o/ -quasiconvexity, function spaces & regularity

Franz Gmeineder

partly based on joint work with
D. Breit (Edinburgh), S. Conti (Bonn), L. Diening (Bielefeld), B. Raita
(Pisa) & J. Van Schaftingen (Louvain)

, o ]
Universitat e

m
Konstanz Mwﬁz

Function Space Seminar, Prague, Jan 06, 2022



Introduction

Minimal Surfaces

The classical minimal surface problem reads as

minimise % [u] := / V14 |Vul?dx subject to ulag = wp.
Q

® Graphs of minimisers yield minimal surface with 'boundary datum’ wo.

A

/Graph(uo)

/



Introduction

Elasticity and plasticity

® Symmetric gradient: (u) := 3(Du+ Du™)
® Trace-free symmetric gradient: £°(u) := e(u) — X div(u)E,
minimise % [u] := / ®(|eP(v)]) dx + 1/ | div(u)|* dx —/ F-udx
Q 2 Jo Q

subject to suitable side constraints (forces, tensions)
()




Introduction

A unifying framework |

Let Q C R" be a bounded Lipschitz domain with A, € Z(V; W),
A=Y Ad%vis Y Ald%, v:iQ sV

la|=k la|=k

a vectorial differential operator. We aim to minimise
Flu] = / f(Au)dx over suitable maps u with u|sq = wo,
Ja

where ug: Q — V is a suitable Dirichlet datum and f has 1 < p < co growth:
[f(2)] < c(1+]2]P) forall z € W.
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A unifying framework |

Let Q C R" be a bounded Lipschitz domain with A, € Z(V; W),
A=) Ad0% v Y Aldy, v:iQ sV

la|=k [a]=k

a vectorial differential operator. We aim to minimise
Flu] = / f(Au)dx over suitable maps u with u|sq = wo,
Q

where ug: Q — V is a suitable Dirichlet datum and f has 1 < p < co growth:
[f(2)] < c(1+]2]P) forall z € W.

Example (The symmetric gradient)

V=R" W=RY, Au:=e(u) := 3(Du+ Du")

Example (The trace-free symmetric gradient)

V=R" W=RY" . Au:=e"(u):=e(u) - idiv(v)E,

tf,sym?




Introduction

A unifying framework ||

Z[u] ::/Qf(Au)dx7 I£(2)| < c(1 + |2]°)

@ |Au|” should be integrable and u should attain the right boundary values
~ denote this class X),.

@ (V,') in Xp with Cg‘\[vi] — ianp F

© Hope for boundedness of (v;) in X, to extract a suitably convergent
subsequence in a weak sense: vjj) ~ v

O Sequential LSC for '~": F[v] < liminf; o0 F[vij)]



Introduction

A unifying framework ||

Zu] ::/Qf(Au)dn IF(2)| < c(1 + |2]°)

@ |Au|” should be integrable and u should attain the right boundary values
~+ denote this class X),.

D (vi) in X, with Z[vi] — infx, F

© Hope for boundedness of (v;) in X, to extract a suitably convergent
subsequence in a weak sense: Vi) ~ v

O Sequential LSC for '~": F[v] < liminf;_ o0 F[vij)]
Reasonable:
WHP(Q) = {u: [|ullirie) + [[Aullw@) < oo}
Natural question: When do we have

W4P(Q) ~ WRP(Q; V)?

Depends on A and whether 1 < p < co or p = 1!



Introduction

A unifying framework ||

Zu] ;:/Qf(Au)dx7 IF(2)| < c(1 + |2]°)

@ |Au|” should be integrable and u should attain the right boundary values
~ denote this class X),.

