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1. MEASURE AND INTEGRATION THEORY

1.1. Signed and vector measures. We assume the reader to be familiar with the concepts
of Lebesgue integration, and thus focus exclusively on some more advanced topics. In this
respect, we begin with the notions of signed and vector measures.

Let (X,Σ) be a measurable space. We say that µ : Σ → Rm is a vector measure or
Rm-valued measure provided

(a) µ(∅) = 0 and
(b) for all any sequence (Aj) of pairwise disjoint elements of Σ there holds

µ
(⋃

j

Aj

)
=
∑
j

µ(Aj).

If m = 1, we say that µ satisfying the above requirements is a signed measure. Let us
moreover arrange to call a set function µ : (X,Σ)→ [0,∞], which satisfies (a) and (b) from
above, a positive measure; it is finite if µ(X) <∞.

Vector measures on (X,Σ) form a vector space. This space can be normed by virtue of
the total variation. For a vector measure µ on (X,Σ), put

|µ|(A) := sup
{∑

j

|µ(Aj)| : Aj ∈ Σ are pairwise disjoint with A =
⋃
j

Aj

}
, A ∈ Σ.

In this situation, |µ| is a positive, finite (!) measure on (X,Σ), too, making the space of
Rm-valued measures a normed vector space. It is sometimes useful to employ the structure
of the underlying space X , allowing to introduce the important class of Radon measures.

For most of our applications, X will be a subset of Rn and thus is a metric space in itself.
Hence let (X, d) be

(a) locally compact, i.e., for every x ∈ X there exist an open set U and a compact set K
such that x ∈ U ⊂ K.

1



2 F. GMEINEDER

(b) separable, i.e., there exists a countable dense subset of X .

As usual, the Borel σ-algebra (that is, the σ-algebra generated by the sets open for d) on X
is denoted B(X). Henceforth, let (X, d) be locally compact and separable. We say that an
Rm-valued set function µ on X is

(a) a Borel measure if m = 1 and µ is a positive measure on (X,B(X)).
(b) a Radon measure if µ is defined on the relatively compact Borel subsets ofX and is a

measure on (K,B(K)) for any compact set K ⊂ X . If, moreover, µ : B(X)→ Rm

is a measure in the above sense, then we call µ a finite Radon measure.

The integration theory with respect to measures as introduced above follows the usual ap-
proach as known from the Lebesgue integral. The fundamental theorem we shall rely on then
is given by the following result:

Theorem 1.1 (Riesz representation theorem for Radon measures*). Let Ω ⊂ Rn be open.
Then we haveM(Ω) ∼= C0(Ω)′, the isometrical isomorphism being given by

M(Ω) 3 µ 7→
(
v 7→

ˆ
Ω

v dµ
)
∈ C0(Ω)′.

Let us finally address the RADON-NIKODÝM THEOREM. Given a measurable space
(X,Σ), a positive measure µ and an Rm-valued measure ν on (X,Σ), we call ν absolutely
continuous for µ provided

A ∈ Σ and µ(A) = 0 =⇒ ν(A) = 0.

We then write ν � µ. Conversely, if there exists A ∈ Σ such that µ(A) = 0 and ν(X \A) =

0, then we call µ and ν mutually singular and write µ⊥ν.

Theorem 1.2 (Radon-Nikodým). In the above situation, assume that µ is σ-finite. Then there
exists a unique pair (νa, νs) such that νa � µ, νs⊥µ and ν = νa + νs. Moreover, there
exists a unique element f ∈ L1(X;µ;Rm) such that νa = fµ. In this situation, we call f
the density of ν with respect to µ and denote dν

dµ := f .

1.2. Lebesgue and Hausdorff measures. We write L n for the n-dimensional Lebesgue
measure. Let s > 0. Given δ ∈ (0,∞] and A ⊂ Rn, we put

H s
δ (A) := inf

{
ωs

∞∑
j=1

rsj : A ⊂
∞⋃
j=1

B(xj , rj), rj 6
δ

2

}
.

