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ABSTRACT. We establish the first partial regularity results for (strongly) symmetric quasicon-
vex functionals of linear growth on BD, the space of functions of bounded deformation. By
RINDLER’s foundational work [65], symmetric quasiconvexity is the pivotal notion as regards
sequential weak*-lower semicontinuity and hence for the existence of minima of the relaxed
functionals on BD. The overarching main difficulty here is the lack of KORN’s Inequality in the
L1-setting, hereby implying that the BD-case is genuinely different from the study of variational
integrals on BV. Unlike for superlinear growth, symmetric quasiconvex functionals, where we
establish partial regularity by direct reduction to the full gradient case by KORN-type inequali-
ties, such a reduction does not work in the linear growth case and identifies the latter as the only
situation requiring a treatment on its own.

RÉSUMÉ. Nous établissons les premiers résultats de régularité partielles pour des fonctionnelles
quasi-convexes (fortement) symétriques ayant une croissance linéaire sur BD, l’espace des fonc-
tions dont la déformation est bornée. De part les travaux précurseurs de RINDLER [65], la quasi-
convexité symétrique est la notion centrale relativement à la semi-continuité inférieure faible-*
et donc pour l’existence des minima de fonctionnelles relaxées sur BD. La difficulté générale ici
est due à l’absence de l’inégalité de Korn dans le cadre fonctionel L1, qui de ce fait révèle une
différence fondamentale entre le cas BD et celui relatif à l’étude des intégrales variationnelles
sur BV. Contrairement aux fonctionnelles quasi-convexes symétriques à croissance superlinéaire
pour lesquelles nous établissons la régularité partielle via réduction directe au cas du gradient
complet grâce aux inégalités de type Korn, une telle réduction ne peut être implémentée dans le
cas de la croissance linéaire et identifie ce dernier comme étant la seule situation qui nécéssite un
traitement particulier.
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1. INTRODUCTION

1.1. Aims and scope. Let n ≥ 2 and Ω be an open and bounded subset of Rn with Lipschitz
boundary. A vast class of variational problems connected to plasticity is set up by virtue of linear
growth functionals depending on the symmetric gradient, cf. [9, 40, 71, 20]. Possibly allowing
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for non-convex energies, a unifying perspective on the topic as considered in variants in [12, 65]
is given by the canonical variational principle

to minimise F [v] :=
ˆ

Ω

f (ε(v))dx over a Dirichlet class Du0 ,(1.1)

where u0 : Ω→Rn is a suitable Dirichlet datum and ε(v) := 1
2 (Dv+Dv>) denotes the symmet-

ric gradient of a map v : Rn→ Rn. Most crucially, f : Rn×n
sym → R is assumed to be a continuous

integrand of linear growth. By this we understand that there exists a constant L > 0 such that

| f (z)| ≤ L(1+ |z|) for all z ∈ Rn×n
sym .(LG)

Following the foundational work of RINDLER [65], a necessary and sufficient condition for the
associated relaxed functionals to be suitably lower semicontinuous is that of symmetric quasi-
convexity, cf. Section 1.2 below. In view of the direct method of the calculus of variations,
symmetric quasiconvexity thus plays the central rôle for functionals of the form (1.1). Yet, for
such symmetric quasiconvex functionals the properties of minima are far from being understood
– in particular, a regularity theory is still missing. This equally applies to the situation where
f : Rn×n

sym →R is of p-growth (| f (z)| ≤ L(1+ |z|p) for all z ∈Rn×n
sym ) with p > 1, thereby connect-

ing to models from nonlinear elasticity or fluid mechanics [25, 40]. Hence the objective of this
paper is to make a first step in this direction and close this gap. As we shall see (cf. Section 1.4),
it is only the linear growth case which requires a separate theory; the p-growth case with p > 1
can be fully reduced to the regularity theory for full gradient functionals.

To elaborate more on these matters, we start by noting that the growth bound (LG) suggests
to consider (1.1) on Dirichlet classes W1,1

u0
(Ω;Rn) =: u0 +W1,1

0 (Ω;Rn) for u0 ∈W1,1(Ω;Rn).
However, by ORNSTEIN’s Non-Inequality [63], it is not possible to uniformly bound the L1-
norm of Du against that of ε(u). In fact, for every n ≥ 2 there exists a sequence (ϕ j) ⊂
C∞

c (B(0,1);Rn) for which (ε(ϕ j)) remains bounded in L1(Ω;Rn×n
sym ) whereas ‖Dϕ j‖L1(Ω;Rn×n)→

∞ as j→∞, cf. CONTI et al. [24] and KIRCHHEIM & KRISTENSEN [49] for recent approaches.
This is in stark contrast with the situation when L1 is replaced by Lp, 1 < p < ∞. Indeed, in the
latter case the corresponding result can be reduced to KORN-type inequalities, cf. [39, 48, 61, 62]
for classical material and CIARLET et al. [21, 22, 23] and the references therein for a selection
of nonlinear variants. In consequence, F given by (1.1) is not coercive on W1,1(Ω;Rn) but on

LD(Ω) :=
{

u ∈ L1(Ω;Rn) : ε(u) ∈ L1(Ω;Rn×n
sym )

}
endowed with the LD-norm ‖u‖LD := ‖u‖L1 + ‖ε(u)‖L1 . It is thus natural to let the Dirichlet
datum u0 belong to LD(Ω) and consider the variational principle (1.1) over the affine class
Du0 := LDu0(Ω) := u0 +LD0(Ω), where LD0(Ω) is the closure of C1

c(Ω;Rn) for the LD-norm.
Still, LD is an L1-based space and hence fails to be reflexive; as a consequence, it lacks an
appropriate version of the Banach-Alaoglu theorem concerning weak convergence. Thus it is
required to relax F to the space BD(Ω) given by

BD(Ω) :=
{

u ∈ L1(Ω;Rn) : Eu ∈M (Ω;Rn×n
sym )

}
.

Here, M (Ω;Rn×n
sym ) are the finite, Rn×n

sym -valued Radon measures on Ω, and we use the notation
Eu instead of ε(u) to indicate that Eu is a measure. The relaxation here is taken with respect to
weak*-convergence in BD(Ω), and we refer the reader to Sections 1.2 and 2.2 for the requisite
background terminology. This space – which contains BV(Ω;Rn) as a proper subspace – takes a
prominent role in plasticity, and has been studied from various perspectives by a notable plenty
of authors, see [71, 20, 50, 51, 4, 8, 69, 11] among others. Before embarking on the regularity
issue raised above in detail, we briefly pause and discuss the relevant relaxed functionals F that
are required for defining the notion of (local) minimality in the sequel.
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1.2. Symmetric quasiconvexity and relaxation. From a calculus of variations and hereafter
lower semicontinuity perspective, the central notion for functionals F is a variant of MORREY’s
quasiconvexity [60], namely the aforementioned symmetric quasiconvexity. Already appearing
in variants in [26, 38], we start by recalling the following definition as given, e.g., in [12, 65]:

Definition 1.1 (Symmetric quasiconvexity). A continuous integrand f : Rn×n
sym → R is said to be

symmetric quasiconvex provided there holds

f (z)≤
ˆ

Q
f (z+ ε(ϕ))dx for all ϕ ∈ C1

0(Q;Rn) and z ∈ Rn×n
sym ,

where Q = (0,1)n is the open unit cube in Rn.

Letting u ∈ BDloc(Ω), we denote Eu = Eau + Esu = E uL n + dEsu
d|Esu| |E

su| the Lebesgue-
Radon-Nikodým decomposition of Eu; cf. Section 2.2 for this and the subsequent terminology.
Returning to the functional F defined in terms of f : Rn×n

sym → R by (1.1) subject to (LG), let
v ∈ BDloc(Ω) be given. For a subset ω ⊆Ω with Lipschitz boundary ∂ω , we define the relaxed
functional by

Fv[u;ω] =

ˆ
ω

f (E u)dx+
ˆ

ω

f ∞

( dEu
d|Eu|

)
d|Esu|

+

ˆ
∂ω

f ∞(Tr∂ω(v−u)�ν∂ω)dH n−1, u ∈ BD(ω).

(1.2)

Here, f ∞(z) := limsupt↘0 t f ( z
t ) denotes the recession function of f at z ∈ Rn×n

sym , capturing the
integrand’s behaviour at infinity. Also, Tr∂ω displays the boundary trace operator on BD(ω)

and ν∂ω the outer unit normal to ∂ω .
With this notation, we say that u ∈ BDloc(Ω) is a local BD-minimiser (or local generalised

minimiser) for F provided

Fu[u;ω]≤ Fu[v;ω] for all v ∈ BD(ω)(1.3)

holds for all subsets ω b Ω with Lipschitz boundary ∂ω . If u0 ∈ LD(Ω) is a given Dirichlet
datum, we put Fu0 [u] := Fu0 [u;Ω]. In this situation, we call u ∈ BD(Ω) a BD-minimiser (or
generalised minimiser) for F subject to u0 provided

Fu0 [u]≤ Fu0 [v] for all v ∈ BD(Ω).(1.4)

Then, any BD-minimiser subject to u0 is a local BD-minimiser. Essentially solely subject to
the additional linear growth assumption (LG), RINDLER [65] identified the symmetric quasi-
convexity of f as a necessary and sufficient condition for Fu0 to be sequentially weak*-lower
semicontinuous on BD(Ω). Most notably, not only the extending the classical work of AMBRO-
SIO & DAL MASO [6] as well as partly that of FONSECA & MÜLLER [37] from the BV- to
the BD-situation, the relevant lower semicontinuity was established in [65] without relying on
the BD-variant of ALBERTI’s rank-one theorem [5]. By now, the latter has been proved by DE

PHILIPPIS & RINDLER in the seminal work [28] in a much more general context, allowing for
a simplified proof of (1.2) (cf. [29, 10, 17]) but had not been available at the time of [65].

In consequence, augmenting the linear growth assumption (LG) with a suitable coerciveness
condition on the symmetric quasiconvex integrand f , existence of BD-minima for F follows at
ease. Equally, we have the no-gap-result infu0+LD0(Ω) F = minBD(Ω) Fu0 , see Section 6.1. As
will be discussed below in Section 1.4, such a coerciveness criterion goes hand in hand with
the partial regularity of BD-minima. It is thus natural to contextualise the partial regularity for
BD-minima with available results in the literature and thereby outline the main obstructions first.

1.3. Contextualisation and overview. In the common language of regularity theory, the min-
imisation of functionals (1.1) displays a purely vectorial problem. Even in the case where the
symmetric gradient in (1.1) is replaced by the full gradient, it is a well-known feature of such
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multiple integrals to produce minima which are not everywhere C1,α -Hölder continuous but only
on a large set; cf. [13, 42, 59] for overviews. This is referred to as partial regularity.

In the superlinear growth regime with full gradients, the study of partial regularity for minima
has a long and rich history, starting with the seminal work of EVANS [36] and ACERBI & FUSCO

[2]; also see MINGIONE et al. [19, 55, 59] and [13, 31, 32, 33, 34, 42] for a non-exhaustive list
of other contributions. However, until recently, for full gradient linear growth functionals the
only contribution had been the local-in-phase-space result due to ANZELLOTTI & GIAQUINTA

[9] and its adaptation to the model integrands z 7→ (1 + |z|p)1/p, p 6= 2, by SCHMIDT [66].
This approach, which crucially relies on comparison with mollifications and thus works well
for convex integrands by Jensen’s inequality, has been extended to the BD-setting by the author
[44]. Yet, due to the very method of proof, it seems to be restricted to convex integrands and a
generalisation of the strategy to the quasiconvex case seems difficult; also see the discussion in
[9, 66] and [44].

At present, in the full gradient, quasiconvex linear growth case on BV, the only partial reg-
ularity result up to date has been given recently by KRISTENSEN and the author [46]. In this
work, a direct comparison with suitably A-harmonic maps is implemented that overcomes any
indirect argument as is found e.g. in the blow-up method or, quite implicitely, in the proof
of the A-harmonic approximation lemma due to DUZAAR et al. [32, 33, 34]. Let us note
that similarly to [9, 66, 44], the sole use of direct arguments is somehow dictated here by the
comparatively weak compactness properties of BV and BD. In fact, examplarily pursuing the
blow-up method for linear growth functionals, it is necessary to establish that the weak*-limit of
a blow-up sequence satisfies a strongly elliptic Legendre-Hadamard system. However, by pos-
sible concentration effects, this conclusion seems unreachable since there are no general com-
pactness improvements for the relevant blow-up sequences: Such compactness boosts would
require some uniform local integrability enhancements, usually provided by GEHRING’s lemma
in reliance on Caccioppoli-type inequalites, or higher (fractional) differentiability estimates a
lá MINGIONE [57, 58]. Whereas the former cannot be implemented in the linear growth situ-
ation – essentially due to the non-availability of a sublinear Sobolev-Poincaré-type inequality,
cf. BUCKLEY & KOSKELA [18] and the discussion in Section 5.5 –, higher fractional differ-
entiability results on minima such as in [57, 58] are confined to the convex situation. Similar
issues already arise in the full gradient situation, equally for other methods such as the classical
A-harmonic approximation, and we refer the reader to [46] for a further discussion thereof.

1.4. Main Results. After these preparations, we now pass to the description of the main results
of the present paper. To begin with, symmetric quasiconvexity and the linear growth hypothe-
sis (LG) together are easily seen not to be sufficient for F given by (1.1) to produce bounded
minimising sequences in LD(Ω). To ensure the latter, we require a strong version of symmetric
quasiconvexity. The same issue arises in the superlinear growth regime as well, and so we begin
with the treatment of such functionals, in turn being linked to elasticity type problems. Our first
result is that – completely different from the linear growth situation – in the superlinear growth
case, partial regularity directly can be fully reduced to the corresponding full gradient theory.

Given 1 ≤ p < ∞, we put Vp(z) := (1+ |z|2)
p
2 − 1 for z ∈ Rn×n

sym and put V (z) = V1(z) =√
1+ |z|2−1. We say that g ∈ C(Rn×n

sym ) is of p-growth provided there exists Lp > 0 such that

|g(z)| ≤ Lp(1+ |z|p) for all z ∈ Rn×n
sym ,(1.5)

and accordingly call g p-strongly symmetric quasiconvex provided there exists `p > 0 such that

Rn×n
sym 3 z 7→ g(z)− `pVp(z) ∈ R is symmetric quasiconvex.(1.6)

Theorem 1.2. Let Ω⊂Rn be open and bounded. Let 1 < p < ∞ and suppose that g∈C2(Rn×n
sym )

is an integrand which

(a) is of p-growth, i.e., satisfies (1.5) for all z ∈ Rn×n
sym and
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(b) is p-strongly symmetric quasiconvex in the sense of (1.6).

Then for any local minimiser u ∈W1,p
loc (Ω;Rn) of the corresponding integral functional

v 7→
ˆ

g(ε(v))dx(1.7)

there exists an open subset Ωu of Ω such that L n(Ω \Ωu) = 0 and u is of class C1,α for each
0 < α < 1 in a neighbourhood of any of the elements of Ωu.

Theorem 1.2 displays a sample theorem; similar results can be inferred for variational inte-
grals with integrands f (x,u,ε(u)). In particular, the partial C1,α -regularity of minima of convex
elasticity-type functionals (for some elliptic C ∈L (Rn×n

sym ,Rn×n
sym ), µ > 0 and g ∈ Lp(Ω;Rn))

v 7→
ˆ

Ω

1
p

((
〈Cε(v),ε(v)〉+µ

) p
2 −µ

p
2
)

dx+
ˆ

Ω

|v−g|p dx,(1.8)

as recently considered in [25] can similarly be covered and generalised by the methods under-
lying Theorem 1.2, even for any elliptic operator A[D] in the sense of Section 2.2, and we shall
pursue this elsewhere. The reason for the reducibility of Theorem 1.2 to the full gradient case is
that the p-strong symmetric quasiconvexity (1.6) expresses a coerciveness property of the asso-
ciated variational integrals on W1,p. For 1 < p < ∞ and subject to (1.6), minimising sequences
can be proven to remain bounded in W1,p(Ω;Rn) by KORN-type inequalities. The p-strong
symmetric quasiconvexity, being an integral rather than a pointwise condition, gives us direct
access to the requisite KORN-type inequalities; see Section 3 for more detail.

If p = 1, ORNSTEIN’s Non-Inequality [63, 24, 49] does not allow to employ a similar reduc-
tion scheme. More systematically, if p = 1 and (LG) are in action, the (1-)strong symmetric
quasiconvexity still expresses a coerciveness property for the associated variational integrals on
LD (see Lemma 2.7). To streamline terminology, we simply say that f ∈ C(Rn×n

sym ) is strongly
symmetric quasiconvex provided there exists ` > 0 such that the function

Rn×n
sym 3 z 7→ f (z)− `V (z) is symmetric quasiconvex,(1.9)

where V := V1 shall be referred to as the reduced area integrand; the ubiquity of such func-
tions follows along the lines of [46, Prop. 2.14] (also see ZHANG [74] for a related construc-
tion of quasiconvex, linear growth integrands). In conjunction with (LG), this condition yields
the existence of BD-minima for the associated variational integrals subject to given Dirichlet
data (cf. Section 6.2). Moreover, appealing to Lemma 2.7, it is closely related to all minimis-
ing sequences being bounded in LD(Ω). Since the 1-strong quasiconvexity for full gradient
functionals, in turn, yields boundedness of the respective minimising sequences in W1,1(Ω;Rn)

(cf. [46]), a reduction to the full gradient is systematically excluded. Within the realm of p-
growth, symmetric quasiconvex functionals, this hereafter identifies the limiting case p = 1 as
the only one requiring a treatment on its own.

In this respect, the main result of this paper reads as follows:

Theorem 1.3 (Partial regularity of BD-minimisers). Let Ω ⊂ Rn be open and bounded. More-
over, suppose that f : Rn×n

sym → R is a variational integrand that is

(a) of class C2,1
loc(R

n×n
sym ),

(b) of linear growth in the sense of (LG) and
(c) strongly symmetric quasiconvex in the sense of (1.9).

Then for each M > 0 there exist εM = εM(n, `,L,M) > 0 and a radius R0 = R0(n, `,L,M) > 0
such that for every local BD-minimiser u ∈ BDloc(Ω) of F (in the sense of (1.3)) the following
holds: If x0 ∈Ω and 0 < R < R0 with B(x0,R)bΩ are such that∣∣∣∣ Eu(B(x0,R))

L n(B(x0,R))

∣∣∣∣< M and
 

B(x0,R)

∣∣∣∣E u− Eu(B(x0,R)
L n(B(x0,R))

∣∣∣∣dx+
|Esu|(B(x0,R))
L n(B(x0,R))

< εM,(1.10)
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then u is of class C1,α on B(x0,
R
2 ) for any 0 < α < 1. As a consequence, there exists an open

subset Ωu of Ω with L n(Ω\Ωu) = 0 such that for every x0 ∈Ωu, u is of class C1,α in a neigh-
bourhood of x0 for any 0 < α < 1. In particular, denoting Σu = Ω\Ωu, we have

Σu = Σ
1
u∪Σ

2
u

:=
{

x0 ∈Ω : liminf
R↘0

( 
B(x0,R)

|E u− (E u)B(x0,R)|dx+
|Esu|(B(x0,R))
L n(B(x0,R))

)
> 0
}

∪
{

x0 ∈Ω : limsup
R↘0

∣∣∣∣ Eu(B(x0,R))
L n(B(x0,R))

∣∣∣∣= ∞

}
.