9 (V,') in Xp with JGZ[V,] — inf)(p F

© Hope for boundedness of (v;) in X, to extract a suitably convergent
subsequence in a weak sense: Vi) ~ v

O Sequential LSC for '~": F[v] < liminf; o0 F[vij)]

Requires a generalisation of the

Quasiconvexity 4 la Morrey: f: RV — R continuous is called quasiconvex if

f(z) < / f(z+ V) dx vz e RV o e €((0,1)";R"Y).
(0,1)"

— will lead us to &/-quasiconvexity a la Fonseca & Miiller



Introduction

A unifying framework ||

Zu] ::/Qf(Au)dn F(2)| < (1 + |2]°)

v" |Au|” should be integrable and u should attain the right boundary values
~+ denote this class X},.

v (vi) in &, with F[v)] — infx, F

v" Hope for boundedness of (v;) in X, to extract a suitably convergent
subsequence in a weak sense: Vi) ~ v

V' Sequential LSC for '~": F[v] < liminf;_ o0 F[vi;)]

I

Existence of minima

I

What can we say about their regularity?
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Plan of the talk

Function spaces, harmonic analysis

and boundary behaviour of maps

|

Coercivity and LSC:

p-strong <7-quasiconvexity

|

Ch<_partial regularity of minimisers



Function spaces & Harmonic Analysis

Plan of the talk

Function spaces, harmonic analysis

and boundary behaviour of maps

|

Coercivity and LSC:

p-strong <7-quasiconvexity

|

Ch<_partial regularity of minimisers



Function spaces & Harmonic Analysis

A versus V¥ — Calderén-Zygmund & Ornstein

Theorem (Korn versus Ornstein)

In general, the inequality | V*ul|L» < c||Aul|i» holds for all u € CZ°(R"; V) if
and only if A is elliptic and 1 < p < oo — but not for p = 1.

® We call A elliptic &
VEEe R\ {0}:  Al¢] =30, €A V = Wis injective
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Theorem (Korn versus Ornstein)
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— mq belongs to C*°(R"\ {0}; Z(W; V)) and is homogeneous of degree
zero.



Function spaces & Harmonic Analysis

A versus V¥ — Calderén-Zygmund & Ornstein

Theorem (Korn versus Ornstein)

In general, the inequality | V*ul|L» < c||Aul|i» holds for all u € CZ°(R"; V) if
and only if A is elliptic and 1 < p < oo — but not for p = 1.

® We call A elliptic &
VEER"\{0}: Al =3, Aa: V = Wis injective
® Write for u € C°(R"; V) and |a| = k:
0"u = e (€ (AT ALED) AL FlAd])
=mq(§)

— mq belongs to C*°(R"\ {0}; Z(W; V)) and is homogeneous of degree
zero.

— Apply Theorem of Mihlin-H6rmander/Calderén-Zygmund.



Function spaces & Harmonic Analysis

What survives? — Strengthening ellipticity

® Sobolev inequality:
Van Schaftingen (JEMS, '13), based on Bourgain & Brezis (JAMS, '07):

[[ull ) S llAullin foru € C7(R™ V)

LnTHI(Rn
<= A elliptic and ﬂ A[€](V) = {0} (cancelling)
£eRmM\ {0}

® Trace inequalities?
The operator e”(u) := e(u) — % div(u)E,
® n=2: elliptic, but:

! {31411 = Ot

P =0= Cauchy-Riemann!
D = -0

f:D>z— i € C holomorphic and faD |f| ds#t = +oo.

* n>3: ker(eP) = {Killing fields} C 2,(R"; R")




Function spaces & Harmonic Analysis

Traces and boundary behaviour

Theorem (Breit, Diening, FXG, APDE '20 + Diening & FXG '21)
The following are equivalent for a k-th order operator A and 1 < p < co:
@ A is C-elliptic, so
Alg]: V+iV — W +iW is injective for all ¢ € C"\ {0}.
@ For all open, bounded and smooth Q C R" there holds
Troa(W*?(Q; V)) = Traa(W"?(Q))




Function spaces & Harmonic Analysis

Traces and boundary behaviour

Theorem (Breit, Diening, FXG, APDE '20 + Diening & FXG '21)
The following are equivalent for a k-th order operator A and 1 < p < co:
@ A is C-elliptic, so
Alg]: V+iV — W +iW is injective for all ¢ € C"\ {0}.
@ For all open, bounded and smooth Q C R" there holds
Troa(W*?(Q; V)) = Traa(W"?(Q))

