Nov 22, 2019 Dr. F. Gmeineder

Functional Analysis Revision Class

Problem 1: Terminology

Give examples of

- Banach spaces which are not Hilbert,
- Banach spaces which are not separable,
- Banach spaces on which not any two norms are equivalent,
- \bullet a linear operator T on some Banach space X which is bounded, but discontinuous,
- a linear operator $T \colon X \to Y$ between two Banach spaces X,Y which is bounded and continuous,
- a linear operator $T: X \to Y$ between two Banach spaces X, Y which is not bounded.

Moreover, decide whether the following are true or false – if they are false, give the correct statement:

- For any $1 \leq p \leq \infty$ and any $f \in L^p(\mathbb{R}^n)$, there exists $(f_j) \subset C_c^{\infty}(\mathbb{R}^n)$ such that $f_j \to f$ in $L^p(\mathbb{R}^n)$.
- For any $1 \le p \le \infty$ we have $L^p(\Omega)^* \cong L^{p'}(\Omega)$, where $p' = \frac{p}{p-1}$ if 1 .

Problem 2:

Decide with proof which of the following are proper dense subspaces of $\ell^2(\mathbb{N})$:

$$\begin{split} \mathfrak{A} &:= \{x = (x_j) \in \ell^2(\mathbb{N}) \colon \ x_{2019} \geq 0\}, \\ \mathfrak{B} &:= \{x = (x_j) \in \ell^2(\mathbb{N}) \colon \ x_{2019} = 0\}, \\ \mathfrak{C} &:= \{x = (x_j) \in \ell^2(\mathbb{N}) \colon \ \sum_j |\sin(x_j)| < \infty\}. \end{split}$$

Problem 3:

Decide with proof whether the following subsests of $\ell^2(\mathbb{N})$ are bounded and/or precompact and/or compact:

$$\mathcal{A} := \{ x = (x_j) \colon ||x||_{\ell^2} \le 1 \},
\mathcal{B} := \{ x = (x_j) \colon |x_j| \le \frac{1}{\sqrt{j}} \text{ for all } j \in \mathbb{N} \},
\mathcal{C} := \{ x = (x_j) \colon |x_j| \le \frac{1}{j} \text{ for all } j \in \mathbb{N} \}.$$