(1.11)

Not being allowed to utilise full gradient techniques, Theorem 1.3 cannot be established in an
analogous manner as its full gradient counterpart from [46]. Partially based on recently available
results [11, 17, 28, 73], the proof of the previous theorem is given in Section 5. Here we rely in
an essential way on an improved estimate of the local BD-minimisers’ distances from suitable
A-harmonic approximations in terms of a superlinear power of the excess. To the best of our
knowledge, an estimate of this form has only been derived recently in the BV-full gradient setup
in [46], strongly relying on the full distributional gradients of BV-minima being Radon measures
of finite total variation. The aforementioned superlinear excess power, in turn, stems from the
higher regularity properties of the A-harmonic approximants on good balls. To define the latter
notion appropriately, we remark that the A-harmonic approximants on generic balls receive
their higher Sobolev regularity up to the boundary from the higher regularity of their prescribed
Dirichlet data; the precise correspondence is displayed in Proposition 5.3. For arbitrary balls
B b Ω and u ∈ BD(Ω), we can only assert that Tr∂B(u) ∈ L1(∂B;Rn). This motivates the
Fubini-type Theorem 4.1, implying that on sufficiently many spheres, BD-maps have interior
traces with some additional differentiability and integrability beyond L1. We wish to stress that
by Ornstein’s Non-Inequality this step does not follow as for BV, where the tangential traces
∂τ u can be shown to belong to L1(∂B) on sufficiently many balls B (see Remark 4.2). Here we
crucially use the embedding BD ↪→Ws, n

n−1+s for n≥ 2, 0 < s < 1 together with novel Poincaré-
type inequalities to be proved in Section 2. Up from here, it is then the overall aim of the proof
to show that Ornstein’s Non-Inequality essentially becomes invisible throughout the comparison
estimates, simultaneously keeping track of the enlarged nullspace of the symmetric gradient in
comparison with that of the full gradient. This comes along with both further conceptual and
technical difficulties, and Section 5 is devoted to their precise discussion and resolution. Finally,
let us mention that the approach as developed here should also give a streamlining and unifying
treatment for the BV-case in the dimensions n = 2 and n≥ 3; cf. Remark 5.9.

Lastly, let us comment on the hypotheses and extensions of Theorem 1.3. Condition (a)
is rather of technical than instrumental nature and can be relaxed (cf. [46] for a related dis-
cussion); as our focus is on the symmetric quasiconvexity condition rather than regularity of
the integrands, we stick to this assumption for simplicity. Let us note, however, that subject
to (a)–(c) from above, it is moreover not too difficult to show that BD-minima are actually
C2,α -partially regular once the C1,α -regularity of Theorem 1.3 is established. The methods un-
derlying the proof of Theorem 1.3 also apply to suitable x-dependent integrands, whereas the
case of fully non-autonomous integrands would require an additional argument. On the other
hand, Theorem 1.3 exclusively establishes the partial regularity, but does not provide Hausdorff
dimension bounds for the singular set Σu. Note that, by the strong symmetric quasiconvexity,
such estimates require a refined argument; see Section 5.5 for a discussion of these matters.

1.5. Structure of the Paper. In Section 2, we fix notation, prove and collect miscellaneous
background results. In Section 3, we deal with the superlinear growth situation and establish
Theorem 1.3. Section 4 then serves to prove a Fubini-type theorem for BD that is instrumental
in the proof of Theorem 1.3, and Section 5 is devoted to the proof of the latter. We conclude
with an appendix in Section 6.
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2. PRELIMINARIES

2.1. General Notation. We now briefly gather notation. Unless otherwise stated, Ω always
denotes an open and bounded Lipschitz subset of Rn. We denote B(x0,r) := {x∈Rn : |x−x0|<
r} the open ball of radius r > 0 centered at x0 and use the symbol Bn×n

sym to denote the closed unit
ball in Rn×n

sym with respect to the Frobenius norm |A| := (∑n
i, j=1 |ai j|2)1/2, A = (ai j)

n
i, j=1 ∈ Rn×n.

Whenever X is a finite dimensional real vector space, the symbol 〈·, ·〉 is used to denote the
usual inner product on X and S(X) is the space of symmetric bilinear forms on X . To avoid
ambiguities, note that duality pairings are exclusively used with subscripts, so e.g. 〈·, ·〉D ′×D

for the pairing between distributions and test functions. Also, for two given vectors a,b ∈ Rn,
a�b := 1

2 (abT+baT) denotes their symmetric tensor product, and we record that

1√
2
|a| |b| ≤ |a�b| ≤ |a| |b| for all a,b ∈ Rn.(2.1)

The symbol L (V ;W ) denotes the bounded linear operators between two normed linear spaces
V and W . As usual, L n and H n−1 denote the n-dimensional Lebesgue and the (n− 1)-
dimensional Hausdorff measure, respectively, and we put ωn := L n(B(0,1)). For notational
brevity, we shall also sometimes write dH n−1(x) = dσx, but this will be clear from the con-
text. Moreover, we denote M (Ω;Rm) the Rm-valued finite Radon measures on Ω. Given
µ ∈M (Ω;Rm) and A ∈B(Ω) (the Borel σ -algebra on Ω), we recall that µ A := µ(−∩A) is
the restriction of µ to A. When u ∈ L1

loc(Rn;Rm) or µ ∈M (Rn;Rm), we denote for a bounded
set A ∈B(Rn) with L n(A)> 0

(u)A :=
 

A
udL n :=

1
L n(A)

ˆ
A

udx and (µ)A :=
 

A
dµ :=

µ(A)
L n(A)

.

If A = B(x,r) is a ball, we write (u)x,r := (u)B(x,r) or (µ)x,r := (µ)B(x,r). If, however, A∈B(Rn)

is such that H n−1(A) ∈ (0,∞) and u : A→ Rm is integrable with respect to H n−1, then we
employ the notation  

A
udH n−1 :=

1
H n−1(A)

ˆ
A

udH n−1.

Lastly, we denote by c,C > 0 generic constants that might change from line to line and shall only
be specified provided their precise dependence on foregoing parameters is required. Similarly,
we write a' b if there exist two constants c,C > 0 such that ca≤ b≤Ca; in particular, c,C > 0
do not depend on a or b.

2.2. The space BD. In the following we recall the definition and record the properties of BD-
maps as shall be required in the upcoming sections; for more detail, the reader is referred to
[69, 11, 8, 4] and the references therein. We say that a measurable map u : Ω→ Rn belongs to
BD(Ω) (and is then said to be of bounded deformation) if and only if u ∈ L1(Ω;Rn) and

|Eu|(Ω) := sup
{ˆ

Ω

〈u,div(ϕ)〉dx : ϕ ∈ C1
c(Ω;Bn×n

sym )

}
< ∞.(2.2)

The space BDloc(Ω) then is defined in the obvious manner. Given u ∈ BD(Ω), the Lebesgue-
Radon-Nikodým decomposition of Eu yields

Eu = Eau+Esu = E uL n
Ω+

dEsu
d|Esu|

|Esu|,(2.3)
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where Eau�L n and Esu⊥L n are the absolutely continuous or singular parts of Eu with respect
to L n, respectively; in particular, we have u ∈ LD(Ω) if and only if u ∈ BD(Ω) and Eu�L n.
Moreover, E u is the density of Eau with respect to L n and coincides with the symmetric part
of the approximate gradient of u, cf. [4]. Throughout, we will work with the following modes
of convergence: Let u,u1,u2, ... ∈ BD(Ω). We say that (uk) converges to u in the norm topology
provided ‖uk−u‖BD(Ω)→ 0, where ‖v‖BD(Ω) := ‖v‖L1(Ω;Rn)+ |Ev|(Ω) for v ∈ BD(Ω). On the

other hand, we say that (uk) converges to u in the1 weak*-sense if uk→ u strongly in L1(Ω;Rn)

and Euk
∗
⇀ Eu in the sense of weak*-convergence of Rn×n

sym -valued Radon measures on Ω, and in
the strict sense (or strictly) if uk→ u strongly in L1(Ω;Rn) and |Euk|(Ω)→ |Eu|(Ω) as k→ ∞.
Lastly, if uk→ u strongly in L1(Ω;Rn) andˆ

Ω

√
1+ |E uk|2 dx+ |Esuk|(Ω)→

ˆ
Ω

√
1+ |E u|2 dx+ |Esu|(Ω), k→ ∞,(2.4)

then we shall say that (uk) converges to u in the area-strict sense. Note that, if we put 〈·〉 :=√
1+ | · |2, then area-strict convergence amounts to 〈Euk〉(Ω)→ 〈Eu〉(Ω) in the sense of func-

tions of measures to be recalled in Section 2.3 below. It is then routine to show that norm implies
area-strict, area-strict implies strict and strict implies weak*-convergence. When working with
u ∈ LD(Ω), we employ the norm ‖u‖LD(Ω) := ‖u‖L1(Ω;Rn) + ‖ε(u)‖L1(Ω;Rn×n

sym ) (recall that we
write ε(u) for Eu provided Eu�L n). Moreover, if u ∈ BD(Ω), then there exists a sequence
(u j)⊂ C∞(Ω;Rn)∩LD(Ω) such that u j→ u strictly as j→∞; clearly, if Ω =Rn, we may even
choose (u j)⊂ C∞

c (Rn;Rn).
As is by now well-known (cf. [69, 11, 17]), Lipschitz regularity of ∂Ω implies the existence

of a linear, bounded, surjective boundary trace operator Tr∂Ω : BD(Ω)→ L1(∂Ω;Rn), where
boundedness is understood with respect to the respective norm topologies. Crucially, this op-
erator is already surjective when acting on LD(Ω). Moreover, it is also continuous for strict
convergence in BD(Ω) (and hence area-strict convergence, too) but not for weak*-convergence
as specified above. Let us moreover note that, if u ∈ BD(Ω), then the trivial extension

u :=

{
u in Ω,

0 in Rn \Ω

belongs to BD(Rn) as well, and the operator E : u 7→ u is linear and bounded from BD(Ω) to
BD(Rn). We can now collect a refined result on smooth approximation, cf. [45, Sec. 4]:

Lemma 2.1 ((Area-)strict smooth approximation). Let Ω ⊂ Rn be an open and bounded with
Lipschitz boundary and let u0 ∈ LD(Ω). Then for each u ∈ BD(Ω) there exists a sequence
(u j)⊂ u0 +C∞

c (Ω;Rn) such that ‖u j−u‖L1(Ω;Rn)→ 0 and
ˆ

Ω

√
1+ |ε(u j)|2 dx→

ˆ
Ω

√
1+ |E u|2 dx+ |Esu|(Ω)+

ˆ
∂Ω

|Tr∂Ω(u0−u)�ν∂Ω|dH n−1.

If Σ⊂Ω is a C1-manifold oriented by ν : Σ→ Sn−1 and u ∈ BD(Rn), then Eu Σ is given by
KOHN’s formula (cf. [50])

Eu Σ = (u+−u−)�νH n−1
Σ,(2.5)

where u+ and u− are the right and left interior traces of u along Σ. These, in turn, are well-
defined upon the orientation of ν , and can be computed for H n−1-a.e. x ∈ Σ by virtue of

lim
r↘0

 
Σ±(x,r)

|u(y)−u±(x)|dy = 0(2.6)

for H n−1-a.e. x ∈ Σ, where Σ±(x,r) := B(x,r)∩{y ∈ Rn : 〈y− x,ν(x)〉≷ 0} for r > 0.

1Strictly speaking, being usually reserved for the BV-case, these notions should be termed symmetric weak*-, strict
and area-strict convergence. As we shall work with BD exclusively, however, no confusions will arise from this.
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We will also need a fractional embedding theorem for BD as one of the main ingredients
in the partial regularity proof below. Let 0 < θ < 1 and 1 ≤ p < ∞. Given U,Σ ⊂ Rn with
L n(U)> 0 and H n−1(Σ) ∈ (0,∞), we define

[u]Wθ ,p(U ;Rm) :=
(¨

U×U

|u(x)−u(y)|p

|x− y|n+θ p dxdy
) 1

p
for u ∈ Lp(U ;Rm),

[v]Wθ ,p(Σ;Rm) :=
(¨

Σ×Σ

|u(x)−u(y)|p

|x− y|n−1+θ p dH n−1(x)dH n−1(y)
) 1

p
for v ∈ Lp(Σ;Rm;H n−1),

where Lp(Σ;Rm;H n−1) is the space of maps v : Σ→ Rm which are p-integrable for H n−1.
The full norm on Wθ ,p(U ;Rm) or Wθ ,p(Σ;Rm) then is given by ‖ ·‖Wθ ,p(U ;Rm) := ‖u‖Lp(U ;Rm)+

[u]Wθ ,p(U ;Rm) (analogously for Wθ ,p(Σ;Rm)). Following KOLYADA [52] (also see BOURGAIN et

al. [15]), it is well-known that BV(Ω) ↪→Wθ ,n/(n−1+θ)(Ω) for n≥ 2 and θ ∈ (0,1). For BD(Ω),
we require the recent theory of VAN SCHAFTINGEN [73]: By [73, Prop. 6.3] and since n ≥ 2
in our setting, the symmetric gradient ε is elliptic and cancelling. Writing ε = ∑

n
k=1 Ak∂k with

Ak ∈L (Rn;Rn×n
sym ), ellipticity here means that the symbol map ε[ξ ] := ∑

n
k=1 Akξk : Rn→ Rn×n

sym
is injective for all ξ = (ξ1, ...,ξn)∈Rn \{0}. In turn, cancellation means that the Fourier symbol
ε[ξ ] is sufficiently spread in the sense that⋂

ξ∈Rn\{0}
ε[ξ ](Rn) = {0}.(2.7)

Hence by [73, Thms. 1.3, 8.1], for each θ ∈ (0,1) there exists c = c(n,θ)> 0 such that2

‖ϕ‖
L

n
n−1 (Rn;Rn)

+[ϕ]Wθ ,n/(n−1+θ)(Rn;Rn) ≤ c
ˆ
Rn
|ε(ϕ)|dx for all ϕ ∈ C∞

c (Rn;Rn).(2.8)

To state the next proposition, we remind the reader that on connected, open subsets Ω of Rn, the
nullspace of the symmetric gradient operator in D ′(Ω;Rn) is given by the rigid deformations

R(Ω) :=
{

x 7→ Ax+b : A =−A>, b ∈ Rn}.(2.9)

If ∂Ω moreover is Lipschitz, for each u ∈ BD(Ω) there exists a ∈R(Ω) such that

‖u−a‖L1(Ω;Rn) = inf
b∈R(Ω)

‖u−b‖L1(Ω;Rn) ≤ c|Eu|(Ω),(2.10)

where c = c(Ω,n)> 0. We refer to (2.10) as the Poincaré inequality on BD(Ω). Now we have

Proposition 2.2. Let n ≥ 2 and 0 < θ < 1. Moreover, let Ω ⊂ Rn be an open and bounded
domain with Lipschitz boundary. Then there holds

BD(Ω) ↪→Wθ , n
n−1+θ (Ω;Rn),(2.11)

continuity of the embedding being understood with respect to the norm topologies.

(a) If Ω moreover is connected, then for each u ∈ BD(Ω) there exists a ∈R(Ω) such that

‖u−a‖
Wθ , n

n−1+θ (Ω;Rn)
≤ c|Eu|(Ω),

where c > 0 is a constant that only depends on Ω,n and θ .
(b) There exists a constant c = c(n,θ) > 0 such that for every x0 ∈ Rn, R > 0 and every

u ∈ BD(Rn) there exists a ∈R(Rn) such that( 
B(x0,R)

ˆ
B(x0,R)

|ua(x)−ua(y)|
n

n−1+θ

|x− y|n+θn/(n−1+θ)
dxdy

) n−1+θ
n

≤CR1−θ

 
B(x0,R)

|Eu|,(2.12)

where ua := u−a.

2Note that the embedding BD ↪→ L
n

n−1 is originally due to STRAUSS [70].
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Proof. Let u ∈ BD(Rn) first and choose a sequence (u j)⊂ C∞
c (Rn;Rn) such that u j→ u strictly

in BD(Rn). Passing to a suitable subsequence, we may assume without loss of generality that
u j→ u L n-a.e. in Rn. Therefore, by Fatou’s lemma and (2.8),

‖u‖
L

n
n−1 (Rn;Rn)

+[u]Wθ ,n/(n−1+θ)(Rn;Rn) ≤ liminf
j→∞

‖u j‖L
n

n−1 (Rn;Rn)
+[u j]Wθ ,n/(n−1+θ)(Rn;Rn)

≤ c liminf
j→∞

ˆ
Rn
|ε(u j)|dx = c|Eu|(Rn),

(2.13)

Now let u ∈ BD(Ω), where Ω ⊂ Rn is open and bounded with Lipschitz boundary ∂Ω. By the
above, there exists a bounded linear extension operator E : BD(Ω)→ BD(Rn). Therefore,

‖u‖Wθ ,n/(n−1+θ)(Ω;Rn) ≤max{1,L n(Ω)θ/n}(‖u‖
L

n
n−1 (Ω;Rn)

+[u]Wθ ,n/(n−1+θ)(Ω;Rn))

≤max{1,L n(Ω)θ/n}(‖Eu‖
L

n
n−1 (Rn;Rn)

+[Eu]Wθ ,n/(n−1+θ)(Rn;Rn))

(2.13)
≤ C(n,θ ,L n(Ω))|EEu|(Rn)≤C(n,θ ,Ω)‖u‖BD(Ω),

and (2.11) follows. If Ω moreover is connected, pick a ∈R(Ω) such that (2.10) holds; applying
the preceding inequality to u− a and (2.10) consequently imply (a). Ad (b). We may assume
that x0 = 0, and shall write Br := B(0,r) for r > 0. Letting u ∈ BD(Rn), we first determine
an element b ∈ R(Rn) such that (∗) in the following inequality holds on the unit ball, due to
part (a) with Ω = B(0,1) and p = n

n−1+θ
:(ˆ

BR

ˆ
BR

|ub(x)−ub(y)|p

|x− y|n+θ p dxdy
) 1

p

=
R

2n
p

R
n+θ p

p

(ˆ
B1

ˆ
B1

|ub(Rx)−ub(Ry)|p

|x− y|n+θ p dxdy
) 1

p

(∗)
≤ c

R
2n
p

R
n+θ p

p

R
ˆ

B1

|(ε(ub))(Rx)|dx = cR
n
p R1−θ

 
BR

|Eu|.