® hinges on the Hilbert Nullstellensatz from algebraic geometry
u(x) = Nu(x) +/ Ku(x — y)Au(y)dy = ker(A) C Zn(R";R")
B

® C-ellipticity is equivalent to ker(A) being a

’ finite dimensional subspace of polynomials ‘




Function spaces & Harmonic Analysis

Trace Inequalities & C-ellipticity

A not C-elliptic

1

A contains a copy of the two-dimensional ¢°

!

shift singularity in C ~ R? along {0} x R""?
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Function spaces & Harmonic Analysis

Trace Inequalities & C-ellipticity

A not C-elliptic

1

A contains a copy of the two-dimensional ¢°

!

shift singularity in C ~ R? along {0} x R""?

A Rn—2

Obtain u € WH(D x (—1,1)""%) with [, uld#"t = o0

0,1)x(-1,1)"=2 |
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Proof sketch for the halfspace H = {x, > 0}




Function spaces & Harmonic Analysis

Proof sketch for the halfspace H = {x, > 0}

Qi

Q1 i+1

® partition of unity (ps,i)ien for slightly blown up cubes.

* project u on the cube Q; onto ker(A) —s obtain I u.
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Proof sketch for the halfspace H = {x, > 0}

® partition of unity (p/,i)ien for slightly blown up cubes.

® project u on the cube Qj,; onto ker(A) — obtain ﬁ/,,-u.




Function spaces & Harmonic Analysis

Proof sketch for the halfspace H = {x, > 0}

® partition of unity (p/,i)ien for slightly blown up cubes.

* project u on the cube Q; onto ker(A) —s obtain I u.

Tiu:=ou+(1-0) Zp/‘,-l_l/,,'u

iEN

- OH



Function spaces & Harmonic Analysis

Proof sketch for the halfspace H = {x, > 0}

® partition of unity (p/,i)ien for slightly blown up cubes.

* project u on the cube Q; onto ker(A) —s obtain I u.

Tiu:=ou+(1-0) Zp/‘,-l_l/,,'u

iEN

- OH

® Idea: u; — uin WA (H) und Tr(u) = limj00 Tr(Tju) in Tr(W*1)(5H)



Function spaces & Harmonic Analysis

Proof sketch for the halfspace H = {x, > 0}

® Use Tr(u) = limisoo Tr(Tiu) =32 Tr(Tiqau — Tiu)
® Then

Tiau— Tiw= (o — o111)(--) + Z 0141P1,mpr1,i (Mieaiu — Ty mu)
—_——

i,meN polynomials of fixed degree!

® Crucial: If |a| < k,

J

|0%(Myt1,iu — My mu)|dx S K(Q/ )\al /Q(,m [Mig,iu — My mu| dx

I,m
k
< (Q’i’”)‘l/ |[Aul
f( Ql,m) « cubes touching Q/,m
and for |8| = k — |a],

1
B N o< - =
10" (0r+1p1,mpi+1,i)| S Q)T O



Function spaces & Harmonic Analysis

Traces and potentials

If A is a first order differential operator, then in particular
* BVA(R") — L7 (R"; V) if A is R-elliptic and cancelling,
® Traa-1xq0y: BVA(R") < LY(R"! x {0}; V) if A is C-elliptic.

In between:

Theorem (FXG, Raita & Van Schaftingen, Indiana '21 )

If0<s<1andX CR" (n— s)-dimensional, then

ITrz: BVA(R") = Lo 1 (R™ " °LY)
provided A is R-elliptic and cancelling (., A[¢](V) = {0}).

C-ellipticity  ellipticity and cancellation




o -quasiconvexity

Where we are now

Function spaces, harmonic analysis

and boundary behaviour of maps

|

Coercivity and LSC:

p-strong <7-quasiconvexity

|

Ch<_partial regularity of minimisers




o -quasiconvexity

The historical development

® Idea: Q=(0,1)", T: Q »R"*"and crl(T) =0= T = Vu.
® We say that 7 is an annihilator for A, and A is a potential for o if

v 2w 7l 7 s exact for any £ e R"\ {0}.