Note that δ 7→H s
δ (A) is non-decreasing as δ ↘ 0. We thus may define

H s(A) := sup
δ>0

H s
δ (A) = lim

δ↘0
H s
δ (A).

We call H s the s-dimensional Hausdorff measure. Unless stated otherwise, we let Ω ⊂ Rn

be open and denote Lp(Ω) the space of p-integrable functions u : Ω→ R such that

‖u‖Lp(Ω) :=
(ˆ

Ω

|u|p dx
) 1

p

:=
( ˆ

Ω

|u|p dL n
) 1

p

<∞.

Sometimes we shall also require Lebesgue spaces with respect to certain Hausdorff measures
(and then use the notation Lp(Σ; H s) for some H s-measurable set Σ), but no confusions
will arise from this.
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1.3. Elementary Inequalities. We now turn to various inequalities which have been en-
countered in previous courses, and begin with Hölder’s inequality: If 1 6 p < ∞, then for
all f ∈ Lp(Rn) and g ∈ Lp

′
(Rn) (where 1

p + 1
p′ = 1 so that p′ = p

p−1 ) there holds

‖fg‖L1(Rn) 6 ‖f‖Lp(Rn)‖g‖Lp′ (Rn).(1.1)

Also recall Young’s convolution inequality: If f ∈ L1(Rn) and g ∈ Lp(Rn), then f ∗ g ∈
Lp(Rn), too, together with

‖f ∗ g‖Lp(Rn) 6 ‖f‖L1(Rn)‖g‖Lp(Rn).(1.2)

Lastly, recall Jensen’s inequality: If Ω ⊂ Rn is L n-measurable, f : R → R is convex and
u ∈ L1(Ω), then

f
( 

Ω

udx) 6
 

Ω

f(u) dx.

1.4. Smooth approximation. Often, inequalities for weakly differentiable functions are firstly
established for smooth functions and then transferred by an approximation process. In many
instances, such an approximation procedure works as follows: Pick a radially symmetric
function ρ ∈ C∞c (B(0, 1); [0, 1]) with ‖ρ‖L1(Rd) = 1. We then define, for ε > 0, the ε-
rescaled version of ρ by ρε(x) := ε−nρ(x/ε). Given u ∈ Lp(Rn) (where 1 6 p < ∞), we
then consider the mollification uε := ρε ∗ u. We then have each of the following:

(a) ‖uε‖Lp(Rn) 6 ‖u‖Lp(Rn),
(b) ‖u− uε‖Lp(Rn) → 0 as ε↘ 0.

If we wish to approximate a given u ∈ Lp(Ω), Ω ⊂ Rn now being bounded and measurable,
then we may consider vε := ρε ∗ (1Ωu) to obtain vε → v in Lp(Rn). These matters turn out
a bit more subtle if we work in the Sobolev space context – see below for more detail.

2. CONCEPTS FROM FUNCTIONAL ANALYSIS

2.1. Operators. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be two normed vector spaces and T : X → Y

be a linear operator. We say that T is

(i) bounded if and only if there exists C > 0 such that ‖Tx‖Y 6 C‖x‖X holds for all
x ∈ X ,

(ii) compact if and only if T maps bounded sequences to relatively compact sequences.

If T is bounded, then we define its operator norm via

‖T‖X→Y := sup
x∈X\{0}

‖Tx‖Y
‖x‖X

.

For a linear operator T , boundedness is equivalent to continuity; moreover, note that if T is
compact, then it is automatically bounded, hence continuous. Note that if the target space
is scalar (so, depending on the application, R or C), we call T a linear functional. The
(topological) dual of X is given by

X ′ :=
{
f : X → R : sup

x∈X,
‖x‖X61

|f(x)| <∞
}
.

Note that X ′ in general is strictly smaller than the algebraic dual; moreover, X ′ is always a
Banach space – regardless of whether X is a Banach space. Iteratively,

X ′′ := (X ′)′, X(n) := (X(n−1))′.
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It is often favorable to have an explicit description of the duals of Banach spaces (see, e.g.,
the above Theorem 1.1). Such descriptions are often referred to as Riesz-type theorems.
Essentially by use of the Hölder inequality, one has, e.g.,

(Lp(Ω))′ ∼= Lp
′
(Ω), 1 6 p <∞.