This in turn determines a ∈R(Rn) for (2.12), and the proof is hereby complete. �

The dimensional hypothesis n≥ 2 in Proposition 2.2 in fact cannot be omitted:

Remark 2.3 (n = 1). The previous proposition does not remain valid for n = 1. This can be seen
by the fact that W1,1((a,b)) 6↪→Wθ ,1/θ ((a,b)) for any 0 < θ < 1 and all −∞ < a < b < ∞. For
example, pick θ = 1

2 . Then it is well-known that W1,1((a,b)) embeds into the Besov-Nikolskiı̆-

space B1/2
2,∞ but not into B1/2

2,2 ((a,b)) =W1/2,2((a,b)). In fact, continuity of the embedding would
yield that, as n = 1, BD((a,b)) = BV((a,b)) embeds into W1/2,2((a,b)) by smooth approxima-
tion, but the sign function belongs to BV((−1,1)) but not to W1/2,2((−1,1)).

Remark 2.4 (Projection stability). Since R(Ω) is a finite dimensional space of polynomials,
the map a as in (2.10) can be taken to be the L2-projection of u onto R(Ω) (which here is
well-defined for L1-maps, too); cf. [17, Sec. 3]. In particular, it satisfies the stability estimate 

B(x0,r)
|a|dx≤ c

 
B(x0,r)

|u|dx, u ∈ BD(B(x0,r)).

2.3. Functions of measures. Here we briefly record the most important features of functions
being applied to measures. First, let f : Rn×n

sym → R≥0 be convex and satisfy the growth bound
c1|z| − c2 ≤ f (z) ≤ c3(1 + |z|) for some c1,c2,c3 > 0 and all z ∈ Rn×n

sym . We recall that the
recession function f ∞ : Rn×n

sym → R is given by

f ∞(z) := limsup
t↘0

t f
( z

t

)
, z ∈ Rn×n

sym ,

and by convexity and the linear growth hypothesis, the limsup is a actually a limit. Given
µ ∈M (Ω;Rn×n

sym ), we denote its Lebesgue-Radon-Nikodým decomposition µ = µa + µs and
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then define the measure f (µ) for A ∈B(Ω) by

f (µ)(A) :=
ˆ

A
f (µ) :=

ˆ
A

f
(

dµa

dL n

)
dL n +

ˆ
A

f ∞

(
dµs

d|µs|

)
d|µs|.(2.14)

If ξ ∈ Rn×n
sym , we put f (µ − ξ ) := f (µ − ξL n). Now suppose that f ∈ C(Rn×n

sym ) is merely
assumed symmetric-rank-one convex (so is convex with respect to directions in the symmetric
rank-one cone Rn�Rn := {a�b : a,b ∈ Rn}) and of linear growth in the sense of (LG). Even
though not giving rise to a positive measure, (2.14) still is a valid definition provided the density
dµs

d|µs| takes values in the symmetric-rank-one cone |µs|-a.e.. In fact, in this situation, f is convex
along directions contained in Rn�Rn and so, by the linear growth assumption, f ∞(z) exists
provided z ∈ Rn�Rn. When applying such integrands f to Eu for u ∈ BD(Ω), then the recent
work of DE PHILIPPIS & RINDLER [28] yields dEu

d|Esu| ∈ Rn�Rn |Esu|-a.e.. Hence

f (Eu)(A) :=
ˆ

A
f (Eu) :=

ˆ
A

f (E u)dL n +

ˆ
A

f ∞

(
dEsu

d|Esu|

)
d|Esu| for all A ∈B(Ω)

for u ∈ BD(Ω) is in fact a well-posed definition. Working from the previous ideas and upon the
method of proof for signed variants given in [54], our fundamental background fact result is

Theorem 2.5 (RINDLER [65]). Let Ω ⊂ Rn be an open and bounded Lipschitz domain and let
f ∈ C(Rn×n

sym ) be a symmetric quasiconvex integrand which, in addition, satisfies (LG). Also, let
u0 ∈ BD(Ω). Then, with the notation of (2.3), the functional

Fu0 [u;Ω] :=
ˆ

Ω

f (E u)dx+
ˆ

Ω

f ∞

(
dEsu

d|Esu|

)
d|Esu|+

ˆ
∂Ω

f ∞(Tr∂Ω(u0−u)�ν∂Ω)dH n−1

for u∈BD(Ω) is lower semicontinuous with respect to weak*-convergence in the space BD(Ω).

Finally, a lemma on the continuity of symmetric rank-one-convex functions for the area-strict
metric that we shall frequently employ in conjunction with smooth approximation; in effect, it
appears as a generalisation of the classical convex RESHETNYAK (semi-)continuity theory [64]:

Lemma 2.6 (Symmetric rank-one-convexity and area-strict continuity). Let f ∈ C(Rn×n
sym ) be

symmetric rank-one convex with (LG) and let Ω ⊂ Rn be an open and bounded set. Then
BD(Ω) 3 u 7→ f (Eu)(Ω) is continuous with respect to area-strict convergence.

The lemma follows from [17, Prop. 5.1] upon KRISTENSEN & RINDLER’s refinement for
signed integrands, [54, Thm. 4] and specifying to the symmetric gradient. Rather than repro-
ducing the proof of [46, Prop. 3.1] with the relevant but easy modifications, we confine to stating
the following equivalence between strong symmetric quasiconvexity at some z0 ∈ Rn×n

sym and co-
erciveness; recall that Ω⊂ Rn is assumed to be open and bounded with Lipschitz boundary.

Lemma 2.7. Let f ∈ C(Rn×n
sym ) satisfy (LG) and let u0 ∈ LD(Ω) be a given Dirichlet datum.

Then all minimising sequences of the variational problem

to infimise
ˆ

Ω

f (ε(v))dx over LDu0(Ω)(2.15)

are bounded in LD(Ω) if and only if there exists z0 ∈ Rn×n
sym and ` > 0 such that the function

h : z 7→ f (z)− `V (z) is symmetric quasiconvex at z0 (meaning that h(z0) ≤
´

Q h(z0 + ε(ϕ))dx
for all ϕ ∈ C∞

c (Q;Rn)).

2.4. V -function estimates and Korn-type inequalities. For future applications in Section 3,
we record some non-standard forms of Korn-type inequalities and gather here the relevant back-
ground results from BREIT & DIENING [16]. Note that, alternatively, the specifically required
forms could also be traced back to ACERBI & MINGIONE [3] but then would follow only by
inspection of the proof of [3, Thm. 3.1].
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A differentiable function ψ : R≥0 → [0,∞) is called an N-function provided ψ(0) = 0, its
derivative ψ ′ is right-continuous, non-decreasing and satisfies

ψ
′(0) = 0, ψ

′(t)> 0 for t > 0 and lim
t→∞

ψ
′(t) = ∞.(2.16)

We now say that an N-function ψ is of class ∆2 provided there exists K > 0 such that ψ(2t) ≤
Kψ(t) for all t ≥ 0, and the infimum over all possible such constants is denoted ∆2(ψ). Similarly,
we say that an N-function ψ is class ∇2 provided the Fenchel conjugate ψ∗(t) := sups≥0(st−
ψ(s)) is of class ∆2; we put ∇2(ψ) := ∆2(ψ

∗). We then have

Proposition 2.8 ([16, Thm. 1.1]). Let ψ : R≥0→R≥0 be an N-function. Then the following are
equivalent:

(a) ψ is both of class ∆2 and ∇2, abbreviated by ψ ∈ ∆2∩∇2.
(b) There exists a constant A > 0 such that for all u ∈ C∞

c (Rn;Rn) there holdsˆ
Rn

ψ(|Du|)dx≤
ˆ
Rn

ψ(A|ε(u)|)dx.

(c) There exists a constant A′ > 0 such that for all u ∈ C1(Rn;Rn) and all open balls
B(x0,R) there holdsˆ

B(x0,R)
ψ(Du− (Du)B(x0,R))dx≤

ˆ
B(x0,R)

ψ(A′(ε(u)− (ε(u))B(x0,R)))dx.

Should (a) be satisfied, then the constants from (b) and (c) only depend on ∆2(ψ) and ∇2(ψ).

We next consider shifted N-functions (cf. [30, 31]). Letting ϕ : R≥0→R≥0 be an N-function,
we put for a≥ 0

ϕa(t) :=
ˆ t

0

ϕ ′(a+ s)
a+ s

sds, t ≥ 0.(2.17)

The following lemma compactly gathers the for us most relevant results on shifted N-functions:

Lemma 2.9 ([30, Lem. 23]). Let ϕ ∈ C1([0,∞))∩C2((0,∞);R≥0) be an N-function such that
c1tϕ ′′(t)≤ ϕ ′(t)≤ c2tϕ ′′(t) for some c1,c2 > 0 and all t > 0. Given a≥ 0, define ϕa by (2.17).
Then both ∆2(ϕa) and ∇2(ϕa) can be bounded independently of a and so ϕa satisfies the ∆2∩∇2-
condition uniformly in a≥ 0.

We come to the requisite estimates for V -functions, which we define for 1≤ p < ∞ by

Vp(z) :=
(
1+ |z|2

) p
2 −1, z ∈ Rm,(2.18)

so that, with the terminology of (1.9)ff., V =V1; note that Vp ∈ ∆2∩∇2 if and only if 1 < p < ∞.

Lemma 2.10 ([46, Sec. 2.4], [27, Lem. 2.4]). Let m∈N. Then there exist constants c> 0 merely
depending on m such that there holds

(
√

2−1)min{|z|, |z|2} ≤V (z)≤min{|z|, |z|2},

V (λ z)≤ λ
2V (z),

V (z+w)≤ 2(V (z)+V (w))

(2.19)

for all z,w ∈ Rm and λ ≥ 1. Moreover, for each 1 < p < ∞ there exist two constants 0 < θp ≤
Θp < ∞ such that for all z,z′ ∈ Rm there holds

θp
(
1+ |z|2 + |z′|2

) p−2
2 |z′|2 ≤Vp(z+ z′)−Vp(z)−〈V ′p(z),z′〉

≤Θp
(
1+ |z|2 + |z′|2

) p−2
2 |z′|2.

(2.20)
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2.5. Miscellaneous auxiliary results. In this final subsection we gather some mixed technical
results. We begin with the EKELAND variational principle [35], helping us to obtain good ap-
proximating sequences of certain BD-maps later on, in a form given in [42, Thm. 5.6, Rem. 5.5]:

Lemma 2.11 (Ekeland variational principle). Let (X ,d) be a complete metric space and let
F : X → R∪{+∞} be a lower semicontinuous function for the metric topology, bounded from
below and taking a finite value at some point. Assume that for some u ∈ X and some ε > 0 we
have F [u]≤ infX F + ε . Then there exists v ∈ X such that

(a) d(u,v)≤
√

ε ,
(b) F [v]≤F [u],
(c) F [v]≤F [w]+

√
εd(v,w) for all w ∈ X.

For the following, let us recall that a symmetric bilinear form A ∈ S(RN×n) is called strongly
elliptic or Legendre-Hadamard provided there exists λ > 0 such that for all a∈RN ,b∈Rn there
holds A[a⊗b,a⊗b]≥ λ |a⊗b|2. For such bilinear forms, we have the following

Lemma 2.12 ([56, Lem. 15.2.1],[46, Prop. 2.11], [19, Lem. 2.11]). Let 1 < p < ∞ and k ∈
N. Then, for any open ball B in Rn and any strongly elliptic bilinear form A ∈ S(RN×n), the
mapping

Wk,p(B;RN) 3 u 7→ (−div(A∇u),Tr∂B u) ∈Wk−2,p(B;RN)×Wk− 1
p ,p(∂B;RN)

is a topological isomorphism. Moreover, if |A| ≤ Λ and −div(A∇u) = 0 in D ′(Ω;RN), then
there holds u ∈ C∞(Ω;RN) together with

sup
B(x0,

R
2 )

|∇u−A|+R sup
B(x0,

R
2 )

|∇2u| ≤C
 

B(x0,R)
|∇u−A|dx for all A ∈ RN×n

for all B(x0,R)bΩ, where C =C(n,N,λ ,Λ)> 0 is a constant.

Finally, a standard iteration result:

Lemma 2.13 ([46, Lem. 4.4]). Let θ ∈ (0,1) and R> 0. Suppose that Φ,Ψ : (0,R]→R are non-
negative functions such that Φ is bounded and Ψ is decreasing together with Ψ(σt)≤ σ−2Ψ(t)
for all t ∈ (0,R] and σ ∈ (0,1]. Moreover, suppose that there holds

Φ(r)≤ θΦ(s)+Ψ(s− r)

for all r,s ∈ [R
2 ,R] with r < s. Then there exists a constant C =C(θ)> 0 such that

Φ
(R

2

)
≤CΨ(R).

3. THE SUPERLINEAR GROWTH CASE: PROOF OF THEOREM 1.2

In this section we provide the proof of Theorem 1.2. We thereby establish that in the su-
perlinear growth case, the partial regularity of minima for p-strongly symmetric quasiconvex
integrands, 1 < p < ∞, can be reduced to the full gradient situation. This reduction cannot be
employed in the linear growth case p = 1, thereby particularly motivating an independent proof
of Theorem 1.3.

Henceforth, let 1 ≤ p < ∞ and suppose that G ∈ C(Rn×n) is of p-growth in the sense that
there exists c > 0 such that

|G(z)| ≤ c(1+ |z|p)(3.1)

for all z ∈ Rn×n. Recalling the function Vp from (2.18), we say that a function G ∈ C(Rn×n) is
p-strongly quasiconvex if and only if there exists λ > 0 such that

Rn×n 3 z 7→ G(z)−λVp(z) ∈ R is quasiconvex.(3.2)
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As a consequence of the last part of Lemma 2.10, if 1 < p < ∞, then p-strong quasiconvexity of
G ∈ C2(Rn×n) is equivalent to the existence of a constant ν > 0 such that

ν

ˆ
Q
(1+ |z|2 + |Dϕ|2)

p−2
2 |Dϕ|2 dx≤

ˆ
Q

G(z+Dϕ)−G(z)dx(3.3)

holds for all z∈Rn×n and all ϕ ∈C∞
c (Q;Rn). Using (1+t2)

p−2
2 t2 ' t2+t p for all t ≥ 0 provided

2 ≤ p < ∞, for this range of p it is easily seen that p-strong quasiconvexity of G implies the
existence of a constant µ > 0 such that

µ

ˆ
Q
|Dϕ|2 + |Dϕ|p dx≤

ˆ
Q

G(z+Dϕ)−G(z)dx(3.4)

holds for all z ∈ Rn×n and all ϕ ∈ C∞
c (Q;Rn). In particular, however, we remark that the 1-

strong quasiconvexity in the sense of (3.2) is not equivalent to (3.3), cf. Remark 3.2. In both
the superlinear and linear growth regimes, analogous statements hold for (p-)strongly symmet-
ric quasiconvex integrands. Toward the proof of Theorem 1.2, we record the following result
attributable to ACERBI & FUSCO [2] for p≥ 2 and CAROZZA, FUSCO and MINGIONE [19] for
1 < p < 2:

Proposition 3.1 ([2, Thm. II.1], [19, Thm. 3.2]). Let 1 < p < ∞ and let Ω ⊂ Rn be open.
Suppose that G ∈ C2(Rn×n) satisfies (3.1) for all z ∈ Rn×n and,

(a) if p≥ 2, (3.4) holds for some µ > 0, all z ∈ Rn×n and ϕ ∈ C∞
c (Q;Rn),

(b) if 1 < p < 2, (3.3) holds for some ν > 0, all z ∈ Rn×n and ϕ ∈ C∞
c (Q;Rn).

Then for any local minimiser u ∈W1,p
loc (Ω;Rn) of the integral functional

v 7→
ˆ

G(Dv)dx

there exists an open set Ωu ⊂ Ω with L n(Ω \Ωu) = 0 such that u is of class C1,α for any
0 < α < 1 in a neighbourhood of any of the elements of Ωu.

Working from Proposition 3.1, we proceed to establish Theorem 1.2:

Proof of Theorem 1.2, p≥ 2. Let g ∈ C2(Rn×n
sym ) satisfy the assumptions of Theorem 1.2. We

then define a new integrand Gg : Rn×n→ R by

Gg(z) := g(zsym), z ∈ Rn×n.(3.5)

Our aim is to establish that Gg satisfies the assumptions of Proposition 3.1. Clearly, Gg = g ◦
Πsym, where Πsym : Rn×n→Rn×n

sym is the orthogonal projection onto the symmetric matrices, and
hence Gg ∈C2(Rn×n). Moreover, since |zsym| ≤ |z| for all z∈Rn×n, |Gg(z)| ≤ Lp(1+ |zsym|p)≤
Lp(1+ |z|p) by (1.5), and so Gg satisfies (3.1) for all z ∈ Rn×n. It thus remains to show that Gg

satisfies (3.4).
Recall that g : Rn×n

sym → R satisfies (1.6). We note that, as p ≥ 2, for each fixed x ∈ Q, the

function Hx : s 7→ (1+s2+ |ε(u)(x)|2)
p−2

2 |ε(u)(x)|2 is non-decreasing and (1+t2)
p−2

2 t2' t2+t p

for all t ≥ 0. We obtain similarly to (3.3) that there exists µ̃ > 0 such that

µ̃

ˆ
Q
|ε(ϕ)|2 + |ε(ϕ)|p dx≤

ˆ
Q

g(zsym + ε(ϕ))−g(zsym)dx

for all z ∈ Rn×n and all ϕ ∈ C∞
c (Q;Rn). By the usual Korn inequalities (i.e., considering the

N-function t 7→ tq for q > 1 in Proposition 2.8), there exists µ > 0 such thatˆ
Q

Gg(z+Dϕ)−Gg(z)dx =
ˆ

Q
g(zsym + ε(ϕ))−g(zsym)dx

≥ µ̃

ˆ
Q
|ε(ϕ)|2 + |ε(ϕ)|p dx≥ µ

ˆ
Q
|Dϕ|2 + |Dϕ|p dx
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for all ϕ ∈ C∞
c (Q;Rn) and z ∈ Rn×n. Hence Gg satisfies (3.4) and so Gg satisfies the require-

ments of Proposition 3.1. To conclude the proof, it suffices to note that if u ∈W1,p
loc (Ω;Rn) is

a local minimiser for v 7→
´

g(ε(v))dx, then it is a local minimiser for v 7→
´

Gg(Dv)dx. By
Proposition 3.1 (a), the proof is complete. �

Proof of Theorem 1.2, 1 < p < 2. We may argue as in the proof in the superquadratic growth
case apart from establishing the p-strong quasiconvexity of Gg. Note that, for 1 < p < 2, Hx as
defined above is not non-decreasing anymore; hence a more refined argument is required. To
establish that Gg is p-strongly quasiconvex in the sense of Proposition 3.1 (b), we claim that
there exists a constant c = c(p,n)> 0 such thatˆ

Q
(1+ |z|2 + |Dϕ|2)

p−2
2 |Dϕ|2 dx≤ c

ˆ
Q
(1+ |zsym|2 + |ε(ϕ)|2)

p−2
2 |ε(ϕ)|2 dx(3.6)

holds for all z ∈ Rn×n and all ϕ ∈ C∞
c (Q;Rn).

