ,vmk , p, f ,W ]

on X J for all k ∈ N. Observe that in particular, L[vnk ,vmk , p̄
k, f̄k, W̄ k] converges

weakly to the measure L[v̂, v̌, p̄, f̄ , W̄ ]. As in (4.28) we can show that (v̂, p̄, f̄ , W̄ ) and
(v̌, p̄, f̄ , W̄ ) are weak martingale solutions to (1.5)–(1.6) defined on the same stochastic ba-
sis (Ω̄, F̄ , (F̄t), P̄), where (F̄t)t≥0 is the P̄-augmented canonical filtration of (v̂, v̌, p̄, f̄ , W̄ ).
We employ the pathwise uniqueness result from Proposition 4.5. Indeed, it follows from
our assumptions on the approximate initial laws Λ0 that v̂(0) = v̌(0) = 1 P̄-a.s. Therefore,
the solutions v̂ and v̌ coincide P̄-a.s. and we have

L[v̂, v̌, W̄ ]
(

(v1,v2, p, f ,W ) ∈ X J : v1 = v2

)
= P̄(v̂ = v̌) = 1.

Now, we have all in hand to apply the Gyöngy–Krylov theorem. It implies that the original
sequence vN defined on the initial probability space (Ω,F ,P) converges in probability in
the topology of Xv to the random variable v. Therefore, we finally deduce that v is a
weak pathwise solution to (1.5)–(1.6). �

5. Analytically Strong Solutions

5.1. A–Priori Bounds. In this section we establish the existence result, Theorem 2.2.
We begin with a strengthening of the a–priori estimate given by Theorem 3.2. Note that
we work under the additional assumption that either we have

(i) n = 2 and 1 < p− ≤ p+ < 4 or;
(ii) n = 3 and 11

5 < p− ≤ p+ ≤ p− + 4
5 .

Theorem 5.1. Let the assumptions of Theorem 2.7 be satisfied. Let vN be the Galerkin
approximation constructed in Section 3. Then there exists a constant c > 0 such that

E
[

sup
t∈(0,T )

∫
Tn
|∇vN (t)|2 dx+

∫
Q

|∇ξFp(·, ε(vN ))|2 dxdt

]
≤ c

(∫
L2
div(Tn)

∥∥u∥∥2

L2(Tn)
dΛ0(u),

∫
L2(Q)

∥∥g∥∥2

L2(0,T ;W1,2(Tn))
dΛf (g)

)(5.1)

uniformly in N ∈ N.
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Corollary 5.2. Under the assumptions of Theorem 5.1 we have

E
[ ∫

Q

|∇2vN |min(p−,2) dxdt

]
≤ c

(∫
L2
div(Tn)

∥∥u∥∥2r

L2(Tn)
dΛ0(u),

∫
L2(Q)

∥∥g∥∥2r

L2(0,T ;W1,2(Tn))
dΛf (g)

)(5.2)

uniformly in N ∈ N.

Proof of Corollary 5.2. If p− ≥ 2 the claim follows immediately from Theorem 5.1, the
definition of Fp and Korn’s inequality. So, let us assume that p− < 2. By Korn’s and
Young’s inequality we obtain

E
[ ∫

Q

|∇2vN |p
−

dxdt

]
≤ cE

[ ∫
Q

|∇ε(vN )|p
−

dxdt

]
≤ cE

[
1 +

∫
Q

|∇ε(vN )|p dxdt

]
= cE

[
1 +

∫
Q

(1 + |ε(vN )|)p
2−p
2 (1 + |ε(vN )|)p

p−2
2 |∇ε(vN )|p dxdt

]
≤ cE

[ ∫
Q

(1 + |ε(vN )|)p dxdt+

∫
Q

(1 + |ε(vN )|)p−2|∇ε(vN )|2 dxdt

]
.

