A-quasiconvexity, function spaces & regularity

Franz Gmeineder

partly based on joint work with

D. Breit (Edinburgh), S. Conti (Bonn), L. Diening (Bielefeld), B. Raita
(Pisa) & J. Van Schaftingen (Louvain)

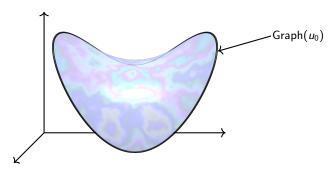
Function Space Seminar, Prague, Jan 06, 2022

Minimal Surfaces

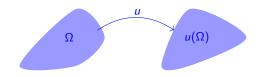
The classical minimal surface problem reads as

minimise
$$\mathscr{F}[u] := \int_{\Omega} \sqrt{1 + |\nabla u|^2} \, \mathrm{d}x$$
 subject to $u|_{\partial\Omega} = u_0$.

• Graphs of minimisers yield minimal surface with 'boundary datum' u_0 .



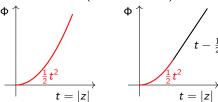
Elasticity and plasticity



- Symmetric gradient: $\varepsilon(u) := \frac{1}{2}(Du + Du^{\top})$
- Trace-free symmetric gradient: $\varepsilon^D(u) := \varepsilon(u) \frac{1}{n} \operatorname{div}(u) E_n$

$$\text{minimise} \quad \mathscr{F}[u] := \int_{\Omega} \Phi(|\varepsilon^D(u)|) \, \mathrm{d}x + \frac{1}{2} \int_{\Omega} |\operatorname{div}(u)|^2 \, \mathrm{d}x - \int_{\Omega} F \cdot u \, \mathrm{d}x$$

subject to suitable side constraints (forces, tensions)



A unifying framework I

Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain with $\mathbb{A}_{\alpha} \in \mathcal{L}(V; W)$,

$$\mathbb{A} = \sum_{|\alpha|=k} \mathbb{A}_{\alpha} \partial^{\alpha} \colon \mathbf{v} \mapsto \sum_{|\alpha|=k} \mathbb{A}_{\alpha} \partial^{\alpha} \mathbf{v}, \qquad \mathbf{v} \colon \Omega \to \mathbf{V}$$

a vectorial differential operator. We aim to minimise

$$\mathscr{F}[u] := \int_{\Omega} f(\mathbb{A}u) \, \mathrm{d}x$$
 over suitable maps u with $u|_{\partial\Omega} = u_0$,

where $u_0: \Omega \to V$ is a suitable Dirichlet datum and f has $1 \le p < \infty$ growth:

$$|f(z)| \le c(1+|z|^p)$$
 for all $z \in W$.

$$V = \mathbb{R}^n$$
, $W = \mathbb{R}_{\mathrm{sym}}^{n \times n}$, $\Delta u := \varepsilon(u) := \frac{1}{2}(Du + Du^{\top})$

$$V = \mathbb{R}^n$$
, $W = \mathbb{R}_{\mathrm{tf,sym}}^{n \times n}$, $Au := \varepsilon^D(u) := \varepsilon(u) - \frac{1}{n} \mathrm{div}(u) E_n$

A unifying framework I

Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain with $\mathbb{A}_{\alpha} \in \mathcal{L}(V; W)$,

$$\mathbb{A} = \sum_{|\alpha|=k} \mathbb{A}_{\alpha} \partial^{\alpha} \colon \mathbf{v} \mapsto \sum_{|\alpha|=k} \mathbb{A}_{\alpha} \partial^{\alpha} \mathbf{v}, \qquad \mathbf{v} \colon \Omega \to \mathbf{V}$$

a vectorial differential operator. We aim to minimise

Function spaces & Harmonic Analysis

$$\mathscr{F}[u] := \int_{\Omega} f(\mathbb{A}u) \, \mathrm{d}x$$
 over suitable maps u with $u|_{\partial\Omega} = u_0$,

where $u_0: \Omega \to V$ is a suitable Dirichlet datum and f has $1 \le p < \infty$ growth:

$$|f(z)| \le c(1+|z|^p)$$
 for all $z \in W$.