In view of (3.6), let ϕ ∈ C∞
c (Q;Rn) and z ∈ Rn×n be arbitrary. Since 1 < p < 2, the function

s 7→ (1+ |s|2 + |Dϕ(x)|2)
p−2

2 is decreasing in s for every x ∈ Q. Thus, as |zsym| ≤ |z| for all
z ∈ Rn×n, ˆ

Q
(1+ |z|2 + |Dϕ|2)

p−2
2 |Dϕ|2 dx≤

ˆ
Q
(1+ |zsym|2 + |Dϕ|2)

p−2
2 |Dϕ|2 dx =: (∗).(3.7)

Now, define a function ψ : R≥0→ R≥0 by

ψ(t) := (1+ t)p−2t2, t ≥ 0.(3.8)

Then we have, with the correspondingly shifted function ψa being defined for a≥ 0 by (2.17),

ψa(t)' ψ
′′(a+ t)t2 ' (1+a+ t)p−2t2 ' (1+ |a|2 + |t|2)

p−2
2 t2,(3.9)

and the constants implicit in ’'’ are independent of a; the lengthy yet elementary verification of
this fact is deferred to the appendix, Section 6.2. As a consequence of Lemma 2.9 and p > 1, ψa

belongs to ∆2∩∇2 and, most importantly, ∆2(ψa) and ∇2(ψa) are independent of a≥ 0. Hence,
by Proposition 2.8, there exists a constant A = A(∆2(ψa),∇2(ψa)) > 0 – which, since ∆2(ψa)

and ∇2(ψa) do not depend on a, is actually independent of a: A = A(∆2(ψ),∇2(ψ))> 0 – such
that for all ϕ ∈ C∞

c (Q;Rn) there holdsˆ
Q

ψa(|Dϕ|)dx≤
ˆ

Q
ψa(A|ε(ϕ)|)dx.(3.10)

Clearly, since ψ and each ψa are monotonically increasing, we may assume that A> 1. Applying
the previous inequality to the particular choice a = |zsym|, we therefore obtain

(∗)
(3.9)
≤ c

ˆ
Q

ψ|zsym|(|Dϕ|)dx

(3.10)
≤ c

ˆ
Q

ψ|zsym|(A|ε(ϕ)|)dx

(3.9)
≤ c

ˆ
Q
(1+ |zsym|2 +A2|ε(ϕ)|2)

p−2
2 A2|ε(ϕ)|2 dx

≤ cA2
ˆ

Q
(1+ |zsym|2 + |ε(ϕ)|2)

p−2
2 |ε(ϕ)|2 dx,

(3.11)

the last inequality being valid by A > 1 and p− 2 < 0. Then, combining (3.7) and (3.11),
we arrive at (3.6). We can then proceed in showing that Gg defined by (3.5) is p-strongly
quasiconvex. To this end, let ϕ ∈ C∞

c (Q;Rn) and z ∈ Rn×n be arbitrary. We then findˆ
Q

Gg(z+Dϕ)−Gg(z)dx =

ˆ
Q

g(zsym + ε(ϕ))−g(zsym)dx
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(2.20), (1.6)
≥ `pθp

ˆ
Q
(1+ |zsym|2 + |ε(ϕ)|2)

p−2
2 |ε(ϕ)|2 dx

(3.6)
≥ ν

ˆ
Q
(1+ |z|2 + |Dϕ|2)

p−2
2 |Dϕ|2 dx,

where ν =
`pθp

c with `p > 0 from (1.6) and the constant c > 0 from (3.6). Thus Theorem 1.2
follows for the growth range 1 < p < 2 and in combination with the above, the proof of Theo-
rem 1.2 is complete. �

Remark 3.2. When linear growth integrands are concerned, setting p = 1 in (3.3) does not give
rise to an equivalent notion of (1-)strong quasiconvexity in the sense of (3.2) with p= 1 (also see
the restriction of exponents in Lemma 2.10). This can be even seen for strongly convex linear
growth integrands such as the area integrand m : z 7→

√
1+ |z|2(= V (z) + 1), compare (5.2)

from below. The underlying reason for this is that convex, linear growth C2-integrands typically
exhibit (p,q)-type growth behaviour on the level of the second derivatives in the following sense:
There exist 1 < a < ∞ and constants Λ1,Λ2 > 0 such that

Λ1
|z|2

(1+ |ξ |2) a
2
≤ 〈m′′(ξ )z,z〉 ≤ Λ2

|z|2

(1+ |ξ |2) 1
2

for all z,ξ ∈ Rn×n
sym ,(3.12)

see [45] and [14, Ex. 4.17] for a discussion. In addition, note that if we consider an a-elliptic
integrand satisfying (1.9) (the latter in turn expressing a coerciveness property on LD or BD but
not W1,1 or BV), one obtains that generalised minima belong to W1,1

loc for if 1< a< 1+ 2
n , cf. [44,

Thm. 1.1]. Even though the general reducibility to the full gradient case for p = 1 is ruled out
by ORNSTEIN’s Non-Inequality, one might hope to employ a variant of such a procedure for
a-elliptic integrands, where one has improved integrability estimates. However, the available
W1,1

loc-regularity result of [44] hinges on specific minimising sequences being locally uniformly
bounded in some W1,q, q > 1, but this neither implies boundedness of all minimising sequences
in W1,1

loc nor in W1,1(Ω;Rn). In light of [46, Prop. 3.1], this would be necessary for a possible
reduction procedure; still, if possible, it would only work for convex integrands with a certain
ellipticity ratio, not being applicable to the strongly (symmetric) quasiconvex case.

4. A FUBINI–TYPE THEOREM FOR BD–MAPS

As one of the main tools in the proof of Theorem 1.3, we now give a Fubini-type result for
functions of bounded deformation. In effect, this establishes that on L 1-a.e. sphere with fixed
center, BD-maps possess additional fractional differentiability and integrability; on arbitrary
spheres, we can only expect L1-integrability of interior traces. Aiming to linearise later on,
suitable competitor maps attaining these more regular boundary values then will equally belong
to better Sobolev spaces and so the results of Lemma 2.12 become accessible.

Theorem 4.1. Let n ≥ 2, 0 < θ < 1, x0 ∈ Rn and u ∈ BDloc(Rn). Then for L 1–almost all
radii r > 0, H n−1-a.e. x ∈ ∂B(x0,r) are Lebesgue points for u. For such r > 0, the restrictions
u|∂B(x0,r) are hereafter well-defined and moreover belong to Wθ ,n/(n−1+θ)(∂B(x0,r);Rn).

More precisely, there exists a constant C =C(n,θ)> 0 (which, in particular, is independent of
x0 and u) with the following property: For all 0 < s < r < ∞ there exist t ∈ (s,r) and α ∈R(Rn)

such that for H n−1-a.e. x ∈ ∂B(x0, t), u(x) coincides with its precise representative and there
holds ( 

∂B(x0,t)

ˆ
∂B(x0,t)

|uα(x)−uα(y)|
n

n−1+θ

|x− y|n−1+ nθ

n−1+θ

dσx dσy

) n−1+θ
n

≤C
rn

t
(n−1)(n−1+θ)

n (r− s)
n−1+θ

n

×

×
 

B(x0,r)
|Eu|.

(4.1)
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FIGURE 1. The geometric situation in the proof of Theorem 4.1 in two di-
mensions for selected points y = yi. Excluding the H n−1–nullset (−x), we
project the midpoints of the line segment of x and yi onto tSn−1. This gives rise
to the projections zi = πt(x,yi), and we consequently integrate with respect to
t to have the requisite second radius integral emerging.

Proof. It is no loss of generality to assume x0 = 0, and hence we write Br := B(0,r) in the
sequel. For clarity, we divide the proof into three parts.

Step 1. A general Fubini-type theorem for Wϑ ,p-maps. In a first step, we let 0 < ϑ < 1,
1≤ p < ∞ and let u ∈ (Wϑ ,p∩C)(Rn;Rn). The aim of this step is to show the inequality

ˆ R

0

¨
∂Br×∂Br

|u(x̃)−u(ỹ)|p

|x̃− ỹ|n+ϑ p−1 dσx̃ dσỹ dr ≤C
¨

BR×BR

|u(x̃)−u(ỹ)|p

|x̃− ỹ|n+ϑ p dx̃dỹ(4.2)

for all R > 0, where C = C(n,ϑ , p) > 0 is a constant. Denoting the integral on the left by (∗),
we change variables to the unit ball and put x̃ = rx, ỹ = ry. We thereby obtain, with Sn−1 :=
∂B(0,1),

(∗)≤
¨

Sn−1×Sn−1

ˆ R

0
(rn−1)2 |u(rx)−u(ry)|p

|rx− ry|n+ϑ p−1 dr dσy dσx.(4.3)

In comparison with the right-hand side of (4.2), the ultimate integral only contains one integral
with respect to the radii at the cost of a lower power in the integrand’s denominator. We thus
must argue for the appearance of the second such integral while raising the power of the relevant
integrand’s denominator by 1. Let x ∈ Sn−1 and 0 < t < R and be given. We put

πt(x,y) := t
x+ y
|x+ y|

, y ∈ Sn−1 \{−x},

which is the projection of the mid point of the line segment [x,y] onto ∂Bt , cf. Figure 4. Hence,
the mapping Πt,x : Sn−1 \ {−x} → tSn−1 given by Πt,x(y) := πt(x,y) is well–defined. We now
estimate for arbitrary x ∈ Sn−1 and y ∈ Sn−1 \{−x}

|u(rx)−u(ry)|p ≤C(|u(rx)−u(πt(x,y))|p + |u(ry)−u(πt(x,y))|p).

Hence for all 0 < a(x,y)≤ b(x,y)≤ R, an integration with respect to t ∈ [a(x,y),b(x,y)] yields

|u(rx)−u(ry)|p ≤C
 b(x,y)

a(x,y)
|u(rx)−u(πt(x,y))|p dt +C

 b(x,y)

a(x,y)
|u(ry)−u(πt(x,y))|p dt.(4.4)
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At this point, fix 0 < r ≤ R. We then choose a(x,y) := r(1− |x−y|
4 ) and b(x,y) := r. This

particularly implies by |x− y| ≤ 2 for all x,y ∈ Sn−1

|b(x,y)−a(x,y)|= r
|x− y|

4
and

r
2
≤ a(x,y)≤ b(x,y) = r.(4.5)

Now, an elementary geometric consideration (cf. Figure 4) yields that for all x ∈ Sn−1 and
y ∈ Sn−1 \{−x} there holds ∣∣∣∣x− x+ y

|x+ y|

∣∣∣∣≤ |x− y|.(4.6)

We thus have for all 0 < t ≤ r ≤ R

|rx−πt(x,y)|= r
∣∣∣∣x− t

r
x+ y
|x+ y|

∣∣∣∣≤ r
∣∣∣∣x− x+ y
|x+ y|

∣∣∣∣+ r(1− t
r )≤ r|x− y|+(r− t).(4.7)

Combining (4.3), (4.4) and (4.5), we then obtain

(∗)≤C
¨

Sn−1×Sn−1

ˆ R

0
(rn−1)2

 r

r(1− |x−y|
4 )

|u(rx)−u(πt(x,y))|p

|rx− ry|n+ϑ p−1 dt dr dσx dσy

+C
¨

Sn−1×Sn−1

ˆ R

0
(rn−1)2

 r

r(1− |x−y|
4 )

|u(ry)−u(πt(x,y))|p

|rx− ry|n+ϑ p−1 dt dr dσy dσx =: I+ II,

where we have used that for each x ∈ Sn−1, {−x} is a nullset for H n−1. The two integrals are
symmetric in x and y (also note that πt(x,y) = πt(y,x)), and so it suffices to employ the desired
estimate for one of these two integrals. We first estimate by virtue of the first part of (4.5)

I≤C
¨

Sn−1×Sn−1

ˆ R

0
(rn−1)2

ˆ r

r(1− |x−y|
4 )

|u(rx)−u(πt(x,y))|p

|rx− ry|n+ϑ p dt dr dσx dσy =: J,

so that the desired second radius integral has emerged. To estimate J, note that if r(1− |x−y|
4 )≤

t ≤ r, then

−t ≤ r
( |x− y|

4
−1
)
⇒ r− t ≤ r

|x− y|
4

(4.7)
=⇒ |rx−πt(x,y)| ≤

5
4

r|x− y|.(4.8)

Moreover, we note that for such t, we have

r(1− |x− y|
4

)≤ t ≤ r⇒ (1− |x− y|
4

)≤ t
r
≤ 1⇒ 1≤ r

t
≤ 1

1− |x−y|
4

|x−y|≤2
≤ 2.(4.9)

We then estimate

J
(4.8)
≤ C

¨
Sn−1×Sn−1

ˆ R

0
(rn−1)2

ˆ r

r(1− |x−y|
4 )

|u(rx)−u(πt(x,y))|p

|rx−πt(x,y)|n+ϑ p dt dr dσx dσy

=C
¨

Sn−1×Sn−1

ˆ R

0
rn−1

ˆ r

r(1− |x−y|
4 )

|u(rx)−u(πt(x,y))|p

|rx−πt(x,y)|n+ϑ p

( r
t

)n−1
tn−1 dt dr dσx dσy

(4.9)
≤ C

¨
Sn−1×Sn−1

ˆ R

0
rn−1

ˆ r

r(1− |x−y|
4 )

|u(rx)−u(πt(x,y))|p

|rx−πt(x,y)|n+ϑ p tn−1 dt dr dσx dσy = J′.

At this point, we change variables and put z := (x+ y)/|x+ y|. By the geometry of the map
Π1,x and the fact that for any y ∈ Sn−1 there holds Sn−1 \{−x} 3 y 7→ (x+y)/|x+y| ∈ Sn−1, the
relevant Jacobian is seen to be bounded. A routine estimation thus yields

J′ ≤C
¨

Sn−1×Sn−1

ˆ R

0
rn−1

ˆ r

r(1− |x−y|
4 )

|u(rx)−u(tz)|p

|rx− tz|n+ϑ p tn−1 dt dr dσx dσz

≤C
ˆ R

0

ˆ R

0

ˆ
Sn−1

ˆ
Sn−1

|u(rx)−u(tz)|p

|rx− tz|n+ϑ p dσx dσztn−1rn−1 dt dr

≤C
¨

B(0,R)×B(0,R)

|u(x̃)−u(ỹ)|p

|x̃− ỹ|n+ϑ p dx̃dỹ,
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the ultimate inequality being a direct consequence of a passage to polar coordinates; here, C > 0
still only depends on n,ϑ and p. This establishes (4.2) and concludes step 1.

Step 2. Existence of sufficiently many Lebesgue points. Since we finally aim to apply step 1
for the particular choice ϑ = θ and p= n

n−1+θ
, we record that ϑ p< 1 so that the traces of Wϑ ,p-

maps are a priori not well-defined along ∂Br; thus we assumed u ∈ (Ws,p∩C)(Rn;Rn) in step 1
so that this issue did not arise. In order to make use of step 1 for BD-maps u by Proposition 2.2,
we start off by ensuring the explicit pointwise evaluability of u H n−1-a.e. on L 1-a.e. sphere
centered at the origin. Without loss of generality, let u ∈ BD(Rn) and 0 < R1 < R2 < ∞ be
arbitrary. Since |Eu| is a finite Radon measure, the set I := {t ∈ (R1,R2) : |Eu|(∂Bt) > 0}
is at most countable. Hence L 1((R1,R2) \ I) = R2−R1. Let t ∈ (R1,R2) \ I. Since ∂Bt is a
C1–hypersurface, (2.5) yields

Eu ∂Bt = (u+−u−)�ν∂Bt H
n−1

∂Bt(4.10)

with the one–sided Lebesgue limits u± and the outer unit normal ν∂Bt to ∂Bt . Therefore,ˆ
∂Bt

|(u+−u−)�ν∂Bt |dH n−1 = |Eu|(∂Bt)
t∈(R1,R2)\I

= 0.(4.11)

This implies |(u+−u−)�ν∂Bt | = 0 H n−1–a.e. on ∂Bt , and since |a| |b| ≤
√

2|a�b| by (2.1)
for all a,b ∈ Rn, we conclude that ũ(x) := u+(x) = u−(x) holds for H n−1–a.e. x ∈ ∂Bt . Then,
by (2.6), we have for H n−1-a.e. such x ∈ ∂Bt

lim
r↘0

 

B(x,r)∩{y : 〈y−x,ν∂Bt 〉≥0}

|u− ũ(x)|dL n = lim
r↘0

 

B(x,r)∩{y : 〈y−x,ν∂Bt 〉<0}

|u− ũ(x)|dL n = 0.

Since L n(B(x,r)∩{y : 〈y− x,ν∂Bt 〉≷ 0}) = 1
2L n(B(x,r)), this consequently yields

lim
r↘0

 
B(x,r)

|u− ũ(x)|dL n = 0.(4.12)

Hence, H n−1-a.e. x ∈ ∂Bt is a Lebesgue point of u. In conclusion, H n−1–a.e. x ∈ ∂Bt is a
Lebesgue point for u for L 1–a.e. radius t ∈ (R1,R2).

In an intermediate step, we claim the following: Let −∞ < a < b < ∞ and let J ⊂ (a,b)
be a measurable subset of full Lebesgue measure, i.e., L 1((a,b) \ J) = 0. Then for every
g ∈ L1((a,b);R≥0) there exists ξ0 ∈ J which is a Lebesgue point for g and satisfies

g∗(ξ0) = lim
r↘0

 
(ξ0−r,ξ0+r)

gdx≤ 2
b−a

ˆ
(a,b)

gdx,(4.13)

where g∗ is the precise representative of g. To see this, we note that L 1–a.e. element of J is a
Lebesgue point for g, and hence the first equality in (4.13) holds for L 1-a.e. ξ0 ∈ J. Assume
towards a contradiction that the overall claim is wrong. Then we find g ∈ L1((a,b);R≥0) such
that for all ξ0 ∈ J which are Lebesgue points for g there holds

g∗(ξ0)>
2

b−a

ˆ
(a,b)

g(x)dx.(4.14)

Since this holds for L 1–a.e. ξ0 ∈ (a,b), we infer by integrating with respect to ξ0 ∈ J

2
ˆ
(a,b)

g(x)dx =
2

b−a

ˆ
(a,b)

ˆ
(a,b)

g(x)dxdξ0 ≤
ˆ
(a,b)

g(ξ0)dξ0.