Now, the first term is bounded by Theorem 3.2 and the second one by Theorem 5.1.
Clearly, c > 0 does not depend on N , and hence the statement of the corollary follows. �

Proof of Theorem 5.1. In a similar vein as for Theorem 3.2, the core of the proof consists
in a suitable Itô–expansion. We hereafter apply Itô’s formula to the function fγ(u) :=
1
2‖∂γu‖

2
L2(Tn)n

(with γ ∈ {1, 2} for n = 2 and γ ∈ {1, 2, 3} for n = 3) and obtain

1

2
‖∂γvN (t)‖2L2(Tn) =

1

2
‖∂γPNv0‖2L2(Tn) +

∫ t

0

f ′(vN ) dvNσ +
1

2

∫ t

0

f ′′(vN ) d〈vN 〉σ

=
1

2
‖∂γPNv0‖2L2(Tn) +

∫
Tn

∫ t

0

∂γv
N · d∂γvNσ dx(5.3)

+
1

2

∫
Tn

∫ t

0

d
〈〈∫ ·

0

∂γ
(
Φ(vN ) dW

)〉〉
σ

dx =: (I) + (II) + (III).

We consider the three integrals separately.
1. We begin with (I). By continuity of the projection, we record the estimate

‖∂γPNv0‖2L2(Tn) ≤ ‖P
Nv0‖2W1,2(Tn) ≤ C‖v0‖2W1,2(Tn).

2. Deferring the estimation of (III) to the end of the proof, we turn to (II). Summing
over γ, we find

(II) = −(II)1 − (II)2 + (II)3 + (II)4 + (II)5,

(II)1 :=

∫ t

0

∫
Tn
DξS(·, ε(vN ))(∂γε(v

N ), ∂γε(v
N )) dx dσ,

(II)2 :=

∫ t

0

∫
Tn
∂γS(·, ε(vN )) : ∂γε(v

N ) dxdσ,

(II)3 :=

∫ t

0

∫
Tn
∂γv

N · ∂γ
(
Φ(vN ) dWσ

)
dx,

(II)4 :=

∫ t

0

∫
Tn
∂γv

N · ∂γf dxdσ,

(II)5 :=

∫
Tn

div(vN ⊗ vN ) · ∂2
γv

N dx.

Ad (II)1. Using the assumptions for S in (1.6) we obtain

(II)1 ≥ c̃
∫ t

0

∫
Tn

(1 + |ε(vN )|2)
p(·)−2

2 |∂γε(vN )|2 dx dσ.(5.4)
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Ad (II)2. We now turn to the second term (II)2. By uniform Lipschitz continuity of
p(ω, ·) we obtain

|∂γS(·, ε(vN ))| ≤ c ln(1 + |ε(vN )|)(1 + |ε(vN )|)p(·)−2|ε(vN )|(5.5)

with an absolute constant c > 0 for all N ∈ N. We find by virtue of Young’s Inequality
for arbitrary δ > 0

(II)2 ≤ c

(
1 +

∫ t

0

∫
Tn

ln(1 + |ε(vN )|)(1 + |ε(vN )|p(·)−1)|∂γε(vN )|dxdσ

)
≤ c(δ)

(
1 +

∫ t

0

∫
Tn

ln2(1 + |ε(vN )|)(1 + |ε(vN )|p(·)) dx dσ

)
+ δ

(∫ t

0

∫
Tn

(1 + |ε(vN )|p(·)−2)|∂γε(vN )|2 dx dσ

)
= c(δ)I′ + δII′.

Choosing δ > 0 sufficiently small, δII′ may be absorbed into the left side of the overall
inequality by the coercive estimation of (II)1 (cp. (5.4)), and therefore it remains to give
a suitable upper bound for c(δ)I′. It is easy to see that for every 2 < µ < 3 there exists
a constant C = C(µ) > 0 such that for all t > 0 there holds t2 log2(1 + t) ≤ C(1 + tµ).
Using the Gagliardo–Nirenberg interpolation inequality on the torus [17, Thm 7.28], we
obtain for 1 ≤ q, r ≤ ∞, 0 ≤ α ≤ 1 the implication

1

p
=
(1

r
− 1

n

)
α+

1− α
q

=⇒ ‖u‖Lp ≤ C‖u‖αW1,r‖u‖1−αLq for u ∈ (W1,r ∩Lq)(Tn),(5.6)

where C > 0 only depends on q, r and n. Now set p = µ, q = 2 and r = 2, so that the
condition in (5.6) is satisfied with α = µ−2

µ . Then we have 1− α = 2
µ and so by Young’s

inequality with δ > 0 to be fixed later

‖v‖µLµ(Tn) ≤ C‖v‖
µ−2
W1,2‖v‖2L2

≤ C
(
δ‖v‖2W1,2 + Cδ‖v‖

4
4−µ
L2

)
= C

(
δ
(
‖v‖2L2 + ‖∇v‖2L2

))
+ Cδ‖v‖

4
4−µ
L2

)
for every v ∈W1,2(Tn).