Example (The symmetric gradient)

$$V = \mathbb{R}^n$$
, $W = \mathbb{R}^{n \times n}_{ ext{sym}}$, $\mathbb{A}u := \varepsilon(u) := \frac{1}{2}(Du + Du^\top)$

Example (The trace-free symmetric gradient)

$$V = \mathbb{R}^n$$
, $W = \mathbb{R}_{\mathrm{tf.sym}}^{n \times n}$, $Au := \varepsilon^D(u) := \varepsilon(u) - \frac{1}{n} \mathrm{div}(u) E_n$

A unifying framework II

Introduction

$$\mathscr{F}[u] := \int_{\Omega} f(\mathbb{A}u) \, dx, \quad |f(z)| \le c(1+|z|^{p})$$

- **1** $|Au|^p$ should be integrable and u should attain the right boundary values → denote this class \mathcal{X}_p .
- **2** (v_i) in \mathcal{X}_p with $\mathscr{F}[v_i] \to \inf_{\mathcal{X}_p} \mathscr{F}$
- **3** Hope for boundedness of (v_i) in \mathcal{X}_p to extract a suitably convergent subsequence in a weak sense: $v_{i(j)} \rightsquigarrow v$
- **4** Sequential LSC for ' \leadsto ': $\mathscr{F}[v] \leq \liminf_{j \to \infty} \mathscr{F}[v_{i(j)}]$

A unifying framework II

$$\mathscr{F}[u] := \int_{\Omega} f(\mathbb{A}u) \, dx, \quad |f(z)| \le c(1+|z|^p)$$

- **1** $|Au|^p$ should be integrable and u should attain the right boundary values → denote this class \mathcal{X}_p .
- **2** (v_i) in \mathcal{X}_p with $\mathscr{F}[v_i] \to \inf_{\mathcal{X}_p} \mathscr{F}$
- **3** Hope for boundedness of (v_i) in \mathcal{X}_p to extract a suitably convergent subsequence in a weak sense: $v_{i(j)} \rightsquigarrow v$
- **4** Sequential LSC for ' \leadsto ': $\mathscr{F}[v] \leq \liminf_{j \to \infty} \mathscr{F}[v_{i(j)}]$

Reasonable:

$$\mathsf{W}^{\mathbb{A},p}(\Omega) := \{ u \colon \|u\|_{\mathsf{L}^p(\Omega)} + \|\mathbb{A}u\|_{\mathsf{L}^p(\Omega)} < \infty \}$$

Natural question: When do we have

$$W^{\mathbb{A},p}(\Omega) \simeq W^{k,p}(\Omega; V)$$
?

Depends on \mathbb{A} and whether 1 or <math>p = 1!

A unifying framework II

$$\mathscr{F}[u] := \int_{\Omega} f(\mathbb{A}u) \, dx, \quad |f(z)| \le c(1+|z|^{p})$$

- 1 $|\mathbb{A}u|^p$ should be integrable and u should attain the right boundary values \rightsquigarrow denote this class \mathcal{X}_n .
- **2** (v_i) in \mathcal{X}_p with $\mathscr{F}[v_i] \to \inf_{\mathcal{X}_p} \mathscr{F}$
- 3 Hope for boundedness of (v_i) in \mathcal{X}_p to extract a suitably convergent subsequence in a weak sense: $v_{i(i)} \rightsquigarrow v$
- **4** Sequential LSC for ' \leadsto ': $\mathscr{F}[v] \leq \liminf_{i \to \infty} \mathscr{F}[v_{i(i)}]$

Requires a generalisation of the

Quasiconvexity á la Morrey: $f: \mathbb{R}^{N \times n} \to \mathbb{R}$ continuous is called **quasiconvex** if

$$f(z) \leq \int_{(0,1)^n} f(z + \nabla \varphi) dx \qquad \forall z \in \mathbb{R}^{N \times n}, \ \varphi \in \mathsf{C}^\infty_c((0,1)^n; \mathbb{R}^N).$$

 \longrightarrow will lead us to \mathscr{A} -quasiconvexity a la Fonseca & Müller

A unifying framework II

$$\mathscr{F}[u] := \int_{\Omega} f(\mathbb{A}u) \, \mathrm{d}x, \quad |f(z)| \le c(1+|z|^p)$$

- $\checkmark |\mathbb{A}u|^p$ should be integrable and u should attain the right boundary values \rightsquigarrow denote this class \mathcal{X}_n .
- $\checkmark (v_i) \text{ in } \mathcal{X}_p \text{ with } \mathscr{F}[v_i] \to \inf_{\mathcal{X}_p} \mathscr{F}$
- \checkmark Hope for boundedness of (v_i) in \mathcal{X}_p to extract a suitably convergent subsequence in a weak sense: $v_{i(i)} \rightsquigarrow v$
- \checkmark Sequential LSC for ' \leadsto ': $\mathscr{F}[v] < \liminf_{i \to \infty} \mathscr{F}[v_{i(i)}]$

Existence of minima

What can we say about their regularity?