This has to be understood in the following way: For each T ∈ (Lp(Ω))′ there exists a unique
f ∈ Lp

′
(Ω) such that

T (g) =

ˆ
Ω

fg dx for all g ∈ Lp(Ω),

and the dual norm of T equals ‖f‖Lp′ (Ω). Other examples are (`p(N)′ ∼= `p
′
(N) for if

1 6 p < ∞; in the case of infinite dimensional Hilbert spaces H, we have H′ ∼= H. If,
moreover,H is even a separable Hilbert space, thenH ∼= H′ ∼= `2(N).

2.2. Duals, Double Duals and Reflexivity. Let (X, ‖ · ‖X) be a normed space (over R).
We now give an overview over different sorts of convergence for sequences in a Banach

space X . Let x, x1, x2, ... ∈ X . We say that

• (xk) converges in the norm sense or strongly to x and write xk → x if ‖x−xk‖X →
0, k →∞.

• (xk) converges in the weak sense or weakly to x and write xk ⇀ x if 〈f, xk〉 →
〈f, x〉 for all f ∈ X ′.

On the dual space X ′ (which is a normed space in itself), these notions can be employed as
well. However, it is convenient to have a terminology for pointwise convergence. Thus, given
f, f1, f2, ... ∈ X ′, we say that

• (fk) converges in the weak*-sense to f and write fk
∗
⇀ if for all x ∈ X there holds

〈fk, x〉 → 〈f, x〉 as k →∞.

In consequence, these notions equally generalise to the double dual X ′′. Note that ι : X ↪→
X ′′ given by

ι(x) : X ′ 3 f 7→ f(x)

embeds X into X ′′. If this map ι moreover is surjective and isometric, then we call the
Banach space X (note that X then necessarily is Banach!) reflexive. Examples of reflexive
spaces include `p(N) and Lp(Ω) for 1 < p < ∞; in the borderline cases p ∈ {1,∞},
neither `1, `∞,L1 nor L∞ is reflexive. Still, L∞ canonically arises as the dual of L1. Thus,
by the Banach-Alaoglu-Bourbaki theorem, we do have some weak*-compactness results on
L∞. On L1, the situation is much more subtle for L1(Ω) with Ω ⊂ Rn open is not the
dual of any normed space. The latter fact is not trivial to prove; one option to do so is the
KREIN-MILMAN theorem.

Reflexivity is sometimes misinterpreted as the mere requirement X ∼= X ′′ - this is wrong.
In fact, one can come up with spaces satisfying X ∼= X ′′ (the so-called James space), yet
fail to be reflexive. The key issue is that, while there might be some isometric isomorphism
J : X → X ′′, we cannot assert that J = ι, the canonical embedding in general.

Moreover, reflexivity is a key concept for compactness results to be discussed next.

2.3. Compactness. Recall the Bolzano-Weierstraß theorem: If a sequence (xk) ⊂ RN is
bounded (for some and hence, by equivalence of all norms on finite dimensional spaces, all
norms), then we may extract a convergent subsequence. This result is easily seen to fail in
infinite dimensional spaces: Think of the sequence (ek) of unit vectors in `2(N). Equally,
there might be closed and bounded sets of infinite dimensional normed spaces which fail to
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be compact. This fundamental issue is manifested in the following theorem attributable to
RIESZ:

Theorem 2.1 (Characterisation of finite dimensionality a lá Riesz). The following are equiv-
alent for a real Banach space (X, ‖ · ‖):

(a) dim(X) <∞.
(b) Every sequence (xk) ⊂ X which is bounded possesses a convergent subsequence

(xk(i)) (convergence being understood for the norm topology).
(c) The closed unit ball is compact.
(d) Every closed and bounded set is compact.

