Functional Analysis & PDEs

Dec 06, 2019

Dr. F. Gmeineder

Functional Analysis Revision

Give yourself 120-140 minutes to work on the following five problems.

Problem 1: 10 marks

Prove or disprove whether

$$\{x=(x_j)\in\ell^1(\mathbb{N})\colon \sum_j x_j=0\}$$

is dense in $(\ell^2(\mathbb{N}), \|\cdot\|_{\ell^2(\mathbb{N})})$.

Problem 2:

4 + 6 = 10 marks

Let $1 \le p \le q \le \infty$.

- (a) Prove that $\ell^p(\mathbb{N}) \subset \ell^q(\mathbb{N})$.
- (b) Let $T: \ell^p(\mathbb{N}) \ni x \mapsto x \in \ell^q(\mathbb{N})$ be the injection underlying (a). Show that T is a bounded linear operator and compute its operator norm.

Problem 3: 10 marks

Let $1 \leq q \leq \infty$. Prove that

$$\bigcup_{p < q} \ell^p(\mathbb{N}) \subsetneq \ell^q(\mathbb{N}).$$

Problem 4: 10 marks

Let C([0,1]) the space of continuous functions $u: [0,1] \to \mathbb{R}$, endowed with the usual supremum norm. Let $X \subset C([0,1])$ be a closed subspace of C([0,1]) for the supremum norm which satisfies

$$X \subset \bigcup_{0 < \alpha \le 1} C^{0,\alpha}([0,1]).$$

Prove that $\dim(X) < \infty$.

Problem 5: 10 marks

Let \mathcal{H} be separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$. Let (e_j) be an orthonormal basis for \mathcal{H} and let (x_n) be a sequence in \mathcal{H} . Prove that the following are equivalent:

- (a) For all $f \in \mathcal{H}^*$ there holds $f(x_n) \to 0$ as $n \to \infty$.
- (b) For all $j \in \mathbb{N}$ there holds $\langle e_j, x_n \rangle \to 0$ as $n \to \infty$ and $\sup_{n \in \mathbb{N}} ||x_n|| < \infty$.