(5.7)

This estimation is implicit in [10, cp. Eq. (4.62)]. We apply the previous estimate to
v := (1 + |ε(vN )|2)p(·)/4 to find

I′ ≤ C
∫ t

0

∫
Tn

(1 + |ε(vN )|2)µp(·)/4 dxdσ

≤ C + Cδ

∫ t

0

(
‖(1 + |ε(vN )|2)p(·)/4‖2L2 + ‖∇(1 + |ε(vN )|2)p(·)/4‖2L2

)
dσ

+ Cδ

∫ t

0

‖(1 + |ε(vN )|2)p(·)/4‖
4

4−µ
L2

)
dσ

≤ C + Cδ

∫
QT

|ε(vN )|p(·) dxdσ + Cδ

∫ t

0

‖∇(1 + |ε(vN )|2)p(·)/4‖2L2 dσ

+ Cδ

∫ t

0

‖(1 + |ε(vN )|2)p(·)/4‖
4

4−µ
L2

)
dσ.

(5.8)

By (5.5), we obtain∫ t

0

‖∇(1 + |ε(vN )|2)p(·)/4‖2L2 dσ ≤ C
∫ t

0

∫
Tn

(1 + |ε(vN )|2)
p(·)
2 ln2

(
1 + |ε(vN )|2

)
dxdσ

+ C

∫ t

0

∫
Tn

(1 + |ε(vN )|2)
p(·)−2

2 |∂γε(vN )|2 dxdσ.
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So that, choosing δ > 0 small enough and absorbing the first term of the right side of the
previous inequality into I′, we end up with (recall 2 < µ < 3 so that 4/(4− µ) ≤ 4),

I′ ≤ C + Cδ

∫
QT

|ε(vN )|p(·) dxdσ + Cδ

∫ t

0

∫
Tn

(1 + |ε(vN )|2)
p(·)−2

2 |∂γε(vN )|2 dx dσ

+ Cδ

∫ t

0

‖(1 + |ε(vN )|2)p(·)/4‖4L2 dσ

≤ C + C

∫
QT

|ε(vN )|p(·) dxdσ + Cδ

∫ t

0

∫
Tn

(1 + |ε(vN )|2)
p(·)−2

2 |∂γε(vN )|2 dxdσ

+ Cδ

∫ t

0

∫
Tn
|ε(vN )|p(·)

2
4−µ dx dσ = I′1 + ...+ I′4.

The terms I′1 and I′2 are already in a convenient form. For δ small enough consequently
may absorb I′3 into the right side of (5.4).

Ad (II)3. We decompose

(II)3 =

∫
Tn

∫ t

0

∂γv
N · ∂γ

(
Φ(vN )ek dβk

)
dx

=
∑
k

∫
Tn

∫ t

0

∂γv
N · ∂γ

(
gk(vN ) dβk

)
dx

=
∑
k

∫
Tn

∫ t

0

∇ξgk(vN )(∂γv
N , ∂γv

N ) dβk dx

+
∑
k

∫
Tn

∫ t

0

∂γv
N · ∂γgk(vN ) dβk dx

=

∫
Tn

∫ t

0

Gξ(∂γvN , ∂γvN ) dβk dx.

On account of assumption (2.3), Burkholder-Davis-Gundy inequality and Young’s in-
equality we obtain for arbitrary δ > 0

E
[

sup
0<t<T

|(II)1
3|
]
≤ E

[
sup

0<t<T

∣∣∣ ∫ t

0

∑
k

∫
Tn
∇gk(vN )(∂γv

N , ∂γv
N ) dxdβk

∣∣∣]

≤ cE
[ ∫ T

0

(∫
Tn
∇gk(vN )(∂γv

N , ∂γv
N ) dx

)2

dt

] 1
2

≤ cE
[(∫ T

0

(∫
Tn
|∂γvN |2 dx

)2

dt

] 1
2

≤ δ E
[

sup
0<t<T

∫
Tn
|∂γvN |2 dx

]
+ c(δ)E

[ ∫
Q

|∂γvN |2 dx dt

]
.