This motivates the question of which compactness results survive at all. In fact, a lot of
statements persist when passing to weaker notions of convergence, in turn being manifested
by the BANACH-ALAOGLU-BOURBAKI theorem:

Theorem 2.2 (Banach-Alaoglu-Bourbaki compactness theorem). Let (X, ‖ · ‖) be a normed,
real and separable vector space. If (fj) ⊂ X ′ is bounded with respect to the norm on X ′,
then there exists f ∈ X ′ and a subsequence (fj(i)) ⊂ (fj) such that fj(i)

∗
⇀ f as j →∞.

Therefore, still a powerful compactness result is available on duals of normed spaces.
Now, if X is reflexive, we can essentially (i) realise X as a dual space and (ii) identify the
weak*-convergence on X ′′ ∼= X with the weak convergence on X . This yields one direction
of so-called EBERLEIN-SHMULYAN theorem:

Theorem 2.3 (Eberlein-Shmulyan characterisation of reflexive spaces). The following are
equivalent for a real Banach space (X, ‖ · ‖):

(a) (X, ‖ · ‖) is reflexive.
(b) Every sequence (xj) ⊂ X which is bounded for the norm on X possesses a subse-

quence (xj(i)) ⊂ (xj) such that xj(i) ⇀ x as i→∞ for some x ∈ X .

In view of the preceding two theorems, one can proceed as follows to gain compactness:
Even thoughX might not arise as the dual of any other normed space, it is sometimes possible
to embed X into a dual space Y ′, X ↪→ Y ′. One key instance of this procedure is to embed
L1(Ω) ↪→M(Ω) ∼= C0(Ω)′.

Lastly, let us note that compactness results for the norm topology are usually very hard
to be obtained. An instance, however, that we shall come back to frequently is given by the
ASCOLI-ARZELÁ theorem; it provides us with a characterisation of the (relatively) compact
subsets of C(X) for compact X:

Theorem 2.4 (Ascoli-Arzelá theorem). Let (X, d) be a compact metric space and C be a
subset of C(X), the latter being equipped with the supremum norm. Then C is relatively
compact1 in C(X) if and only if C is

(a) pointwisely bounded: For each f ∈ C there exists cf > 0 such that |f(x)| 6 cf for
all x ∈ X and

(b) equicontinuous: For all ε > 0 there exists δ > 0 such that for all f ∈ C there holds

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

1Meaning that the closure in C(X) is compact.
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2.4. Special Case: Hilbert spaces. Let F be either R or C and let H be a vector space over
F. A map 〈·, ·〉 : H×H → F onH is called an inner product provided

• for each y ∈ H, the partial map x 7→ 〈x, y〉 is F-linear,
• for all x, y ∈ H we have 〈x, y〉 = 〈y, x〉 (conjugate symmetry),
• for all x ∈ H we have 〈x, x〉 > 0, with equality if and only if x = 0 (positive

definiteness).

Given an inner product 〈·, ·〉 on H, we call (H, 〈·, ·〉) a Prehilbert space. Setting ‖x‖ :=√
〈x, x〉, (H, ‖ · ‖) becomes a normed space; if it is Banach, then we say that (H, 〈·, ·〉) is a

Hilbert space.
Compared with other Banach spaces Hilbert space feature several noteworthy properties,

making them particularly easy to deal with. This metaprinciple is reflected by the following
statements, where we confine ourselves to the real case.

(a) Every separable Hilbert space is isometrically isomorphic to `2(N). Namely, pick an
orthonormal basis (ei)i∈N; then, for each x ∈ H we have

x =
∑
i∈N
〈ei, x〉ei 7→ (〈ei, x〉)i∈N ∈ `2(N).

The Fourier coefficient mapH 3 x 7→ (〈ei, x〉) ∈ `2(N) is a bijective isometry.
(b) In the Hilbert space case, the Riesz representation theorem takes a particularly simple

form: If H is a real Hilbert space, then H ∼= H′. More precisely, for every f ∈ H′
there exists a unique uf ∈ H such that f(x) = 〈uf , x〉 holds for all x ∈ H. The map
f 7→ u is a bijective isometry.