By non–negativity of g, this implies g ≡ 0 L 1–a.e. in (a,b). This contradicts (4.14) and the
proof of the intermediate claim is complete.

Step 3. Conclusion. Let now 0 < θ < 1 be arbitrary and put p := n/(n− 1+ θ). Since
the statement is local, we may assume that u ∈ BDloc(Rn) is compactly supported. For ε >

0 consider the smooth approximations uε(x) := ρε ∗ u(x), where ρ ∈ C∞
c (B(0,1); [0,1]) is a
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radial mollifier with ‖ρ‖L1(B(0,1)) = 1, and ρε(x) := ε−nρ( x
ε
) is its ε-rescaled variant. Based on

Proposition 2.2 (b), we choose a rigid deformation αε ∈R(Br) such that, with uε
αε

:= uε −αε ,( 
Br

ˆ
Br

|uε
αε
(x)−uε

αε
(y)|p

|x− y|n+θ p dxdy
) 1

p

≤Cr1−θ

 
Br

|Euε |.(4.15)

By construction of αε (cf. (2.10) and Remark 2.4), ‖αε‖L1(Br ;Rn)≤ c‖uε‖L1(Br ;Rn)→‖u‖L1(Br ;Rn).
Since R(Br) is finite dimensional, we hence find a sequence (ε j) ⊂ R>0 and α ∈R(Br) such
that αε j → α in R(Br). Therefore, by Fatou’s lemma and (4.2) with R = r in the first step,

ˆ r

s

¨
∂Bt ×∂Bt

|u∗α(x)−u∗α(y)|p

|x− y|n+θ p−1 dσx dσy dt ≤C liminf
j→∞

ˆ
Br

ˆ
Br

|uε j
αε j

(x)−u
ε j
αε j

(y)|p

|x− y|n+θ p dxdy

(4.15)
≤ C liminf

j→∞
rn
(

r1−θ

 
Br

|Euε j |
)p

=Crn
(

r1−θ

 
Br

|Eu|
)p

(4.16)

with the precise representative u∗α of uα . Put J := {t ∈ (s,r) : |Eu|(∂Bt) = 0} and define
λ : (s,r)→ R≥0 by

λ (t) :=
¨

∂Bt ×∂Bt

|u∗α(x)−u∗α(y)|p

|x− y|n+θ p−1 dσx dσy, t ∈ J

and λ (t) = 0 otherwise. With J from above, step 2 implies the existence of some t ∈ J such that

λ (t)≤ 2
r− s

ˆ
(s,r)

λ (t)dt
(4.16)
≤ C

rn

r− s

(
r1−θ

 
Br

|Eu|
)p

which, upon rewriting the left-hand side of the previous inequality in terms of u∗α , yields( 
∂B(0,t)

ˆ
∂B(0,t)

|u∗α(x)−u∗α(y)|p

|x− y|n+θ p−1 dσx dσy

) 1
p ≤C

r
n
p r1−θ

t
n−1

p (r− s)
1
p

 
Br

|Eu|.

It is clear that C > 0 does not depend on u nor s,r, and so we arrive at (4.1); recall that H n−1-a.e.
x ∈ ∂Bt is a Lebesgue point for uα . The proof is complete. �

Remark 4.2. In the BV-case, a Fubini-type property can be established by noting that for u ∈
BV(Rn;RN), the tangential derivative ∂τ u on L 1-almost every sphere ∂B(0, t) is a finite Radon
measure, too. This is discussed and utilised in [7] and [46]. By ORNSTEIN’s Non-Inequality, we
see no argument to ensure that for generic maps u ∈ BD(Ω), ∂τ u should be a Radon measure on
even sufficiently many spheres. Also note that, by the very nature of the objects considered, any
sort of ’symmetric tangential derivative’ does not make sense. As to step 1 in the above proof,
Fubini-type theorems for maps u ∈ Bs

p,q and u ∈ Fs
p,q have been given by TRIEBEL in the case

where spheres are replaced by affine subspaces of Rn, cf. [72, Chpt. 2.5.13]. To reduce to this
setting by local coordinate transformations, transforming the left hand side of (4.2) gives rise to
additional localisation terms on the right hand side. It is not clear to us how to control these to
obtain the requisite form of the estimate, an issue which does not arise in the above proof.

5. THE LINEAR GROWTH CASE: PROOF OF THEOREM 1.3

This section is devoted to the proof of Theorem 1.3. Toward this objective, we aim to compare
the given generalised minimiser with a suitable A-harmonic approximations via linearisation.
Since linear elliptic problems subject to L1-boundary data are, in general, ill posed, this can only
be achieved on good balls where the boundary traces of u share higher fractional differentiability.
In this way, the corresponding A-harmonic approximation will be well-defined; note that this
unclear for general balls on whose boundaries a given BD-minimiser u is only known to possess
traces in L1. Consequently, this is where the Fubini-type property of BD-maps as given in
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the last section enters. To arrive at the desired excess decay, we shall estimate a V -function-
type distance of u to its A-harmonic approximation in terms of a superlinear power of the
excess, cf. Proposition 5.4. Postponing the precise discussion to Remark 5.5, a linear instead of
superlinear power of the excess – which would come out by easier means – is not sufficient to
conclude the excess decay. In conjunction with the Caccioppoli inequality of the second kind to
be proved in Section 5.1, we will then show in Section 5.3 that the estimates gathered so far for
good balls are in fact sufficient to conclude a preliminary excess for all relevant balls, i.e., those
on which the excess does not exceed a certain constant.

In order to implement the linearisation strategy in the main part of the partial regularity proof,
we introduce for f : Rn×n

sym →R satisfying (a)–(c) from Theorem 1.3 and w∈Rn×n
sym the integrands

fw(ξ ) := f (ξ +w)− f (w)−〈 f ′(w),ξ 〉, ξ ∈ Rn×n
sym ,(5.1)

and remind the reader of the function V : Rn×n
sym → R given by V (ξ ) :=

√
1+ |ξ |2−1.

Lemma 5.1. For all w,z ∈ Rn×n
sym we have (with an obvious interpretation for w = 0 or z = 0)

〈V ′′(w)z,z〉=
1+ |w|2−|w|2

(
w
|w| ·

z
|z|

)2

(1+ |w|2) 3
2

and Vw(z)≥
1

16
V (z)

(1+ |w|2) 3
2
.(5.2)

Moreover, for each m > 0 there exists a constant c = c(m)∈ [1,∞) with the following properties:
If f : Rn×n

sym → R satisfies hypotheses (a)–(c) from Theorem 1.3, then for all z ∈ Rn×n
sym and all

w ∈ Rn×n
sym with |w| ≤ m there holds

(i) | fw(z)| ≤ cLV (z),
(ii) | f ′w(z)| ≤ cLmin{|z|,1},

(iii) | f ′′w(0)z− f ′w(z)| ≤ cLV (z).

and for all w ∈ Rn×n
sym and open balls B⊂ Rn we have

`

c

ˆ
B

V (ε(ϕ))dx≤
ˆ

B
fw(ε(ϕ))dx for all ϕ ∈ LD0(B).(5.3)

Proof. All assertions apart from (5.3) are taken from [46, Lems. 4.1, 4.2]. To see (5.3), let
B⊂Rn be an open ball and let ϕ ∈ LD0(B),w∈Rn×n

sym with |w| ≤m be arbitrary. With condition
(c) from Theorem 1.3 in the third step we deduceˆ

B

V (ε(ϕ))dx

(1+ |w|2) 3
2

(5.2)
≤ 16

ˆ
B

Vw(ε(ϕ))dx = 16
(ˆ

B
V (w+ ε(ϕ))−V (w)dx−

ˆ
B
〈V ′(w),ε(ϕ)〉dx︸ ︷︷ ︸

=0

)

≤ 16
`

ˆ
B

f (w+ ε(ϕ))− f (w)dx− 16
`

ˆ
B
〈 f ′(w),ε(ϕ)〉dx︸ ︷︷ ︸

=0

=
16
`

ˆ
B

fw(ε(ϕ))dx.

Here the underbraced integrals vanish by the Gauß–Green theorem and the fact that ϕ|∂B = 0.
Noting that |w| ≤ m, (5.3) follows and the proof is complete. �

5.1. Caccioppoli inequality of the second kind. In this section we give the requisite form of
the Caccioppoli inequality of the second kind, and it is here where the BD-minimality crucially
enters. However, different from other proof schemes, let us emphasize that this inequality will
not be used to deduce higher integrability of generalised minima; in fact, GEHRING’s lemma
does not quite seem to fit into the linear growth framework, cf. Section 5.5 below for a discus-
sion. From now on, we tacitly suppose that f : Rn×n

sym → R satisfies (a)-(c) from Theorem 1.3
without further mentioning unless it is explicitely stated otherwise.

Proposition 5.2 (of Caccioppoli-type). Let m > 0. Then there exists a constant c = c(m,n, L
` ) ∈

[1,∞) such that if a : Rn→Rn is an affine-linear mapping with |Ea| ≤m and B = B(x0,R)bΩ
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a ball, then there holds ˆ
B(x0,

R
2 )

V (E(u−a))≤ c
ˆ

B(x0,R)
V
(u−a

R

)
dx(5.4)

for every local BD-minimiser u ∈ BDloc(Ω).

Proof. The proof evolves around a scheme for establishing Caccioppoli–type inequalities in the
quasiconvex setting originally due to EVANS [36, Lem. 3.1]. Recalling the definition of the
shifted integrands, cf. (5.1), we put f̃ := fε(a) and ũ := u− a. We then record that ũ is a local
minimiser the functional

F [v] :=
ˆ

Ω

f̃ (Ev)

over BDloc(Ω). Let R
2 < r < s<R be arbitrary and choose a cut–off function ρ ∈C1

c(B(x0,s); [0,1])
with 1B(x0,r) ≤ ρ ≤ 1B(x0,s) and |∇ρ| ≤ 2

s−r . We then define ϕ := ρ ũ and ψ := (1−ρ)ũ, so that
ũ = u− a = ϕ +ψ . Before we continue, let us remark that with ` > 0 from hypothesis (c) of
Theorem 1.3 and c = c(m)> 0,

`

c

ˆ
B(x0,s)

V (Eϕ)≤
ˆ

B(x0,s)
f̃ (Eϕ).(5.5)

To see this inequality, note ϕ|∂B(x0,s) = 0 and hence we find an approximating sequence (ϕk)⊂
C∞

c (B(x0,s);Rn) which converges in the (symmetric) area–strict sense on B(x0,s) to ϕ as k→∞.
From Lemma 5.1, cf. (5.3), we then deduce (5.5) with ϕ replaced by ϕk. In the resulting in-
equality, by definition of (symmetric) area-strict convergence, the left-hand side converges to
`
c

´
B(x0,s)

V (Eϕ). For the right-hand side we invoke the continuity result for symmetric rank-one
convex functionals with respect to symmetric area-strict convergence, cf. Lemma 2.6. By sym-
metric area-strict convergence and the fact that symmetric quasiconvexity implies symmetric
rank-1-convexity, we hereby obtain (5.5).

Consequently, using (generalised) minimality of ũ with respect to its own boundary values
and ũ|∂B(x0,s) = ψ|∂B(x0,s) in the second step, we obtain

`

c

ˆ
B(x0,r)

V (Eũ)≤ `

c

ˆ
B(x0,s)

V (Eϕ)≤
ˆ

B(x0,s)
f̃ (Eũ)+

ˆ
B(x0,s)

( f̃ (Eϕ)− f̃ (Eũ)) (by (5.5))

≤
ˆ

B(x0,s)
f̃ (Eψ)+

ˆ
B(x0,s)

( f̃ (Eϕ)− f̃ (Eũ))

≤
ˆ

B(x0,s)\B(x0,r)
f̃ (Eψ)+

ˆ
B(x0,s)\B(x0,r)

( f̃ (Eϕ)− f̃ (Eũ)),

=: I+ II,

where the last inequality holds as ϕ, ũ coincide on B(x0,r). Then, by Lemmas 5.1(i) and 2.10,

I≤ cL
ˆ

B(x0,s)\B(x0,r)
V (Eψ) = cL

ˆ
B(x0,s)\B(x0,r)

V (
(
(1−ρ)

dEũ
d|Eũ|

)
|Eũ|− (∇ρ� ũ)L n)

≤ 2cL
ˆ

B(x0,s)\B(x0,r)
V (Eũ)+8cL

ˆ
B(x0,s)

V
( ũ

s− r

)
dx

On the other hand, we similarly find

II≤
ˆ

B(x0,s)\B(x0,r)
f̃ (
(

ρ
dEũ

d|Eũ|

)
|Eũ|+∇ρ� ũL n)− f̃ (Eũ)

≤ 3cL
ˆ

B(x0,s)\B(x0,r)
V (Eũ)+8cL

ˆ
B(x0,s)

V
( ũ

s− r

)
dx.

Therefore, gathering estimates, we find
`

c

ˆ
B(x0,r)

V (Eũ)≤ 16cL
ˆ

B(x0,s)\B(x0,r)
V (Eũ)+16cL

ˆ
B(x,s)

V
( ũ

s− r

)
dx.
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We now apply WIDMAN’s hole–filling trick and hence add 16cL
´

B(x0,r)
V (Eũ) to both sides of

the previous inequality and divide the resulting inequality by ( `c +16cL). In consequence, letting
θ := 16cL/( `c +16cL), we have 0 < θ < 1 and getˆ

B(x0,r)
V (Eũ)≤ θ

ˆ
B(x0,s)

V (Eũ)+θ

ˆ
B(x0,R)

V
( ũ

s− r

)
dx.

From here the conclusion is immediate by Lemma 2.13. The proof is complete. �

5.2. Estimating the distance to the A-harmonic approximation. In this section we present
the key result that allows to deduce the requisite excess decay needed in the proof of The-
orem 1.3. Here our strategy is as follows: Letting m > 0 be a given number and a : Rn →
Rn an affine-linear map with |Ea| ≤ m, we first establish an improved estimate for the V -
function type distance of ũ := u− a to a suitable A-harmonic approximation on good balls
B(x0,R0) b Ω. Here goodness refers to balls on whose boundaries ∂B(x0,R0) the map ũ is
of class W

1
n+1 ,

n+1
n (∂B(x0,R0);Rn). This is accomplished in Proposition 5.4. By the Fubini-

type property of BD-maps, it is then clear that whenever x0 ∈ Ω is fixed, then L 1-a.e. radius
R0 ∈ (x0,

1
2 dist(x0,∂Ω)) will qualify as a good radius. It shall then be the aim of the subsequent

section to justify to have the relevant estimates on good balls to conclude a preliminary excess
decay. We begin with the following proposition, making Lemma 2.12 available for the sequel.

Proposition 5.3. Let A ∈ S(Rn×n
sym ) be a strongly symmetric rank-one convex bilinear form, i.e.,

A satisfies for two constants ν1,ν2 > 0 and all a,b ∈ Rn, z1,z2 ∈ Rn×n
sym

ν1|a�b|2 ≤ A[a�b,a�b] and |A[z1,z2]| ≤ ν2|z1| |z2|.(5.6)

Let Lv :=−div(Aε(v)), where A is identified with its representing matrix in R(n×n)×(n×n). Then
for each k ∈ N, 1 < q < ∞ and any open ball B⊂ Rn, the mapping

Φ : Wk,q(B;Rn) 3 u 7→ (L(u),Tr∂B u) ∈Wk−2,q(B;Rn)×Wk− 1
q ,q(∂B;Rn)(5.7)

is a topological isomorphism. Moreover, if u ∈ LD(Ω) satisfies Lu = 0 in D ′(Ω;Rn), then there
holds u ∈ C∞(Ω;Rn) and

sup
B(x0,

R
2 )

|∇u−A|+R sup
B(x0,

R
2 )

|∇2u| ≤C
 

B(x0,R)
|∇u−A|dx(5.8)

for all A ∈ Rn×n
sym and balls B(x0,R)bΩ, where C =C(n,ν1,ν2)> 0 is a constant.

Proof. We reduce to Lemma 2.12 and define A ∈ S(Rn×n) by A [z1,z1] :=A[zsym
1 ,zsym

2 ], z1,z2 ∈
Rn×n. Then (5.6) in conjunction with (2.1) yields

|a⊗b|2 ≤ |a|2|b|2 ≤ 2|a�b|2 ≤ 2
ν1

A[a�b,a�b] =
2
ν1

A [a⊗b,a⊗b].

Hence A ∈ S(Rn×n) satisfies the hypotheses of Lemma 2.12 with λ = ν1
2 . With the above

terminology, we then have
´

Ω
A[ε(u),ε(ϕ)]dx =

´
Ω

A [∇u,∇ϕ]dx for all ϕ ∈C∞
c (Ω;Rn). Thus,

Φ given by (5.7) is a topological isomorphism by Lemma 2.12. The additional estimate (5.8)
then follows similarly, now invoking the second part of Lemma 2.12. The proof is complete. �

We now come to the A-harmonic approximation. Recalling that the number m > 0 and the
affine-linear map a : Rn→ Rn with |Ea| ≤ m are assumed fixed throughout, we put

ũ := u−a.