Plan of the talk

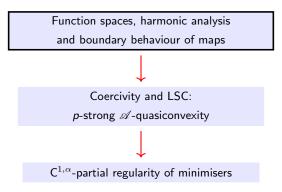
Function spaces, harmonic analysis and boundary behaviour of maps

Coercivity and LSC:

p-strong A-quasiconvexity

C^{1,\alpha}-partial regularity of minimisers

Plan of the talk



\mathbb{A} versus ∇^k – Calderón-Zygmund & Ornstein

Theorem (Korn versus Ornstein)

In general, the inequality $\|\nabla^k u\|_{\mathsf{L}^p} \le c\|\mathbb{A}u\|_{\mathsf{L}^p}$ holds for all $u \in \mathsf{C}^\infty_c(\mathbb{R}^n; V)$ if and only if \mathbb{A} is elliptic and 1 – but not for <math>p = 1.

We call A elliptic ⇔

$$\forall \xi \in \mathbb{R}^n \setminus \{0\}$$
: $\mathbb{A}[\xi] := \sum_{|\alpha|=k} \xi^{\alpha} \mathbb{A}_{\alpha} \colon V \to W$ is injective

$$\partial^{\alpha} u = c_n \mathscr{F}^{-1} \left(\underbrace{\xi^{\alpha} (\mathbb{A}[\xi]^* \mathbb{A}[\xi])^{-1} \mathbb{A}[\xi]^*}_{=m_{\alpha}(\xi)} \mathscr{F}[\mathbb{A}u] \right)$$

- $\longrightarrow m_{\alpha}$ belongs to $C^{\infty}(\mathbb{R}^n \setminus \{0\}; \mathcal{L}(W; V))$ and is homogeneous of degree zero.
- --> Apply Theorem of Mihlin-Hörmander/Calderón-Zygmund

$\mathbb A$ versus $abla^k$ – Calderón-Zygmund & Ornstein

Theorem (Korn versus Ornstein)

In general, the inequality $\|\nabla^k u\|_{\mathsf{L}^p} \le c\|\mathbb{A}u\|_{\mathsf{L}^p}$ holds for all $u \in \mathsf{C}^\infty_c(\mathbb{R}^n; V)$ if and only if \mathbb{A} is elliptic and 1 – but not for <math>p = 1.

• We call A elliptic ⇔

$$\forall \xi \in \mathbb{R}^n \setminus \{0\}$$
: $\mathbb{A}[\xi] := \sum_{|\alpha|=k} \xi^{\alpha} \mathbb{A}_{\alpha} \colon V \to W$ is injective

$$\partial^{\alpha} u = c_n \mathscr{F}^{-1} \left(\underbrace{\xi^{\alpha} (\mathbb{A}[\xi]^* \mathbb{A}[\xi])^{-1} \mathbb{A}[\xi]^*}_{=m_{\alpha}(\xi)} \mathscr{F}[\mathbb{A}u] \right)$$

- $\longrightarrow m_{\alpha}$ belongs to $C^{\infty}(\mathbb{R}^n \setminus \{0\}; \mathcal{L}(W; V))$ and is homogeneous of degree zero.
- --> Apply Theorem of Mihlin-Hörmander/Calderón-Zygmund

$\mathbb A$ versus $abla^k$ – Calderón-Zygmund & Ornstein

Theorem (Korn versus Ornstein)

In general, the inequality $\|\nabla^k u\|_{\mathsf{L}^p} \le c\|\mathbb{A}u\|_{\mathsf{L}^p}$ holds for all $u \in \mathsf{C}^\infty_c(\mathbb{R}^n; V)$ if and only if \mathbb{A} is elliptic and 1 – but not for <math>p = 1.

We call A elliptic ⇔

$$\forall \xi \in \mathbb{R}^n \setminus \{0\}$$
: $\mathbb{A}[\xi] := \sum_{|\alpha|=k} \xi^{\alpha} \mathbb{A}_{\alpha} \colon V \to W$ is injective

$$\partial^{\alpha} u = c_n \mathscr{F}^{-1} \left(\underbrace{\xi^{\alpha} (\mathbb{A}[\xi]^* \mathbb{A}[\xi])^{-1} \mathbb{A}[\xi]^*}_{=m_{\alpha}(\xi)} \mathscr{F}[\mathbb{A}u] \right)$$

- $\longrightarrow m_{\alpha}$ belongs to $C^{\infty}(\mathbb{R}^n \setminus \{0\}; \mathscr{L}(W; V))$ and is homogeneous of degree zero.
- --> Apply Theorem of Mihlin-Hörmander/Calderón-Zygmund

\mathbb{A} versus ∇^k – Calderón-Zygmund & Ornstein

Theorem (Korn versus Ornstein)

In general, the inequality $\|\nabla^k u\|_{\mathsf{L}^p} \le c\|\mathbb{A}u\|_{\mathsf{L}^p}$ holds for all $u \in \mathsf{C}^\infty_c(\mathbb{R}^n; V)$ if and only if \mathbb{A} is elliptic and 1 – but not for <math>p = 1.