® Based on Dacorogna (80s), Fonseca & Miiller defined

2/ -quasiconvexity

An integrand F: W — R is called .o7-quasiconvex provided
F(z)g/ F(z+)dx
(0,1)"

holds for all z € W, ) € C=(T"; W) with (¢)),1)» = 0 and 277 = 0.




o -quasiconvexity

Lower semicontinuity

Call & a constant-rank operator provided dim(%/[£](W)) does not depend
on { € R"\ {0}.

Metatheorem a 13 Fonseca & Miiller SIAM '99, 1 < p < oo

If F is o/-quasiconvex and of p-growth, the associated integral functional

vr—>/QF(v)dx

is weakly lower semicontinuous along sequences (v;) with &/v; = 0.

® Paradigm shift:

Theorem (Raita, Calc Var PDE '19)

Any constant rank operator ./ has a potential A, and then F is &/-QC iff

F(z) < / F(z+Ap)dx  Vz e WVp e C((0,1)"; V).
(0,1)"

® also see Arroyo-Rabasa & Simental '21: Homological approach

— Existence of minimisers!



Regularity

Where we are now

Function spaces, harmonic analysis

and boundary behaviour of maps

|

Coercivity and LSC:

p-strong <7-quasiconvexity

|

Ch<_partial regularity of minimisers




Regularity

Partial regularity — main theorem

Theorem (Conti & FXG, '21 based on FXG, J. Math. Pures Appl. '21)

Let A be an elliptic differential operator of order one and F: W — R satisfy
(H1) F e C¥(w),

(H2) |F(2)| £ c(1+ |z|P) for all z € W (growth bound, 1 < p < 00),

(H3) F—¢V, is o7-QC.

Then any local minimiser of the integral functional

v /F(Av)dx

is CY-*-partially regular.
v

® higher order equally possible, here first order for simplicity

® (lassical setting: — among others Evans, Acerbi, Fusco, Pasarelli di
Napoli, Carozza, Mingione, Kristensen, Duzaar, Schmidt, Diening, Fuchs,

Breit, ... and many, many others



Regularity

Proof outline

The essential cone and span of A

For a differential operator A, define

V®A€::ijAjv, veV,£eR".
=1

We then define the
® essential cone by 7(A) :={v®s&: ve V, R}
® essential span by Z(A) := span(%(A)) C W.

Upshot: If N := dim(V), then 2(A) — RY*",
— upon identification, we may assume that W = Z(A) ¢ RV*".
For F: W — R &/-quasiconvex, now define
G(z) := F(Na(2)), z e RV,
with My : RVX" — Z(A) such that Ma[Vv] = Av.



Regularity

The case p > 2: Properties of G = F o[l

(H1) G e C?if Fe C2
(H2") |G(2)] £ (14 |z|?) since F satisfies this estimate.
(H3") As a consequence of the p-strong 7-quasiconvexity, with Q = (0,1)",

—2
v [kl + 14D T I dx < [ F(z o+ Ap) - Fl)dx.
Q Q
Thus with ¢(t) := t* + t°,
1D +100 dx 5 [ 1A0P + lagP ox
Q Q

5/ F(Na(z) + Ap) — F(Na(2)) dx < / G(z+ Dy) — G(z)dx
Q JQ



Regularity

The case p > 2: Properties of G = F o[l

(H1) G e C?if Fe C2
(H2") |G(2)] £ (14 |z|?) since F satisfies this estimate.
(H3") As a consequence of the p-strong 7-quasiconvexity, with Q = (0,1)”",

—2
v [kl + 14D T I dx < [ F(z o+ Ap) - Fl)dx.
Q Q
Thus with ¢(t) := t* + t°,
1D +100 dx 5 [ 1A0P + lagP ox
Q JQ

< / F(Na(z) + Ap) — F(Na(2)) dx < / G(z+ Dy) — G(z)dx
JQ JQ

Anoteonl<p<?2

More intricate, hinges on Diening's shifted ¢-functions and

=2 -2
[ @+ 128+ D6 T 1Dpf dx S [ (14 M) + Do) 71Dl dx
Q Q

~¢|n ()1 (PP)




Thank you for your attention!
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