Given a ball B = B(x0,R)bΩ and u ∈ BD(Ω) with ũ|∂B ∈W
1

n+1 ,
n+1

n (∂B;Rn), we consider the
strongly symmetric rank-one system{

−div(Aε(h)) = 0 in B,

h = ũ on ∂B,
(5.9)
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where A := f̃ ′′(0) with f̃ := fε(a), cf. (5.1); note that, if f satisfies hypothesis (c) from The-
orem 1.3, it is routine to check that A is a strongly symmetric rank-one-convex bilinear form.
Put k = 1 and q := 1+ 1

n . Then k− 1
q = 1

n+1 , and in this situation Theorem 5.3 yields that there

exists a unique h ∈W1,1+1/n(B(x0,R);Rn) solving (5.9). We now have the following

Proposition 5.4. Suppose that f ∈ C(Rn×n
sym ) satisfies (a)–(c) from Theorem 1.3 and let 1 < q <

n+1
n , m > 0 be given. Then there exists a constant C = C(m,n,q,L, `) > 0 with the following

property: Suppose that u ∈ BDloc(Ω) is a local BD-minimiser for F and B = B(x0,R) b Ω

is an open ball such that u|∂B ∈W
1

n+1 ,
n+1

n (∂B;Rn). Moreover, let a : Rn → Rn be an affine–
linear mapping with |Ea| ≤ m and denote h the unique solution of the linear system (5.9) with
ũ := u−a. Then there holds 

B(x0,R)
V
( ũ−h

R

)
dx≤C

( 
B(x0,R)

V (Eũ)
)q

.(5.10)

Proof. We fix a ball B(x0,R)bΩ such that the hypotheses of the proposition are in action. The
proof then evolves in three steps:

Step 1. Ekeland approximation. To avoid manipulations on measures, we first employ an
approximation procedure that allows us to work with LD- instead of BD-maps. To this end, let
δ > 0 be arbitrary but fixed. Then we apply the area-strict approximation of Lemma 2.1 to find
w̃δ ∈ LDũ(B(x0,R)) := ũ+LD0(B(x0,R)) such that

 
B(x0,R)

∣∣∣∣ ũ− w̃δ

R

∣∣∣∣dx+

∣∣∣∣∣
 

B(x0,R)
V (Eũ)−

 
B(x0,R)

V (ε(w̃δ ))dx

∣∣∣∣∣≤ δ
2,

 
B(x0,R)

f̃ (ε(w̃δ ))dx≤
 

B(x0,R)
f̃ (Eũ)+δ

2,

(5.11)

where the dash is understood with respect to the Lebesgue measure L n. Note that we can
assume without loss of generality that w̃δ ∈ LD(B(x0,R)) since ũ only enters in the definition
of LDũ(B(x0,R)) through prescribing the traces. However, as LD(B(x0,R)) and BD(B(x0,R))
have the same trace space on ∂B(x0,R), we can find a LD-map that has the same boundary
traces on ∂B(x0,R) and then proceed as before. Crucially, (LDũ(B(x0,R)),dsym) is a complete
metric space, where dsym(v1,v2) := ‖ε(v1− v2)‖L1(B(x0,R);Rn×n

sym ) is the symmetric gradient-L1-
metric. It is then routine to check that all the requirements for the Ekeland variational principle,
Lemma 2.11, are satisfied; in particular, by (6.1) from the appendix, the local BD-minimality of
ũ for v 7→

´
f̃ (Ev) gives 

B(x0,R)
f̃ (ε(w̃δ ))dx≤ inf

w∈LDũ(B(x0,R))

 
B(x0,R)

f̃ (ε(w))+δ
2,

We deduce that there exists a mapping ṽ ∈ LDũ(B(x0,R)) which satisfiesˆ
B(x0,R)

f̃ (ε(ṽ))dx≤
ˆ

B(x0,R)
f̃ (ε(w̃δ ))dx,

 
B(x0,R)

∣∣∣∣ ṽ− w̃δ

R

∣∣∣∣dx+
 

B(x0,R)
|ε(ṽ)− ε(w̃δ )|dx≤ (1+ cPoinc)δ ,

ˆ
B(x0,R)

f̃ (ε(ṽ))dx≤
ˆ

B(x0,R)
f̃ (ε(ϕ̃))dx+δ

ˆ
B(x0,R)

|ε
(
ṽ− ϕ̃

)
|dx

(5.12)

for all ϕ̃ ∈ LDũ(B(x0,R)), where cPoinc > 0 is an arbitrary but fixed constant for the Poincaré
inequality in LD0(B(x0,R)); note that the above inequality scales correctly and hence cPoinc > 0
is in fact independent of R. Working from here, we obtain∣∣∣∣∣

ˆ
B(x0,R)

〈 f̃ ′(ε(ṽ)),ε(ϕ)〉dx

∣∣∣∣∣≤ δ

ˆ
B(x0,R)

|ε(ϕ)|dx(5.13)
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for all ϕ ∈ LD0(B(x0,R)) and∣∣∣∣∣
ˆ

B(x0,R)
〈 f̃ ′′(0)ε(ṽ),ε(ϕ)〉dx

∣∣∣∣∣≤
ˆ

B(x0,R)
(cLV (ε(ṽ))+δ )|ε(ϕ)|dx(5.14)

for all ϕ ∈W1,∞
0 (B(x0,R);Rn). Indeed, for every θ > 0, ϕ̃

±
θ

:= ṽ±θϕ qualifies as a competitor
in (5.12)3. Hence,∣∣∣∣∣

ˆ
B(x0,R)

f̃ (ε(ṽ))− f̃ (ε(ṽ±θϕ))

θ
dx

∣∣∣∣∣≤ δ

ˆ
B(x0,R)

|ε(ϕ)|dx.

In this situation, sending |θ | ↘ 0 yields (5.13). We then consequently findˆ
B(x0,R)

〈 f̃ ′′(0)ε(ṽ),ε(ϕ)〉dx≤
ˆ

B(x0,R)
〈 f̃ ′′(0)ε(ṽ)− f̃ ′(ε(ṽ)),ε(ϕ)〉dx

+

ˆ
B(x0,R)

〈 f̃ ′(ε(ṽ)),ε(ϕ)〉dx≤
ˆ

B(x0,R)
(cLV (ε(ṽ))+δ )|ε(ϕ)|dx

by Lemma 5.1(iii) and (5.13); note that now c depends on m. The same obviously is valid for
−ϕ instead of ϕ . This establishes (5.14). In effect, (5.13) provides perturbed Euler-Lagrange
equations as a substitute for the ANZELLOTTI-type Euler-Lagrange equations for measures.

Step 2. Truncations and improved regularity for the comparison maps. Starting from (5.14),
we let ϕ ∈W1,∞

0 (B(x0,R);Rn) be arbitrary and put ψ := ṽ− h. We scale back to the unit ball
and therefore put, for x ∈ B(0,1),

Ψ(x) :=
1
R

ψ(x0 +Rx), Φ(x) :=
1
R

ϕ(x0 +Rx), U(x) :=
1
R

ṽ(x0 +Rx).

Since h satisfies (5.9), we conclude from (5.14) with A := f̃ ′′(0)∣∣∣∣∣
ˆ

B(0,1)
〈Aε(Ψ),ε(Φ)〉dx

∣∣∣∣∣≤ cL
ˆ

B(0,1)
V (ε(U))|ε(Φ)|dx+δ

ˆ
B(0,1)

|ε(Φ)|dx.(5.15)

We then define a truncation operator T : Rn→ Rn by

T (y) :=

{
y if |y| ≤ 1,
y
|y| if |y|> 1,

y ∈ Rn,

and note that T (Ψ) ∈ L∞(B(0,1);Rn). Let us now consider the linear system{
−div(Aε(T)) = T (Ψ) in B(0,1),

T = 0 on ∂B(0,1)
(5.16)

with its corresponding weak formulationˆ
B(0,1)

〈Aε(T),ε(ρ)〉dx =
ˆ

B(0,1)
〈T (Ψ),ρ〉dx for all ρ ∈ C∞

c (B(0,1);Rn).(5.17)

Since f is assumed strongly symmetric quasiconvex, it is strongly symmetric rank-one convex.
Fix p > n+1. Then, by Proposition 5.3, there exists a unique solution T ∈W2,p(B(0,1);Rn) of
(5.16) with u|∂B(0,1) = 0. Thus there exists a constant C =C(n, p,L, `)> 0 such thatˆ

B(0,1)
|T|p dx+

ˆ
B(0,1)

|DT|p dx+
ˆ

B(0,1)
|D2 T|p dx≤C

ˆ
B(0,1)

|T (Ψ)|p dx.(5.18)

In this situation, we invoke Morrey’s embedding W1,p(B;Rn) ↪→ C0,1−n/p(B;Rn) to find that T
is Lipschitz together with the corresponding bound

‖DT‖L∞(B;Rn×n) ≤C(‖DT‖Lp(B;Rn×n)+‖D2 T‖Lp(B;Rn×n×Rn))
(5.18)
≤ C‖T (Ψ)‖Lp(B;Rn).(5.19)
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As T|∂B(0,1) = 0, from here we deduce T ∈W1,∞
0 (B(0,1);Rn). Approximating a generic map

ρ ∈ LD0(B(0,1)) by elements from C∞
c (B(0,1);Rn) in the LD-norm topology, we obtainˆ

B(0,1)
〈Aε(T),ε(ρ)〉dx =

ˆ
B(0,1)

〈T (Ψ),ρ〉dx for all ρ ∈ LD0(B(0,1)).(5.20)

Now, because of 2≤ n < p < ∞, we have |T (y)|p = |y|p ≤ |y|2 for if |y| ≤ 1 and thus there holds

‖T (Ψ)‖p
Lp =

ˆ
B(0,1)

|T (Ψ)|p dx≤ c
ˆ

B(0,1)
V (Ψ)dx(5.21)

by Lemma 2.10. Combining (5.21) with (5.19) consequently yields

‖ε(T)‖L∞ ≤ ‖DT‖L∞ ≤ c
(ˆ

B(0,1)
V (Ψ)dx

) 1
p
,(5.22)

and here c > 0 only depends on `,L,m,n and p.
Step 3. Conclusion for the approximating maps ṽ. We now combine the estimates gathered

so far to obtain inequality (5.10) in a perturbed form. Recalling (2.19), we succesively obtainˆ
B(0,1)

V (Ψ)dx
(2.19)1
≤

ˆ
B(0,1)

min{|Ψ|, |Ψ|2}dx

=

ˆ
B(0,1)

〈T (Ψ),Ψ〉dx (by definition of T )

=

ˆ
B(0,1)

〈Aε(T),ε(Ψ)〉dx (by testing (5.20) with ρ = Ψ)

=

ˆ
B(0,1)

〈Aε(Ψ),ε(T)〉dx (as A ∈ S(Rn×n
sym ))

≤
ˆ

B(0,1)
(cLV (ε(U))+δ )|ε(T)|dx (by testing (5.15) with Φ = T)

≤
ˆ

B(0,1)
(cLV (ε(U))+δ )dx‖ε(T)‖L∞

≤
(ˆ

B(0,1)
(cLV (ε(U))+δ )dx

)(ˆ
B(0,1)

|V (Ψ)|dx
) 1

p
(by (5.22)).

We therefore obtain(ˆ
B(0,1)

V (Ψ)dx
)1− 1

p ≤
(ˆ

B(0,1)
(cLV (ε(U))+δ )dx

)
.(5.23)

At this stage recall that our choice of p was only restricted to p > n+1. For 1 < q < n+1
n as in

the proposition, we thus find n+1 < p < ∞ such that p′ = p
p−1 = q and thusˆ

B(0,1)
V (Ψ)dx≤C

(ˆ
B(0,1)

V (ε(U))dx
)q

+Cδ
qL n(B(0,1))q.(5.24)

We consequently scale back to the original ball to find 
B(x0,R)

V
( ṽ−h

R

)
dx≤C

( 
B(0,R)

V (ε(ṽ))dx
)q

+Cδ
qL n(B(0,1))q,(5.25)

and we note that the constant C > 0 only depends on m,n,q,L and `.
Step 4. Limit passage δ ↘ 0 and conclusion. We now intend to send δ ↘ 0; note that ṽ

actually depends on δ : ṽ = ṽδ . By Lipschitz continuity of V we see that∣∣∣∣∣
 

B(x0,R)
V
( ṽ−h

R

)
−
 

B(x0,R)
V
( ũ−h

R

)∣∣∣∣∣≤C(V )

 
B(x0,R)

∣∣∣∣ ũ− w̃δ

R

∣∣∣∣+C(V )

 
B(x0,R)

∣∣∣∣ ṽ− w̃δ

R

∣∣∣∣
≤C(V )(δ 2 +(1+ cPoinc)δ )→ 0
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by (5.11) and (5.12)2 as δ ↘ 0. Second, we obtain similarly∣∣∣∣∣
 

B(x0,R)
V (Eũ)−

 
B(x0,R)

V (ε(ṽ))dx

∣∣∣∣∣≤
∣∣∣∣∣
 

B(x0,R)
V (Eũ)−

 
B(x0,R)

V (ε(w̃δ ))dx

∣∣∣∣∣
+C(V )

 
B(x0,R)

|ε(wδ − ṽ)|dx≤ (δ 2 +C(V )δ )→ 0

as δ ↘ 0. In conclusion, by (5.25) we have established 
B(x0,R)

V
( ũ−h

R

)
dx≤C

( 
B(x0,R)

V (Eũ))
)q

,

which is the desired inequality (5.10) and the proof is complete. �

Remark 5.5 (On the exponent q in the previous proposition). It is important to remark that
the exponent q as it appears in the previous proposition can be chosen strictly larger than one.
From a technical perspective, the importance of q > 1 is given by (5.44) from below, where the
smallness assumption on the excess gives smallness of the critical quantity(

E(x0,R0)

Rn
0

)q−1

.

If we could not use q > 1 and only had q = 1 at our disposal, this critical term would equal one
and thus destroy the excess decay later on in Proposition 5.7.

In the preceding Proposition 5.4 we have estimated a V -function type distance of ũ = u− a
to its A-harmonic approximation h, where A = f̃ ′′(0) = f ′′

ε(a)(0). We conclude this subsection
by showing how suitable Lebesgue norms of Dh can be controlled by means of ũ:

Lemma 5.6. In the situation of Proposition 5.4 there exists a constant C =C(n, `,L) > 0 such
that for each b ∈R(Rn) the map h̃ := h−b satisfies, with ũb := ũ−b,

( 
B(x0,R)

|Dh̃|
n+1

n dx

) n
n+1

≤CR−
n

n+1

( 
∂B(x0,R)

ˆ
∂B(x0,R)

|ũb(x)− ũb(y)|
n+1

n

|x− y|(n−1+ 1
n )

dσx dσy

) n
n+1

.

(5.26)

Proof. It is no loss of generality to assume x0 = 0 and R = 1. Then we have ũ|∂B(0,1) ∈
W

1
n ,

n+1
n (∂B(0,1);Rn). With this choice of x0 and R, and adopting the terminology of Proposi-

tion 5.3, denote S := Φ−1(0, ·). Given b ∈R(Rn), we define

ub := (ũb)∂B(0,1) :=
 

∂B(0,1)
ũb dH n−1(∈ Rn),

where the dash is now understood with respect to H n−1 ∂B(0,1). Since h solves (5.9), h :=
h̃−ub := h−b−ub is the unique solution of{

−div(Aε(h)) = 0 in B(0,1),

h = ũb−ub on ∂B(0,1).
(5.27)

Hence we have h = S(ũb−ub) so that, by Proposition 5.3 with some C =C(n,L, `)> 0,

‖Dh‖
L

n+1
n (B(0,1);Rn×n)

≤ ‖h‖
W1, n+1

n (B(0,1);Rn)
≤C‖ũb−ub‖

W
1

n+1 , n+1
n (∂B(0,1);Rn)

.(5.28)

On the other hand, if x,y ∈ ∂B(0,1), then |x− y| ≤ 2 and therefore H n−1(∂B(0,1))−1 ≤
c(n)|x− y|−n+1−1/n. Thus,(ˆ

∂B(0,1)
|ũb(x)−ub|

n+1
n dσx

) n
n+1

=
(ˆ

∂B(0,1)

 
∂B(0,1)

|ũb(x)− ũb(y)|
n+1

n dσy dσx

) n
n+1

≤C(n)
(ˆ

∂B(x0,1)

ˆ
∂B(0,1)

|ũb(x)− ũb(y)|
n+1

n

|x− y|n−1+ 1
n

dσy dσx

) n
n+1

.
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As a consequence, we obtain in conjunction with (5.28) and a constant C =C(n,L, `)> 0

‖Dh̃‖
L

n+1
n (B(0,1);Rn×n)

= ‖Dh‖
L

n+1
n (B(0,1);Rn×n)

≤C[ũb]
W

1
n+1 , n+1

n (∂B(0,1);Rn)
.(5.29)

The general case now follows by scaling, and the proof is complete. �

5.3. Excess decay. The objective of the present subsection is to establish the excess decay
that will eventually lead to the desired partial regularity assertion of Theorem 1.3 by an iteration
scheme. To this end, let u∈BDloc(Ω) be a local generalised minimiser of F , where the integrand
satisfies (a)–(c) from Theorem 1.3, and let M0 > 0 be a given number. Our strategy then runs in
four steps: In a first step, we choose a ball for which both the mean value and a certain excess
quantity of Eu is small. Then, in a second step, we slightly diminish the radius of the given ball
to obtain a ball on whose boundary we may apply the Fubini-type theorem for BD-maps. This
makes the A-harmonic approximation of the previous subsection available. Defining suitable
comparison maps in step 3, we then combine Propositions 5.2 and 5.4 in step 4 to conclude a
preliminary excess decay. In doing so, we define for z ∈ Ω and 0 < r < dist(z,∂Ω) two excess
quantities by

E(u;z,r) :=
ˆ

B(z,r)
V (Eu− (Eu)B(z,r)) and Ẽ(u;z,r) :=

E(u;z,r)
L n(B(z,r))

,

and we will often write E(z,r) := E(u;z,r), assuming that u is fixed. Here, as usual, (Eu)B(z,r) =

Eu(B(z,r))/L n(B(z,r)).
Step 1. Smallness Assumptions. Let M0 > 0 be given and fix a ball BR0 = B(x0,R0)bΩ such

that

|(Eu)BR0
| ≤M0.(5.30)

and  
BR0

|Eu− (Eu)BR0
| ≤ 1.(5.31)

We write Br := B(x0,r) in all of what follows.
Step 2. Selection of a good radius. In a second step, we fix an affine–linear map a : Rn→Rn

with ε(a) = (Eu)BR0
. We then put ũ := u− a and f̃ := fε(a), cf. (5.1). Starting from R0 > 0

as given above, we now apply Theorem 4.1. Consequently, we find R ∈ ( 9
10 R0,

19
20 R0) such that

ũ|∂BR ∈W
1

n+1 ,1+
1
n (∂BR;Rn) and a rigid deformation b∈R(Rn) together with the corresponding

estimate (with θ = 1
n+1 and accordingly p = n+1

n in Theorem 4.1)( 
∂BR

ˆ
∂BR

|ũb(x)− ũb(y)|1+
1
n

|x− y|(n−1)+ 1
n

dσx dσy

) n
n+1

≤C
( 19

20 R0)
n

( 9
10 R0)

n(n−1)
n+1 ( 1

20 R0)
n

n+1

1
( 19

20 R0)n

ˆ
B19R0/20

|Eũ|

≤C
R

n
n+1
0
Rn

0

ˆ
BR0

|Eu− (Eu)BR0
|.