Ad (II)4. After we shall have passed to the supremum in the overall inequality, by Young’s
inequality we obtain for a finite constant Cδ > 0

(II)4 ≤ Cδ sup
0<t<T

∫
Tn
|∂γvN |2 dx+ Cδ

∫ t

0

∫
Tn
|∇f |2 dxdσ.

We then may choose δ > 0 so small such that δ‖∂γvN‖2L2(Q)
can be absorbed into (5.3).

Ad (III). We have by (2.3)

(III) =
1

2

∫
Tn

∫ t

0

d
〈〈∫ ·

0

∂γ
(
Φ(vN ) dWN

)〉〉
σ

dx

≤ 1

2

∑
k

∫
Tn

∫ t

0

d
〈〈∫ ·

0

∂γ
(
Φ(vN )ek

)
dβk

〉〉
σ

dx
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≤ 1

2

∑
k

∫ t

0

∫
Tn

∣∣∣∇ξgk(·,vN ) · ∂γvN
∣∣∣2 dxdσ

≤ c
∫ t

0

∫
Tn
|∂γvN |2 dxdσ + c

∫ t

0

∫
Tn
|vN |2 dx dσ.

5.2. The case n = 2. Ad (II)5. The crucial impact of our assumption n = 2 is that
(II)5 = 0 which can be established by elementary calculations. Gathering estimates, we
have shown

E
[

sup
0<t<T

∫
Tn
|∇vN (t)|2 dx+

∫
Q

|∇ξFp(·, ε(vN ))|2 dxdt

]
≤ cE

(
1 +

∫
Tn

(
|v0|2 + |∇v0|2

)
dx+ E

∫
Q

(
|f |2 + |∇f |2

)
dxdt

)
+ cE

(∫
Q

|ε(vN )|p(·) dxdt+

∫
Q

|vN |2 dx dt+

∫
Q

|∇vN |2 dxdt

)
+ cE

∫
Q

(
|ε(vN )|p(·)

) q
2

dxdt,

where q := 4
4−µ .

The terms in the first line of the right hand side are bounded by assumption. The terms
in the second line are bounded by the a priori estimates from Theorem 3.2 except of the
last one. It can, however, be handled by Gronwall’s lemma leading to

E
[

sup
0<t<T

∫
Tn
|∇vN |2 dx+

[ ∫
Q

|∇ξFp(·, ε(vN ))|2 dxdt

]
≤ cE

(
1 +

∫
Q

|Fp(·, ε(vN ))|q dxdt

)
.

By Lipschitz continuity of p we obtain

|∇Fp(·, ε(vN ))| ≤ |∇ξFp(·, ε(vN ))|+ |∂γFp(·, ε(vN ))|

≤ |∇ξFp(·, ε(vN ))|+ c ln(1 + |ε(vN )|)(1 + |ε(vN )|)
p(·)
2

≤ |∇ξFp(·, ε(vN ))|+ c
(
|Fp(·, ε(vN ))|

q
2 + 1

)
such that

E
[

sup
0<t<T

∫
Tn
|∇vN |2 dx+

[ ∫
Q

|∇Fp(·, ε(vN ))|2 dxdt

]
≤ cE

(
1 +

∫
Q

|Fp(·, ε(vN ))|q dx dt

)
.

(5.9)

Note that q can be chosen arbitrarily close to 2. The objective of the following is to find
a suitable bound for the remaining integral on the right hand side.