(c) As a consequence of the previous item, all Hilbert spaces are reflexive.
(d) Here is a warning: Consider the Gel’fand triple W1,2(B) ↪→↪→ L2(B) ↪→W−1,2(B).

On the other hand, W1,2(B) ∼= `2(N) ∼= W−1,2(B), but this does not (!) imply the
wrong statement that `2(N) is compactly embedded into `2(N).

3. DISTRIBUTIONS AND SOBOLEV SPACES

3.1. Test functions and Distributions. Let Ω ⊂ Rn be open. The linear space of test
functions

C∞c (Ω) := {u ∈ C∞(Ω): spt(u) compact}

is denoted D(Ω) when being endowed with the following notion of convergence: Given
u, u1, u2, ... ∈ C∞c (Ω), we say that uj → u in D(Ω) if and only if there exists a compact set
K ⊂ Ω such that

(a) spt(u), spt(uj) ⊂ K for all j ∈ N and
(b) ‖∂α(u− uj)‖L∞(Ω) → 0 as j →∞ for all α ∈ Nn0 .

Consequently, the linear functionals which are continuous for this sort of convergence are
called distributions on Ω and denote D′(Ω). More precisely, we say that a linear map
T : D(Ω)→ R is a distribution (in formulas T ∈ D′(Ω)) if

〈T, ϕj〉 → 〈T, ϕ〉 whenever ϕj → ϕ in D(Ω).

Here and in all of what follows, we have used the duality pairing notation 〈T, ϕ〉 := T (ϕ)

for T ∈ D′(Ω) and ϕ ∈ D(Ω). Some of the most important examples of distributions are as
follows:
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• L1
loc(Ω) ↪→ D′(Ω). Given f ∈ L1

loc(Ω), we define a distribution Tf ∈ D′(Ω) via

〈Tf , ϕ〉 :=

ˆ
Ω

fϕdx, ϕ ∈ D(Ω).

We shall often abuse notation and simply write 〈f, ϕ〉 := 〈Tf , ϕ〉. Distributions T ∈
D′(Ω) which arise as T = Tf for some f ∈ L1

loc(Ω) are called regular distributions.
Note carefully that not every distribution is regular, as can be seen from the next
item.

• Mloc(Ω) ↪→ D′(Ω). Given µ ∈Mloc(Ω), we define a distribution Tµ ∈ D′(Ω) via

〈Tµ, ϕ〉 :=

ˆ
Ω

ϕdµ, ϕ ∈ D(Ω).

We shall often abuse notation and simply write 〈µ, ϕ〉 := 〈Tµ, ϕ〉. Distributions
which are as T = Tµ are called measure regular distributions.

Distributions can be differentiated, the definition of the distributional derivative being moti-
vated by the usual integration-by-parts formula. Given T ∈ D′(Ω) and α ∈ Nn0 , we define a
new distribution ∂αT ∈ D′(Ω) by its action on ϕ ∈ D(Ω) via

〈∂αT, ϕ〉 := (−1)|α|〈T, ∂αϕ〉.

3.2. Schwartz functions and tempered distributions. Many operators which are originally
defined on C∞c (Rn) do not map into C∞c (Rn), an instance being given by the Fourier trans-
form. The Fourier transform, however, turns out bijective on the Schwartz space (or class) to
be recalled next. For x ∈ Rn, define 〈x〉 :=

√
1 + |x|2. We say that a function u : Rn → R

belongs to the Schwartz class S(Rn) provided u ∈ C∞(Rn) and for any l,m ∈ N0 there
holds

[u]l,m := sup
|α|6m

sup
x∈Rn

〈x〉l|∂αu(x)| <∞.

Let u, u1, u2, ... ∈ S(Rn). We say that (uj) converges to u in S(Rn) provided [u−uj ]l,m →
0 as j →∞ for all l,m ∈ N0. This convergence arises from the metric

dS(u, v) :=
∑

l,m∈N0

cl,m
[u− v]l,m

1 + [u− v]l,m
.