(5.32)

where we recall ũb := ũ−b(= u−a−b), and C =C(n)> 0 is a constant.
Step 3. Definition of comparison maps. We put A := f ′′((Eu)BR) and pick the A–harmonic

mapping h̃ : BR→ Rn solving{
−div( f ′′((Eu)BR)ε(h̃)) = 0 in BR,

h̃ = ũb on ∂BR .
(5.33)
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We are thus in the setting of (5.9) and Lemma 5.6 from above; by Proposition 5.3, h̃∈C∞(BR;Rn).
Then we define

A(x) := h̃(x0)+Dh̃(x0)(x− x0) and a0(x) := a(x)+A(x), x ∈ BR .(5.34)

We then obtain

|ε(a0)|= |ε(a)+ ε(h̃)(x0)|= |(Eu)BR0
+ ε(h̃)(x0)|

≤M0 + |ε(h̃)(x0)| (by (5.30))

≤M0 + sup
BR/2

|Dh̃| (as |Ev| ≤ |Dv|)

≤M0 + c
 

BR

|Dh̃|dx (by (5.8))

≤M0 + c
( 

BR

|Dh̃|
n+1

n dx
) n

n+1

and thus

|ε(a0)| ≤M0

+ cR−
n

n+1

( 
∂BR

ˆ
∂BR

|ũb(x)− ũb(y)|
n+1

n

|x− y|n−1+ 1
n

dσx dσy

) n
n+1

(by Lemma 5.6)

≤M0 +
c

Rn
0

ˆ
B(x0,R0)

|Eu− (Eu)BR0
| (by (5.32) and R0 ∼ R)

≤M0 + c,

(5.35)

where the last estimates holds because of (5.31). Here, c = c(n,L, `) > 0 is a constant that we
fix now. In particular, the constants appearing here do not depend on R or R0. Summarising, if
we put m := M0 + c as on the right side of the previous chain of inequalities, then we obtain

|ε(a0)| ≤ m.(5.36)

Step 4. Comparison estimates. Let 0 < σ < 1
5 be arbitrary. We note, as a consequence of

Lemma 2.10 and Jensen’s inequality,ˆ
BσR0

V (Eu− (Eu)BσR0
) =

ˆ
BσR0

V (Eu−Ea0 +Ea0− (Eu)BσR0
)

≤C
ˆ

BσR0

V (Eu−Ea0)+C
ˆ

BσR0

V ((E(u−a0))BσR0
)

≤C
ˆ

BσR0

V (E(u−a0))
b∈R(Rn)

= C
ˆ

BσR0

V (E(u−b−a0)).

(5.37)

Our next objective is to apply the Caccioppoli–type inequality, Proposition 5.2. Having chosen
m > 0 as it appears in Proposition 5.2 by (5.36), we find c = c(m,n,L, `) > 0 such that (5.4)
holds with the requisite modifications; note that b+ a0 is affine-linear, too, with |ε(b+ a0)| =
|ε(a0)| ≤m. We then estimate, using (5.37) and the Caccioppoli–type inequality in the first step,

ˆ
BσR0

V (Eu− (Eu)BσR0
)≤C

ˆ
B2σR0

V
( ũ(x)−b(x)−A(x)

σR0

)
dx

≤C
ˆ

B2σR0

V
( ũ(x)−b(x)− h̃(x)−A(x)+ h̃(x)

σR0

)
dx

≤C
ˆ

B2σR0

V
( (ũ−b)− h̃

σR0

)
dx+C

ˆ
B2σR0

V
( h̃−A

σR0

)
dx
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≤ C
σ2

ˆ
BR

V
( ũb− h̃

R

)
dx+C

ˆ
B2σR0

V
( h̃−A

σR0

)
dx

=: I+ II,

where C =C(m,n, L
` )> 0 is a constant. Here we have used B2σR0 ⊂ BR, uniform comparability

of R and R0 and the fact that V (λ z) ≤ cλ 2V (z) for a constant c > 0, all z ∈ Rn×n
sym and |λ | ≥ 1

(cf. Lemma 2.10). We continue with the estimation of I, and for this purpose let 1 < q < n+1
n be

arbitrary but fixed. We use Proposition 5.4 and uniform comparability of R,R0 to obtain

I =
C
σ2

ˆ
BR

V
( ũb− h̃

R

)
dx =

CRn

σ2

 
BR

V
( ũ−h

R

)
dx≤C

Rn
0

σ2

( 
BR

V (Eũ)
)q

,(5.38)

the last step being valid by uniform comparability of R and R0. As usual, the map h is defined
as the solution of the strongly symmetric elliptic system (5.33) with boundary datum ũ = u−a.
As to II, let x ∈ B2σR0 . We employ a pointwise estimate to find by use of Taylor’s formula∣∣∣∣∣ h̃(x)−A(x)

σR0

∣∣∣∣∣=
∣∣∣∣∣ h̃(x)− h̃(x0)−〈D h̃(x0),x− x0〉

σR0

∣∣∣∣∣
≤C

(
sup
BR/2

|D2 h̃|
) |x− x0|2

σR0

≤C
(

sup
BR/2

|D2 h̃|
) (2σR0)

2

σR0
(sincex ∈ B(x0,2σR0))

≤CσR
(

sup
BR/2

|D2 h̃|
)

(since R0 ≤ 10
9 R)

≤Cσ

 
BR

|D h̃|dx (by Proposition 5.3)

≤Cσ

( 
BR

|D h̃|
n+1

n dx
) n

n+1
=: III (by Jensen).

Similarly as in the estimation given in (5.35), we again employ Lemma 5.6 to further obtain

III≤Cσ

 
BR0

|Eũ| Def
= Cσ

 
BR0

|E(u−a)| (by Lemma 5.6 and (5.32))

=Cσ

 
BR0

|Eu− (Eu)BR0
| (since Ea = (Eu)BR0

)

=Cσ

( 
BR0

|Eu− (Eu)BR0
|
)2· 12

≤Cσ

(
V
( 

BR0

|Eu− (Eu)BR0
|
)) 1

2
(by (5.31) and (2.19)1)

≤Cσ

( 
BR0

V (|Eu− (Eu)BR0
|)
) 1

2
(by Jensen and 9

10 R0 < R < R0).

Collecting estimates, we obtain with a constant C =C(m,n,L, `)> 0 and for all x ∈ B2σR0

V
( h̃(x)−A(x)

σR0

)
≤CV

(
σ

( 
BR0

V (|Eu− (Eu)BR0
|)
) 1

2
)
=: CV (ϒ),(5.39)
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where ϒ is defined in the obvious manner. Now, since V (·) ≤ | · |, 0 < σ < 1
5 and by (5.31),

ϒ≤ 1. Consequently, integrating (5.39) over B2σR0 , we obtain with C =C(m,n,L, `)> 0

II =C
ˆ

B2σR0

V

(
h̃(x)−A(x)

σR0

)
dx≤C(σR0)

nV (ϒ)

(2.19)1
≤ C(σR0)

n min{ϒ,ϒ2} ≤Cσ
n+2Rn

0

 
BR0

V (|Eu− (Eu)BR0
|).

(5.40)

Combining estimates (5.38) and (5.40), we then find with a constant C =C(n,m,L, `,q)> 0 that

E(x0,σR0)≤C
Rn

0
σ2

( 
BR

V (Eũ)
)q

+Cσ
n+2Rn

0

 
BR

V (|Eũ|)

≤ C
σ2

(
E(x0,R0)

Rn
0

)q−1

E(x0,R0)+Cσ
n+2E(x0,R0)

=

(
C
σ2 (Ẽ(x0,R0))

q−1 +Cσ
n+2
)

E(x0,R0).

(5.41)

We will now use the previous inequality to deduce a preliminary excess decay.

Proposition 5.7. Let f : Rn×n
sym → R satisfy (a)–(c) from Theorem 1.3. Given 0 < α < 1, M0 > 0

and 1 < q < n+1
n , there exist two parameters σ = σ(n,L, `,α,M0,q) ∈ (0, 1

5 ) as well as ε̃ =

ε̃(n,L, `,α,M0,q) ∈ (0,1) such that every local BD-minimiser u ∈ BDloc(Ω) of the functional F
satisfies the following: If B(x0,R0)bΩ is an open ball with 0 < R0 ≤ 1 together with

Ẽ(u;x0,R0)≤ ε̃
2 and |(Eu)B(x0,R0)| ≤M0,(5.42)

then there holds

Ẽ(u;x0,σR0)≤ σ
1+α Ẽ(u;x0,R0).(5.43)

Proof. Let α ∈ (0,1) and M0 > 0 be given. We estimate with H :=Eu−(Eu)B(x0,R0), Lemma 2.10
and the shorthands A≶R0

:= B(x0,R0)∩{|H|Q 1}
 

B(x0,R0)
|H| ≤ 1

ωnRn
0

ˆ
A

R≤0

|H|+ 1
ωnRn

0

ˆ
A>

R0

|H|=
L n(A≤R0

)

ωnRn
0

 
A≤R0

|H|+ C
Rn

0

ˆ
A>

R0

V (|H|)

≤C
L n(A≤R0

)
1
2

Rn
0

(ˆ
B(x0,R0)

V (|H|)
) 1

2
+

C
Rn

0

ˆ
B(x0,R0)

V (|H|)

≤C

( 
B(x0,R0)

V (|H|)

) 1
2

+C
 

B(x0,R0)
V (|H|)≤C(

√
Ẽ(u;x0,R0)+ Ẽ(u;x0,R0)),

where C =C(n)> 0. We may thus choose a preliminary ε̃0 ∈ (0,1) such that Ẽ(u;x0,R0)≤ ε̃2
0

and |(Eu)B(x0,R0)| ≤M0 imply (5.30) and (5.31). At this stage, for 1< q< n+1
n , (5.41) is available

and therefore yields for 0 < σ < 1
5

Ẽ(u;x0,σR0)≤
(

C
σn+2

(
Ẽ(u;x0,R0)

)q−1
+Cσ

2
)

Ẽ(u;x0,R0),(5.44)

where now3 C = C(n,M0,L, `,q) > 0. We subsequently choose σ = σ(n,M0,L, `,q,α) > 0 so
small such that with the constant C > 0 from (5.44) there holds 2Cσ2 ≤ σ1+α . We then put

ε̃ := min{σ
n+4

2(q−1) , ε̃0}. In turn, if Ẽ(u;x0,R0)≤ ε̃2 and |(Eu)B(x0,R0)| ≤M0, then (5.44) gives

Ẽ(u;x0,σR0)≤ (2Cσ
2)Ẽ(u;x0,R0)≤ σ

1+α Ẽ(u;x0,R0),

and this is precisely (5.46). The proof is complete. �

3Note that the constant C > 0 in (5.41) depends on n,m,L, ` and q, but by (5.35), m depends on n and M0 only.
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5.4. Iteration and Proof of Theorem 1.3. To conclude the proof of Theorem 1.3, we need to
iterate Proposition 5.7.

Corollary 5.8 (Iteration). Let f : Rn×n
sym →R satisfy (a)–(c) from Theorem 1.3. Given 0 < α < 1

and M0 > 0, there exist ε = ε(n,L, `,α,M0) ∈ (0,1) and R0 = R0(n,L, `,M0,α) ∈ (0,1) such
that every generalised local minimiser u ∈ BDloc(Ω) of the functional F satisfies the following:
If x0 ∈Ω and 0 < R < R0 are such that B(x0,R0)bΩ and

Ẽ(u;x0,R)≤ ε
2 and |(Eu)B(x0,R)| ≤

M0

2
,(5.45)

then there holds

Ẽ(u;x0,r)≤C
( r

R

)2α

Ẽ(u;x0,R) for all 0 < r ≤ R.(5.46)

Here, C =C(n,L, `,α,M0)> 0 is a constant.

The corollary is proved in a standard manner, the proof following, e.g., [46, Prop. 4.8] or [13,
Lem. 5.8]; note that the dependence on q in Proposition 5.7 is removed by specialising, e.g., to
q = 2n+1

2n ∈ (1, n+1
n ). Working from here, we can proceed to the

Proof of Theorem 1.3. Let 0 < α < 1 and M > 0 be given. We put M0 := 8max{M,1}. Then,
by the previous corollary, there exist ε = ε(n,L, `,α,M0) ∈ (0,1) and R0 = R0(n,L, `,M0,α) ∈
(0,1) such that (5.45) implies (5.46). Within the framework of Theorem 1.3, we put εM :=
ε2/22n+4 and let 0 < R < R0 be such that

Ẽ(u;x0,R)≤ εM =
ε2

22n+4 and |(Eu)B(x0,R)| ≤M(≤ 1
2 M0).(5.47)

Our aim is to show that with R′ := 1
2 R there holds Ẽ(u;x,R′) ≤ ε2 and |(Eu)B(x,R′)| ≤ 1

2 M0 for
all x ∈ B(x0,R′). We have
 

B(x,R′)
V (|E u− (Eu)B(x,R′)|)dL n +

|Esu|(B(x,R′))
ωn(R′)n

(2.19)3,V (·)≤|·|
≤ 2

 
B(x,R′)

V (|E u− (E u)B(x,R′)|)dL n +3
|Esu|(B(x,R′))

ωn(R′)n

≤ 2 ·22n

ω2
n R2n

ˆ
B(x0,R)

ˆ
B(x0,R)

V (|E u(y)−E u(z)|)dydz+2n+2 |Esu|(B(x0,R))
ωnRn

(2.19)3
≤ 8 ·22n

ω2
n R2n

ˆ
B(x0,R)

ˆ
B(x0,R)

V (|E u(y)− (Eu)B(x0,R)|)dydz+2n+2 |Esu|(B(x0,R))
ωnRn

(5.47)
≤ 22n+3 ε2

22n+4 < ε
2.

On the other hand, we have by (5.47) and (2.19)3 in the third step

|(Eu)B(x,R′)| ≤

∣∣∣∣∣
 

B(x,R′)
E udL n

∣∣∣∣∣+ |Esu|(B(x,R′))
ωn(R′)n

≤

∣∣∣∣∣
 

B(x,R′)
E u− (Eu)B(x0,R) dL n

∣∣∣∣∣+ |Esu|(B(x,R′))
ωn(R′)n + |(Eu)B(x0,R)|

≤ 2n
( 1√

2−1

 
B(x0,R)

V (|E u− (Eu)B(x0,R)|)dL n
) 1

2
+2n |Esu|(B(x0,R))

ωnRn +M

≤ ε

4
√√

2−1
+

ε2

2n+4 +M ≤M+1
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having used that ε ∈ (0,1) in the ultimate step. Since M + 1 ≤ 2max{M,1} ≤ M0
2 , we thus

obtain by (5.47) and (5.46) that for all x ∈ B(x0,R′) and all 0 < r < R′ there holds

Ẽ(u;x,r)≤C(n,L, `,α,M0)
( r

R′

)2α

Ẽ(u;x,R′).

Working from here, we first deduce by sending r ↘ 0 that Esu ≡ 0 in B(x0,R′). Therefore,
setting G(t) := min{t, t2} for t ≥ 0, we find by (2.19)1 and Jensen’s inequality

(
√

2−1)G(ϒ′) := (
√

2−1)G
( 

B(x,r)
|E u− (E u)B(x,r)|dL n

)
≤C(n,L, `,α,M0)

( r
R′

)2α

ε
2,

for all 0 < r < R′, with ϒ′ defined in the obvious manner. Now, if 0 ≤ ϒ′ ≤ 1, the previous
estimate yields |ϒ′|2 ≤C( r

R′ )
2α whereas if |ϒ′|> 1, we use ( r

R′ )
2α ≤ ( r

R′ )
α to infer that

1
rα

 
B(x,r)

|E u− (E u)B(x,r)|dL n ≤ C(n,L, `,α,M0)

(R′)α

for all 0 < r < R′. Now, by the Campanato-Meyers characterisation of Hölder continuity, this
implies that E u is of class C0,α in B(x0,R′). Now we use C0,α 'L 2,n+2α with the CAMPANATO

spaces L p,λ (cf. [42, Thm. 2.9]) and Proposition 2.8(c) with ψ(t) = t2 to find that Du is of class
C0,α in B(x0,R′), too.

Since V (·) ≤ | · | and with the above choices of εM,R0, (1.10) implies (5.45). Hence, to
conclude the proof of the theorem, we note that by the Lebesgue differentiation theorem for
Radon measures, for L n-a.e. x0 ∈Ω there exists z ∈ Rn×n

sym such that

lim
r↘0

 
B(x0,r)

|E u− z|dL n +
|Esu|(B(x0,r))

ωnrn = 0.(5.48)

Thus, for such x0, there exists δ > 0 with sup0<r<δ |(Eu)B(x0,r)| =: M < ∞. Applying the fore-
going to the number M and invoking (5.48), the conclusion of the theorem follows immediately
and the proof is complete. �

We concude with the following

Remark 5.9. In the BV-case as considered by KRISTENSEN and the author [46], different
Fubini-type properties needed to be invoked to deal with n = 2 and n≥ 3. Starting from the fact
that for BV-maps the tangential derivatives of u on ∂B(x0, t) for L 1-a.e. t > 0 are finite Radon
measures themselves, the approach in [46] is to embed BV(∂B(x0, t);RN) into higher fractional
Sobolev spaces. If n = 2, spheres are one-dimensional manifolds, and here Remark 2.3 excludes
the relevant embeddings. This forces to argue via Besov-Nikolskiı̆ spaces in the full gradient,
strongly quasiconvex case for n = 2. However, the approach as outlined above for BD equally
works in the easier BV-situation, too, and thus yields a unifying method for all n≥ 2.

5.5. Remarks and Extensions. In this concluding section, we discuss some aspects, extensions
and limitations of the results presented so far.

We begin by noting that, under the assumptions of Theorem 1.3, we can actually estab-
lish C2,α -partial regularity of generalised minima. Namely, letting x0 ∈ Ωu, we have u ∈
C2,α(B(x0,r);Rn) for some r > 0 and all 0 < α < 1. This is a consequence of Schauder es-
timates based on the C1,α -regularity of u in a neighbourhood of x0; choosing |h| small enough,
we consider the finite differences τs,hε(u)(x) := ε(u)(x+ hes)− ε(u)(x), where x belongs to a
suitable neighbourhood of x0 and es is the s-th unit vector. We then set

Q(x)[ξ ,η ] :=
ˆ 1

0
〈 f ′′(ε(u)(x)+ tτs,hε(u)(x))ξ ,η〉dt, ξ ,η ∈ Rn×n

sym .

By condition (a) from Theorem 1.3 and the C1,α -partial regularity (for any 0 < α < 1) estab-
lished above, Q ∈ C0,α(U ;S(Rn×n

sym )) for some open neighbourhood U of x0 and any 0 < α < 1.
Possibly diminishing U , we infer similarly as to (5.9) that Q is uniformly symmetric Legendre-
Hadamard in U ; i.e, there exists a constant λ > 0 such that Q(x)[a� b,a� b] ≥ λ |a� b|2 for
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all a,b ∈ Rn and all x ∈U together with supx∈U |Q(x)| < ∞. Working from here, it is not too
difficult to establish an inequality of Garding type for some r > 0 suitably small: There exist
γ1,γ2 > 0 such that there holdsˆ

B(x0,r)
Q(x)[ε(ϕ),ε(ϕ)]dx≥

ˆ
B(x0,r)

γ1|ε(ϕ)|2− γ2|ϕ|2 dx for all ϕ ∈W1,∞
0 (B(x0,r);Rn).