By Korn’s inequality,
∫
Tn |∇vN |2 and

∫
Tn |ε(v

N )|2 are equivalent. Using the ele-

mentary inequality |Fp(·, ξ)|τ ≤ c(|ξ|2 + 1) for τ = 4/p+ and Sobolev’s embedding
W 1,2(Tn) ↪→ L2σ(Tn)) (with σ = n

n−2 if n ≥ 3 and σ arbitrary for n = 2) we deduce from

(5.9) that

E
[

sup
0<t<T

∫
Tn
|Fp(·, ε(vN ))|τ dx+

[ ∫ T

0

(∫
Tn
|Fp(·, ε(vN ))|2σ dx

) 1
σ

dt

]
≤ cE

(
1 +

∫
Q

|Fp(·, ε(vN ))|q dx dt

)
.

(5.10)

In order to proceed, we use the interpolation (recall that τ > 1 as p+ < 4)(
L∞(0, T ;Lτ (Tn));L2(0, T ;L2σ(Tn))

)
Θ

= Lr(0, T ;Lr(Tn)),
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r = 2 + τ − τ

σ
, Θ = 1− 2

r
,

and obtain for χ = 2τ
2Θ+τ(1−Θ)

‖v‖χr ≤ ‖v‖
χΘ
L∞t L

τ
x
‖v‖χ(1−Θ)

L2
tL

2σ
x
≤ ‖v‖τL∞t Lτx + ‖v‖2L2

tL
2σ
x
.(5.11)

Combining (5.10) and (5.11) yields

E‖Fp(·, ε(vN ))‖χLrt,x ≤ c
(

1 + E‖Fp(·, ε(vN ))‖q
Lqt,x

)
.

We continue with the interpolation(
Lr(Q);L2(Q)

)
β

= Lq(Q), β =
r

q

q − 2

r − 2
,

and obtain

E‖Fp(·, ε(vN ))‖q
Lqt,x
≤ E

(
‖Fp(·, ε(vN ))‖βqLrt,x‖Fp(·, ε(v

N ))‖(1−β)q

L2
t,x

)
≤
(
E‖Fp(·, ε(vN ))‖βqγLrt,x

) 1
γ
(
E‖Fp(·, ε(vN ))‖(1−β)qγ′

L2
t,x

) 1
γ′

using also Hölder’s inequality for γ ∈ (1,∞) arbitrary. By Theorem 3.2, the definition
of Fp and the assumptions on the initial law we find that the second term is uniformly
bounded for any choice of γ. So, we obtain

E‖Fp(·, ε(vN ))‖χLrt,x ≤ c (1 + E‖Fp(·, ε(vN ))‖q
Lqt,x

)

≤ c
(

1 + E‖Fp(·, ε(vN ))‖βqγLrt,x

) 1
γ

.
(5.12)

If βq < χ (note that β can be made arbitrarily small if we choose q close enough to 2 and
γ can be chosen arbitrarily close to 1), we finally obtain

E‖Fp(·, ε(vN ))‖χLrt,x ≤ c

uniformly in N . By (5.12) this implies

E‖Fp(·, ε(vN ))‖q
Lqt,x
≤ c(5.13)

uniformly. Inserting this into (5.9) yields the claim.

5.3. The case n = 3. If n = 3, the convective term does not vanish. We have to estimate
it which is only possible under a restrictive assumption on p−. We have

(II)5 ≤
∫ t

0

∫
Tn
|∇vN |3 dxdσ

such that we end up with

E
[

sup
0<t<T

∫
Tn
|∇vN |2 dx+

[ ∫
Q

|∇Fp(·, ε(vN ))|2 dxdt

]
≤ cE

(
1 +

∫
Q

|ε(vN )|q dx dt

)
,

(5.14)

where q = max{p+ + %, 3} (% > 0 is arbitrary) as a counterpart to (5.9). Using again
Sobolev’s embedding shows

E
[

sup
0<t<T

∫
Tn
|ε(vN )|2 dx+

[ ∫ T

0

(∫
Tn
|Fp(·, ε(vN ))|6 dx

) 1
3

dt

]
≤ cE

(
1 +

∫
Q

|ε(vN )|q dx dt

)
.
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We obtain finally

E
[

sup
0<t<T

∫
Tn
|ε(vN )|2 dx+

[ ∫ T

0

(∫
Tn
|ε(vN )|3p

−
dx

) 1
3

dt

]
≤ cE

(
1 +

∫
Q

|ε(vN )|q dxdt

)
.