A crucial operator in all of what follows is the Fourier transform. Given u ∈ S(Rn), we
define

Fu[ξ] :=
1

(2π)
n
2

ˆ
Rn

u(x)e− i x·ξ dx, ξ ∈ Rn.(3.1)

Theorem 3.1 (Fourier inversion). The Fourier transform F : S(Rn) → S(Rn) is bijective.
Moreover, both F and the inverse map F−1 are continuous on S(Rn).

Lastly, the Fourier transform extend to a bounded linear operatorF : L2(Rn)→ L2(Rn).
This operator is a bijective L2-isometry.

We then define the space of tempered distributions by

S ′(Rn) :=
{
T : S(Rn)→ R : T linear and continuous for convergence in S(Rn)

}
.

Canonically, given T, T1, T2, ... ∈ S(Rn), we say that T ∗
⇀ T provided 〈Tj , ϕ〉 → 〈T, ϕ〉

for all ϕ ∈ S(Rn). Note that every tempered distribution is a distribution but not vice versa;
an example is given by the shifted ’comb’

T =
∑
n∈N

δ(n)(· − n).
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We lastly intend to declare the Fourier transform on tempered distributions. This is ap-
proached via duality; we put for T ∈ S ′(Rn) and ϕ ∈ S(Rn)

〈FT, ϕ〉 := 〈T,Fϕ〉.(3.2)

For various parts of the seminar, it is convenient to have the following result on radial, homo-
geneous distributions. Note that, if −n < a < 0, then

Saϕ 7→
ˆ
Rn

|x|aϕ(x) dx, ϕ ∈ S(Rn)(3.3)

gives rise to a tempered distribution. We then have

Theorem 3.2 (Homogeneous, radial tempered distributions). Given −n < a < 0, define Sa
by (3.3). Then the Fourier transform of Sa is given by the tempered distribution induced by
ξ 7→ Cn,a|ξ|−n−a, where Cn,a > 0 is a constant.

3.3. Sobolev spaces. Let k ∈ N and 1 6 p 6∞. For an open set Ω ⊂ Rn, we introduce the
Sobolev space Wk,p(Ω) as the collection of u ∈ Lp(Ω) such that

all distributional partial derivatives up to order k can be represented by Lp-functions.

In particular, the distributional derivatives are regular distributions, and we briefly write

Wk,p(Ω) :=
{
u ∈ Lp(Ω): ‖u‖Wk,p(Ω) :=

( ∑
|α|6k

‖∂αu‖pLp(Ω)

) 1
p

<∞
}
.

When endowed with ‖ · ‖Wk,p(Ω), Wk,p(Ω) is a Banach space. If p < ∞, it is convenient
to moreover introduce the natural subspace of Sobolev functions with zero boundary values,
Wk,p

0 (Ω), as the completion of C∞c (Ω) for ‖ · ‖Wk,p(Ω). We omitted the case p = ∞ for the
following reason. If Ω has, say, smooth boundary, then W1,∞(Ω) coincides with the Lips-
chitz functions C0,1(Ω). As such, we ought to define W1,∞

0 (Ω) as the Lipschitz functions
vanishing at the boundary ∂Ω. Note that the closure of C∞c (Ω) for the W1,∞-norm is just
C1

0(Ω), and this space is strictly smaller than C0,1(Ω).

If p = 2 and Ω = Rn, then the Sobolev spaces Wk,2(Rn) can be characterised by the
Fourier transform. The idea is this: For ϕ ∈ S(Rn) we have F(∂αϕ)(ξ) = (−1)|α|ξαFϕ(ξ)

for all ξ ∈ Rn. Now, by Plancherel’s theorem (i.e., F : L2(Rn)→ L2(Rn) isometrically),( ∑
|α|6k

‖∂αu‖2L2(Rn)

) 1
2

=
( ∑
|α|6k

‖F(∂αu)‖2L2(Rn)

) 1
2

=
( ˆ

Rn

( ∑
|α|6k

|ξ|2|α|
)
|Fϕ(ξ)|2 dξ

) 1
2

.