On the other hand, since u is a minimiser, we deduce the Euler-Lagrange equationˆ
B(x0,r)

〈 f ′(ε(u)),ε(ϕ)〉dx = 0 for all ϕ ∈ LD0(B(x0,r)).

At this stage, picking an arbitrary localisation function ρ ∈ C∞
c (B(x0,r); [0,1]), we may test the

preceding equation with ϕ = τs,−h(ρ
2τs,hu) for |h| suitably small. Here τs,−hv(x) := v(x−hes)−

v(x) denotes the backward finite difference. As a consequence, we obtain thatˆ
B(x0,r)

Q(x)[τs,hε(u),ρ2
τs,hε(u)+2ρ∇ρ� τs,hu]dx = 0

holds for any s ∈ {1, ...,n}. Then it is routine to conclude by the above Garding-type inequality
and Korn’s inequality that u is of class W2,2 in a suitable neighbourhood of x0. Diminishing
r > 0 if necessary, we may then assume thatˆ

Ω

〈 f ′′(ε(u))∂sε(u),ε(ϕ))dx = 0 for all ϕ ∈ C1
c(B(x0,r);Rn).(5.49)

At this stage, we invoke a similar argument as in Proposition 5.3 to reduce to the SCHAUDER

estimates [41, Ch. III, Thm. 3.2] to conclude that ∂sε(u) is of class C0,α in a fixed neighbour-
hood of x0. Switching to the CAMPANATO-MEYERS characterisation of Hölder continuity and
employing Proposition 2.8(c), ∂s Du∈C0,α in an open neighbourhood of x0 for any s∈{1, ...,n}.

An analogous regularity theory can be set up when x-dependent integrands f : Ω×Rn×n
sym →R

are considered, and we refer the reader to the corresponding statements in [46, Sec. 6]; these
follow in an analogous way once the regularity results from Theorem 1.3 are available. How-
ever, the case of fully non-autonomous integrands f : Ω×Rn×Rn×n

sym 3 (x,y,z) 7→ f (x,y,z) comes
along with two major difficulties. First, to the best of the author’s knowledge, there is no integral
representation of the relaxed functional available at present; the arguments of RINDLER [65] do
not seem to easily generalise to this situation. In contrast to (1.3), the definition of generalised
minima then must be given directly by the Lebesgue-Serrin-type extension. To then access the
Euler-Lagrange equations satisfied by the respective BD-minimisers, it is necessary to employ a
careful approximation procedure. This in principle being possible, we would still need a higher
integrability result on the gradients of BD-minima as it is usually required (cf. [42, Thm. 9.5
ff.]). In the quasiconvex, superlinear growth context, the latter is obtained as a consequence
of the Caccioppoli inequality of the second kind in conjunction with the Sobolev inequality.
In this situation, the Gehring lemma then boosts the so derived reverse Hölder inequality with
increasing supports to the higher integrability of the gradients. In the linear growth situation,
working from the Caccioppoli-type inequality strictly requires a sublinear Sobolev inequality,
the unconditional availability of which being ruled out by a counterexample due to BUCKLEY &
KOSKELA [18]. This is an important issue, as otherwise we would immediately obtain that BD-
minima belonged to W1,q

loc for some q> 1, a fact which would simplify several stages of the above
proof. A similar issue had been identified by ANZELLOTTI & GIAQUINTA [9, Sec. 6] within the
framework of convex full gradient functionals. However, note that if f : Ω×Rn×Rn×n

sym → R
satisfies a splitting condition f (x,y,z) = f1(x,z)+ f2(x,y) for some strongly symmetric quasi-
convex integrand f1 : Ω×Rn×n

sym → R of linear growth and f2 : Ω×Rn → R being convex and
of at most n

n−1 -growth in the second variable, then suitable regularity results can be formulated.
SCHMIDT [68] provides an interesting alternative of a partial regularity proof for convex, fully
non-autonomous integrands of (super)quadratic growth that does not utilise Gehring’s lemma.
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The drawback here is that does not seem to generalise easily to the quasiconvex situation with
(super)linear growth; even if it would, it needed to be compatible with the above proof scheme.

Lastly, let us address the possibility of giving Hausdorff dimension bounds on Σu in the
framework of Theorems 1.2 or 1.3. Whereas in the convex context higher differentiability of
minima can be invoked to establish dimH (Σu)< n (also see [42, 57, 58] and [25, 43, 44, 45] in
the symmetric gradient situation), such methods rely exclusively on the Euler-Lagrange system
and thus do not apply to the (symmetric) quasiconvex situation. In this case, one option is to
apply the set porosity approach employed by KRISTENSEN & MINGIONE [53] for Lipschitzian
minima. In the framework of Theorem 1.2 for p≥ 2, this directly yields the dimension reduction
for W1,∞-regular minima. The method is likely to generalise to 1≤ p < ∞; however, to the best
of the author’s knowledge, the method is not known to yield a dimension reduction for W1,s-
regular minima even with large s > p ≥ 1; neither is it clear how to obtain such a higher local
gradient integrability in the (strongly) quasiconvex context beyond the usual GEHRING-type
improvement. Indeed, for p > 1, some higher gradient integrability follows by GEHRING’s
lemma in conjunction with the Caccioppoli inequality, but by the above discussion even this is
unclear in the linear growth context. We intend to tackle questions of this sort in the future.

6. APPENDIX

6.1. Existence of BD-minima. Implicitly used in the main part, we now briefly justify the
existence of generalised minima for the Dirichlet problem (1.1) in the sense of (1.3), now being
subject to the strong symmetric quasiconvexity of f ∈ C(Rn×n

sym ), and gather some consequences.
This program is somewhat analogous to [17, Thm. 5.3] where, however, a different coerciveness
condition was employed. We hereafter let u0 ∈ LD(Ω) be a given Dirichlet datum and f ∈
C(Rn×n

sym ) a strongly symmetric quasiconvex integrand satisfying both (1.9) and the linear growth
assumption (LG). Our objective is to establish (with the notation of (1.1) ff.)

inf
Du0

F = min
BD(Ω)

Fu0 ,(6.1)

particularly asserting the existence of BD-minimisers. Toward the latter, we note that because
F is strongly symmetric quasiconvex, we have for all ϕ ∈ C∞

c (Ω;Rn)

f (0) = f (0)− `V (0)≤
 

Ω

f (ε(ϕ))− `V (ε(ϕ))dx,

as follows easily by passing from Q = (0,1)n to general open domains Ω. Thus, by Lipschitz
continuity of f ,

f (0)L n(Ω)+ `

ˆ
Ω

V (ε(ϕ))dx≤
ˆ

Ω

f (ε(ϕ))− f (ε(u0 +ϕ))dx+
ˆ

Ω

f (ε(u0 +ϕ))dx

≤ c(L)
ˆ

Ω

|ε(u0)|dx+
ˆ

Ω

f (ε(u0 +ϕ))dx.
(6.2)

At this stage, we pick an open and bounded Lipschitz set Ω̃ ⊂ Rn such that Ω b Ω̃ and find,
following the discussion in Section 2.2, u0 ∈ LD0(Ω̃) such that u0|Ω = u0. We then put, for
v ∈ BD(Ω)

ṽ :=

{
v in Ω,

u0 in Ω̃\Ω.
(6.3)

Since ∂Ω is Lipschitz and u0 ∈ LD(Ω̃), ṽ ∈ BD(Ω̃). Hence, we have for all ϕ ∈ C∞
c (Ω;Rn)

`

ˆ
Ω̃

V (ε(u0 +ϕ))dx− `

ˆ
Ω̃\Ω

V (ε(u0))dx = `

ˆ
Ω

V (ε(u0 +ϕ))−V (ε(ϕ))dx+ `

ˆ
Ω

V (ε(ϕ))dx

(6.2)
≤ C(`,L,V )

ˆ
Ω

|ε(u0)|− f (0)L n(Ω)+

ˆ
Ω

f (ε(u0 +ϕ))dx
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(LG)
≤ C(`,L,V,L n(Ω̃))

(ˆ
Ω̃

|ε(u0)|dx+1
)
+

ˆ
Ω̃

f (ε(u0 +ϕ))dx.

At this stage, let v ∈ BD(Ω) be arbitrary and pick, due to Lemma 2.1, a sequence (v j) ⊂ u0 +

C∞
c (Ω;Rn) such that ṽ j → ṽ area-strictly on BD(Ω̃). Since for every j ∈ N, ṽ j is of the form

u0 +ϕ j with some ϕ j ∈ C∞
c (Ω;Rn), we obtain

`

ˆ
Ω̃

V (ε(ṽ j))dx− `

ˆ
Ω̃\Ω

V (ε(u0))dx≤C(`,L,V,L n(Ω̃))
(ˆ

Ω̃

|ε(u0)|dx+1
)
+

ˆ
Ω̃

f (ε(ṽ j))dx.

Since f is symmetric quasiconvex, it is symmetric rank-one convex in the sense as specified in
Section 2.3. Therefore, Lemma 2.6 (which precisely yields continuity of the associated integral
functionals for symmetric rank-one convex integrands) and the very definition of V yield by
passing j→ ∞

`

ˆ
Ω̃

V (Eṽ)− `

ˆ
Ω̃\Ω

V (ε(u0))dx≤C(`,L,V,L n(Ω̃))
(ˆ

Ω̃

|ε(u0)|dx+1
)
+

ˆ
Ω̃

f (Eṽ).

Enlarging the constant C > 0 from the previous inequality, by definition of ṽ we thereby obtain

`

ˆ
Ω

V (Ev)+ `

ˆ
Ω

|Tr∂Ω(u0− v)�ν∂Ω|dH n−1−C(`,L,V,L n(Ω̃))
(ˆ

Ω̃

|ε(u0)|dx+1
)

(LG)
≤

ˆ
Ω

f (Ev)+
ˆ

∂Ω

f ∞
(

Tr∂Ω(u0− v)�ν∂Ω

)
dH n−1 = Fu0 [v].

(6.4)

Since | · | ≤ V (·)+ 1, this proves that Fu0 is bounded below on BD(Ω). Let (u j) ⊂ BD(Ω) be
a minimising sequence for Fu0 , i.e., Fu0 [u j]→ infBD(Ω) Fu0 . Then (u j) is bounded in BD(Ω)

and we may extract a non-relabeled subsequence and find some u ∈ BD(Ω) such that u j
∗
⇀ u in

BD(Ω) (and hence ũ j
∗
⇀ ũ in BD(Ω̃)). Cancelling the integrals over Ω̃\Ω and as a consequence

of Theorem 2.5, Fu0 [u]≤ liminf j→∞ Fu0 [u j] = infBD(Ω) Fu0 . Hence, u is a BD-minimiser in the
sense of (1.3).

We come to (6.1). Since there holds Du0 ⊂ BD(Ω) and Fu0 |Du0 (Ω) = F on Du0 , we obtain
’≥’ in (6.1). For the other direction, pick a BD-minimiser u ∈ BD(Ω) for F , its existence
having been established above. Choosing an extension u0 of the Dirichlet datum u0 as above
and defining ũ via (6.3), we invoke Lemma 2.1 to obtain a sequence (u j)⊂ u0+C∞

c (Ω;Rn) such
that ũ j → ũ area-strictly in BD(Ω̃). Then, again by Lemma 2.6, Fu0 [u j]→ Fu0 [u] as j→ ∞.
Thus, since ũ j ∈Du0 and Fu0 [u j] = F [u j] for all j ∈ N,

inf
Du0

F ≤ lim
j→∞

Fu0 [u j] = Fu0 [u] = min
BD(Ω)

Fu0 [u].

Since we already established that minBD(Ω) Fu0 ≤ infDu0
F , the proof of (6.1) is complete.

6.2. Auxiliary Estimates on the Vp-functions. In this section we provide the proof of the
auxiliary estimation (3.9) that helped to establish a particular form of a Korn-type inequality;
recall that now 1 < p < 2. The first uniform comparability assertion of (3.9) is a basic property
of shifted N-functions, cf. [31, Def. 2 and Sec. 2]. We thus begin by showing that ψ given by
(3.8) satisfies the conditions of Lemma 2.9 together with the second uniform comparability of
(3.9). This means

cψ
′(t)≤ ψ

′′(t)t ≤Cψ
′(t),

c(1+a+ t)p−2t2 ≤ ψ
′′(a+ t)t2 ≤C(1+a+ t)p−2t2(6.5)

for some 0 < c ≤C < ∞ independent of a ≥ 0 and t > 0. We start with (6.5)2, and recall that
1 < p < 2 throughout this section. To this end, note that for t > 0

d
dt

ψ(t) = (p−2)(1+ t)p−3t2 +2(1+ t)p−2t,

d2

dt2 ψ(t) = (p−2)(p−3)(1+ t)p−4t2 +4(p−2)(1+ t)p−3t +2(1+ t)p−2.

(6.6)
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Since 1 < p < 2, the second term on the right-hand side of (6.6)2 is negative. Therefore,

ψ
′′(a+ t)t2 ≤ (p−2)(p−3)(1+a+ t)p−4(a+ t)2t2 +2(1+a+ t)p−2t2

≤ ((p−2)(p−3)+2)(1+a+ t)p−2t2,

establishing the upper bound asserted by (6.5). The lower bound requires a refined argument.
Since p > 1, cp := p2− p is strictly positive. We write for t > 0

ψ ′′(a+ t)t2

(1+a+ t)p−2t2 =
(p−2)(p−3)(1+a+ t)p−4(a+ t)2t2

(1+a+ t)p−2t2 +
4(p−2)(1+a+ t)p−3(t +a)t2

(1+a+ t)p−2t2

+
2(1+a+ t)p−2t2

(1+a+ t)p−2t2

= 2+(p−2)
[
(p−3)

( a+ t
1+a+ t

)2
+4
( a+ t

1+a+ t

)]
We claim that the ultimate term is larger or equal than cp. Put ϑ : R 3 z 7→ 2+(p− 2)((p−
3)z2 +4z). Since 1 < p < 2, this function has a global minimum at z0 =

2
3−p which, by p > 1,

satisfies z0 > 1. Hence, for all z ∈ (0,1), ϑ(z)≥ ϑ(1) = p2− p = cp > 0, and the lower bound
of (6.5) follows because of (a+ t)/(1+a+ t) ∈ (0,1).

We turn to the third uniform comparability assertion of (3.9), which is equivalent to the
existence of constants 0 < c≤C < ∞ such that

c(1+ t2 +a2)
p−2

2 t2 ≤ (1+ t +a)p−2t2 ≤C(1+ t2 +a2)
p−2

2 t2(6.7)

holds for all a, t ≥ 0. First note that√
1+ t2 +a2 ≤

√
(1+ t +a)2 = 1+ t +a

so that, because of 1 < p < 2, (1+ t +a)p−2 ≤ (1+ t2 +a2)
p−2

2 , and so the upper bound in (6.7)
follows. For the lower bound note that, because of Young’s inequality

1+ t +a =
√
(1+ t +a)2 ≤

√
8+8t2 +8a2 ≤

√
8
√

1+ t2 +a2,

thereby establishing the lower bound in (6.7); for the latter estimate, we could have alternatively
argued by virtue of Lemma 2.10, cf. (2.19)1. We now turn to (6.5)1. Setting a = 0 in (6.5)2,
(6.5)1 is obviously equivalent to

ψ
′(t)' (1+ t)p−2t.(6.8)

By (6.6)1 and 1 < p < 2, we have ψ ′(t)≤ 2(1+ t)p−2t for all t > 0. On the other hand, for t > 0,

ψ ′(t)
(1+ t)p−2t

=
(p−2)(1+ t)p−3t2 +2(1+ t)p−2t

(1+ t)p−2t
= (p−2)

t
1+ t

+2≥ p.

The proof of (3.9) is complete.

REFERENCES

[1] Acerbi, E.; Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86
(1984), no. 2, 125–145.

[2] Acerbi, E.; Fusco, N.: A regularity theorem for minimizers of quasiconvex integrals. Arch. Rational Mech. Anal.
99 (1987), no. 3, 261–281.

[3] Acerbi, E.; Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Rat. Mech. Anal. 164,
213– 259 (2002).

[4] Ambrosio, L.; Coscia, A.; Dal Maso, G.: Fine properties of functions with bounded deformation. (English sum-
mary) Arch. Rational Mech. Anal. 139 (1997), no. 3, 201–238.

[5] Alberti, G.: Rank one property for derivatives of functions with bounded variation, Proc. Roy. Soc. Edinburgh
Sect. A 123 (1993), 239–274.

[6] Ambrosio, L.; Dal Maso, G.: On the relaxation in BV(Ω;Rm) of quasi–convex integrals. J. Funct. Anal. 109
(1992), 76–97.



38 F. GMEINEDER

[7] Ambrosio, L.; Fusco, N.; Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford
Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.

[8] Anzellotti, G.; Giaquinta, M.: Existence of the displacements field for an elastoplastic body subject to Hencky’s
law and Von Mises yield condition. Manuscripta Mathematica, 32(1-2) (1980), 101-136.

[9] Anzellotti, G.; Giaquinta, M.: Convex functionals and partial regularity. Arch. Rational Mech. Anal. 102 (1988),
no. 3, 243–272.

[10] Arroyo-Rabasa, A.; De Philippis, G.; Rindler, F.: Lower semicontinuity and relaxation of linear-growth integral
functionals under PDE constraints, arXiv:1701.02230 (2017), 1–32.

[11] Babadjian, J.–F.: Traces of functions of bounded deformation. Indiana Univ. Math. J. 64 (2015), no. 4, 1271–1290.
[12] Barroso, A.C.; Fonseca, I.; Toader, R.: A relaxation theorem in the space of functions of bounded deformation.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 1, 19–49.
[13] Beck, L.: Elliptic Regularity - A first course. Lecture Notes of the Italian Mathematical Union (19), 2016, Springer.
[14] Bildhauer, M.: Convex Variational Problems – Linear, Nearly Linear and Anisotropic Growth Conditions. Lecture

Notes in Mathematics 1818, Springer Verlag 2003.
[15] Bourgain, J.; Brezis, H.; Mironescu, P.: H

1
2 maps with values into the circle: minimal connections, lifting, and the

Ginzburg-Landau equation. Publ. Math. Inst. Hautes Études Sci. No. 99 (2004), 1–115.
[16] Breit, D., Diening, L.: Sharp Conditions for Korn Inequalities in Orlicz Spaces. J. Math. Fluid Mech. 14 (2012),

565–573
[17] Breit, D.; Diening, L.; Gmeineder, F.: On the Trace Operator for Functions of bounded A-Variation. Anal. PDE.

13(2020), pp. 559–594.
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