(5.15)

Now we use an interpolation which is quite similar to the two-dimensional case. However,
the quantity of interest is now ε(vN ) instead of Fp(·, ε(vN )). Using the interpolation(

L∞(0, T ;L2(Tn));Lp
−

(0, T ;L3p−(Tn))
)

Θ
= Lr(0, T ;Lr(Tn)),

r =
4

3
+ p−, Θ = 1− p−

r
,

we obtain for χ = 3
5r

‖v‖χr ≤ ‖v‖
χΘ
L∞t L

2
x
‖v‖χ(1−Θ)

Lp
−
t L3p−

x

≤ ‖v‖2L∞t L2
x

+ ‖v‖p
−

Lp
−
t L3p−

x

(5.16)

such that

E‖ε(vN )‖χLrt,x ≤ c
(

1 + E‖ε(vN )‖q
Lqt,x

)
.

On account of the interpolation(
Lr(Q);Lp

−
(Q)
)
β

= Lq(Q), β =
r

q

q − p−

r − p−
,

we gain similarly to the two-dimensional case

E‖ε(vN )‖q
Lqt,x
≤ E

(
‖ε(vN )‖βqLrt,x‖ε(v

N )‖(1−β)q

Lp
−
t,x

)
≤
(
E‖ε(vN )‖βqγLrt,x

) 1
γ
(
E‖ε(vN )‖(1−β)qγ′

Lp
−
t,x

) 1
γ′
.

By Theorem 3.2 the second term is uniformly bounded and hence

E‖ε(vN )‖χLrt,x ≤ c
(
1 + E‖ε(vN )‖q

Lqt,x

)
≤ c

(
1 + E‖ε(vN )‖βqγLrt,x

) 1
γ

.(5.17)

Now we have to check that βq < χ. This is equivalent to q < p− + 4
5 which follows from

our assumption 11
5 < p− ≤ p+ ≤ p− + 4

5 . So, the proof can be finished as before if we
chose γ close enough to 1. �

5.4. Compactness. As in (4.24) we have again

sup
N∈N

E
[∥∥vN∥∥

Cµ([0,T ];W
−`,p0
div (Tn)n)

]
<∞(5.18)

for certain µ > 0, ` ∈ N and p0 > 1. In view of compactness, let us now define the path
space

X := Xv ⊗XF ⊗Xp ⊗Xf ⊗XW ,(5.19)

where1

Xv := C([0, T ]; W−`,p0div (Tn)) ∩ L2(0, T ;W 1,2
div (Tn)),

XF :=
(
L2(0, T ;W 1,2(Tn)), w

)
,

Xp := Cβ([0, T ]× Tn), 0 < β < α,

Xf := L2(0, T ;W 1,2(Tn)),

XW := C([0, T ];U0).

We obtain the following.

1(X,w) denotes a Banach space equipped with the weak topology.
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Proposition 5.3. The set {L[vN ,Fp(·, ε(vN )), p, f ,W ]; N ∈ N} is tight on X .

Proof. We recall an interpolation result of Aubin–Lions–type due to Amann [1] to con-
clude that

L∞(0, T ; W1,2
div(Tn)) ∩ Cµ([0, T ];W−`,p0div (Tn)) ∩ Lp

−
(0, T ; W1,p−

div (Tn))

↪→↪→ L2(0, T ; W1,2
div(Tn)).

(5.20)

On the other hand, Ascoli-Arzelá’s theorem yields

Cµ([0, T ];W−`,p0div (Tn)) ↪→↪→ C([0, T ];W−`,p0div (Tn)).

So, we obtain tightness of vN on Xv from (5.18), Theorems 3.2 and 5.1 and Tschebyscheff’s
inequality. Tightness of Fp(·, ε(vN )) on XF follows immediately from Theorem 3.2 and
5.1. Finally the laws p, f and W of on their corresponding path spaces are tight as being
Radon measures on Polish spaces. �

Accordingly, we apply Jakubowski’s extension of Skorokhod’s theorem (see [22]). We
infer the following result.