Put pk(ξ) :=
∑
|α|6k |ξ|2|α| and 〈ξ〉 :=

√
1 + |ξ|2. Then there holds pk(ξ) ' 〈ξ〉2k and

hence ‖u‖Wk,2(Rn) ' ‖〈·〉kFu‖L2(Rn). In fact, we have for u ∈ L2(Rn):

u ∈Wk,2(Rn)⇐⇒ ‖〈·〉kFu‖L2(Rn) <∞.

More generally, one has the following equivalent characterisations of W1,p(Rn):

Theorem 3.3. Let 1 < p <∞. Then the following are equivalent for u ∈ Lp(Rn):

(a) u ∈W1,p(Rn).
(b) There exists c > 0 such that for any s ∈ {1, ..., n} and any h > 0 we have

‖ 1
h (u(·+ hes)− u(·)‖Lp(Rn) 6 c.
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If p = 2, then (a) and (b) from above are moreover equivalent to

(c) ‖〈·〉Fu‖L2(Rn) <∞.

For most of the seminar, the following approximation result is instrumental:

Theorem 3.4 (Smooth approximation in Sobolev spaces). Let Ω ⊂ Rn be open. Then, for
each 1 6 p < ∞ and every k ∈ N, the space (C∞ ∩Wk,p)(Ω) is dense in Wk,p(Ω) for the
norm topology.

The proof works by localised smoothing. Next we discuss the possibility of extending and
assigning boundary values to Sobolev functions:

Theorem 3.5 (Extension and trace theorem). Let Ω ⊂ Rn be open and bounded with Lips-
chitz boundary ∂Ω. Then

(a) there exists a bounded linear extension operator E : W1,p(Ω)→W1,p(Rn), i.e., E
is linear and bounded and satisfies Eu|Ω = u in W1,p(Ω) for all u ∈W1,p(Ω).

(b) there exists a bounded linear trace operator Tr: W1,p(Ω) → Lp(∂Ω; H n−1), i.e.,
Tr is linear and bounded and we have Tr(u) = u|∂Ω for all u ∈W1,p(Ω) ∩ C(Ω).

Note that the last part of the theorem must be approached with care: Even if we extend
a Sobolev function to the entire Rn, we cannot simply restrict the extension to ∂Ω without
further comments (note that ∂Ω is a nullset for L n). Also note that, if 1 < p <∞, then the
trace operator is not onto Lp(∂Ω; H n−1).

On the other hand, by the Arzelá-Ascoli theorem, mollification and a diagonal argument
one has

Theorem 3.6 (Rellich-Kondrachov compactness theorem*). Let Ω ⊂ Rn be open and bounded
with Lipschitz boundary ∂Ω. Then for any 1 6 p <∞ we have the compact embedding

W1,p(Ω) ↪→↪→ Lp(Ω).

3.4. Negative Sobolev spaces*. For 1 < p < ∞, k ∈ N and an open subset Ω of Rn, we
define

W−k,p(Ω) := (Wk,p′

0 (Ω))′

and equip W−k,p with the usual dual norm. To get some better understanding of these spaces,
we make use of the following heuristics: If u ∈ Wk,p(Ω), then we may differentiate u k-
times to obtain an Lp-function. So, if u ∈ W−k,p(Ω), we expect that a k-fold integration
(!) yields an Lp-function. Thus, we expect elements of W−k,p to be the k-fold derivatives of
Lp-functions. Here is a sample theorem:

Theorem 3.7. Let Ω ⊂ Rn be open and bounded. A linear functional Φ: W1,2(Ω) → R
belongs to W−1,2(Ω) if and only if there exist f0, f1, ..., fn such that

Φ = f0 −
n∑
j=1

∂jfj in D′(Ω).

Moreover,

‖Φ‖W−1,2(Ω) = inf
{( ∞∑

j=0

‖fj‖2L2(Ω)

) 1
2

: Φ = f0 −
n∑
j=1

fj in D′(Ω) for f0, ..., fn ∈ L2(Ω)
}
.
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