Proposition 5.4. There exists a complete probability space (Ω̃, F̃ , P̃) with X -valued Borel

measurable random variables (ṽN , F̃N , p̃N , f̃N , W̃N ), N ∈ N, and (ṽ, F̃, p̃, f̃ , W̃ ) such that
(up to a subsequence)

(a) the law of (ṽN , F̃N , p̃N , f̃N , W̃N ) on X is given by L[vN ,Fp(·, ε(vN )), p, f ,W ],
N ∈ N,

(b) the law of (ṽ, F̃, p̃, f , W̃ ) on X is a Radon measure,

(c) (ṽN , F̃N , p̃N , f̃N , W̃N ) converges P̃-almost surely to (ṽ, F̃, p̃, f̃ , W̃ ) in the topology
of X , i.e.

ṽN → ṽ in C([0, T ];W−`,p0div (Tn)) P̃-a.s.,

ṽN → ṽ in L2(0, T ;W 1,2
div (Tn)) P̃-a.s.,

F̃N ⇀ F̃ in L2(0, T ;W 1,2(Tn)) P̃-a.s.,

p̃N → p̃ in Cβ([0, T ]× Tn) P̃-a.s.,

f̃N → f̃ in L2(0, T ;W 1,2(Tn)) P̃-a.s.,

W̃N → W̃ in C([0, T ];U0) P̃-a.s.

(5.21)

The equality of laws from Proposition 4.4 implies immediately that F̃N = Fp̃(·, ε(vN )).
Also, the uniform estimates from Theorems 3.2 and 5.1 continue to holds on the new
probability space. The proof of Theorem 2.7 can now be completed as in Section 4.

5.5. Strong pathwise solutions. The existence of a strong pathwise solution follows
now along the lines of the proof of Theorem 2.7 with some minor modifications. The most
important change is that the classical Gyöngy-Krylov argument does not apply as the path
space X is not Polish anymore due to the weak topology on XF. A generalization which
applies to the very general class of sub-Polish spaces (including Banach spaces with weak
topologies) can be found in [5, Chapter 2, Theorem 2.10.3]. We consider the collection of
joint laws of (Xn,Xm, p, f ,W ), where

Xn = (vNn ,Fp(·, ε(vNn))), Xm = (vNn ,Fp(·, ε(vNn)),

on the extended path space

X J = (Xv ×XF)2 ⊗Xp ⊗Xf ×XW .
As in Proposition 4.6 we obtain tightness of the set

{L[Xn,Xm, p, f ,W ]; n,m ∈ N}
on X J . Let (Xnk ,Xmk , p, f ,W )be an arbitrary subsequence. By the Jakubowski–Skorokhod
theorem [22] we infer (for a further subsequence but without loss of generality we keep the
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same notation) the existence of a probability space (Ω̄, F̄ , P̄) with a sequence of random

variables (X̂nk , X̌mk , p̄k, f̄k, W̄k) with

X̂nk = (v̂nk,, F̂nk), k ∈ N,

X̂mk = (v̌mk,, F̌mk), k ∈ N,

converging almost surely in X J to a random variable (v̂, v̌, p̄, f̄ , W̄ ). with

X̂ = (v̂, F̂), X̌ = (v̂, F̂).

As before it follows that

F̂ = Fp̄(·, ε(v̂)), F̌ = Fp̄(·, ε(v̌)).(5.22)

As in (4.28) we can show that (v̂, p̄, f̄ , W̄ ) and (v̌, p̄, f̄ , W̄ ) are weak martingale solutions
to (1.5)–(1.6) defined on the same stochastic basis (Ω̄, F̄ , (F̄t), P̄). We apply the pathwise
uniqueness result from Proposition 4.5 to conclude

L[X̂, X̌, W̄ ]
(

(X1,X2, p, f ,W ) ∈ X J : X1 = X2

)
= P̄

(
(v̂, F̂) = (v̌, F̌)

)
= P̄(v̂ = v̌) = 1.

Now, [4, Chapter 2, Theorem 2.10.3] implies that the original sequence vN defined on
the initial probability space converges in probability in the topology of Xv to the random
variable v. Therefore, we finally deduce that v is a strong pathwise solution to (1.5)–(1.6).
The proof of Corollary 2.13 is hereby complete. �
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