We call A elliptic ⇔

$$\forall \xi \in \mathbb{R}^n \setminus \{0\}$$
: $\mathbb{A}[\xi] := \sum_{|\alpha|=k} \xi^{\alpha} \mathbb{A}_{\alpha} \colon V \to W$ is injective

$$\partial^{\alpha} u = c_n \mathscr{F}^{-1} \left(\underbrace{\xi^{\alpha} (\mathbb{A}[\xi]^* \mathbb{A}[\xi])^{-1} \mathbb{A}[\xi]^*}_{=m_{\alpha}(\xi)} \mathscr{F}[\mathbb{A}u] \right)$$

- $\longrightarrow m_{\alpha}$ belongs to $C^{\infty}(\mathbb{R}^n \setminus \{0\}; \mathscr{L}(W; V))$ and is homogeneous of degree zero.
- --> Apply Theorem of Mihlin-Hörmander/Calderón-Zygmund.

What survives? – Strengthening ellipticity

Sobolev inequality:

Van Schaftingen (JEMS, '13), based on Bourgain & Brezis (JAMS, '07):

 $\varepsilon \in \mathbb{R}^n \setminus \{0\}$

$$\begin{split} \|u\|_{\mathsf{L}^{\frac{n}{n-1}}(\mathbb{R}^n)} &\lesssim \|\mathbb{A}u\|_{\mathsf{L}^1(\mathbb{R}^n)} \text{ for } u \in \mathsf{C}^\infty_c(\mathbb{R}^n; V) \\ &\iff \mathbb{A} \text{ elliptic and } \bigcap \mathbb{A}[\xi](V) = \{0\} \text{ (cancelling)} \end{split}$$

Trace inequalities?

Example (The trace-free symmetric gradient)

The operator $\varepsilon^D(u) := \varepsilon(u) - \frac{1}{n}\operatorname{div}(u)E_n$

• n = 2: elliptic, but:

$$\varepsilon^D(u) \stackrel{!}{=} 0 \Longrightarrow \begin{cases} \partial_1 u_1 &= \partial_2 u_2 \\ \partial_2 u_1 &= -\partial_1 u_2 \end{cases}$$
 Cauchy-Riemann!

$$f: \mathbb{D} \ni z \mapsto \frac{1}{z-1} \in \mathbb{C}$$
 holomorphic and $\int_{\partial \mathbb{D}} |f| \, d\mathscr{H}^1 = +\infty$.

• $n \geq 3$: $\ker(\varepsilon^D) = \{\text{Killing fields}\} \subset \mathscr{P}_2(\mathbb{R}^n; \mathbb{R}^n)$

Theorem (Breit, Diening, FXG, APDE '20 + Diening & FXG '21)

The following are equivalent for a k-th order operator \mathbb{A} and $1 \le p < \infty$:

lacktriangle A is \mathbb{C} -elliptic, so

Introduction

$$\mathbb{A}[\xi] \colon V + iV \to W + iW$$
 is injective for all $\xi \in \mathbb{C}^n \setminus \{0\}$.

A-quasiconvexity

2 For all open, bounded and smooth $\Omega \subset \mathbb{R}^n$ there holds

$$\operatorname{Tr}_{\partial\Omega}(\mathsf{W}^{k,p}(\Omega;V)) = \operatorname{Tr}_{\partial\Omega}(\mathsf{W}^{\mathbb{A},p}(\Omega))$$

$$u(x) = \Pi u(x) + \int_{\mathbb{R}} K_{\mathbb{A}}(x - y) \mathbb{A}u(y) \, dy \quad \Rightarrow \quad \ker(\mathbb{A}) \subset \mathscr{P}_m(\mathbb{R}^n; \mathbb{R}^N)$$

Introduction

Traces and boundary behaviour

Theorem (Breit, Diening, FXG, APDE '20 + Diening & FXG '21)

The following are equivalent for a k-th order operator \mathbb{A} and $1 \le p < \infty$:

lacktriangle A is \mathbb{C} -elliptic, so

$$\mathbb{A}[\xi] \colon V + iV \to W + iW$$
 is injective for all $\xi \in \mathbb{C}^n \setminus \{0\}$.

2 For all open, bounded and smooth $\Omega \subset \mathbb{R}^n$ there holds

$$\operatorname{Tr}_{\partial\Omega}(\mathsf{W}^{k,p}(\Omega;V)) = \operatorname{Tr}_{\partial\Omega}(\mathsf{W}^{\mathbb{A},p}(\Omega))$$

hinges on the Hilbert Nullstellensatz from algebraic geometry

$$u(x) = \prod u(x) + \int_{\mathbb{R}} K_{\mathbb{A}}(x - y) \mathbb{A}u(y) \, dy \quad \Rightarrow \quad \ker(\mathbb{A}) \subset \mathscr{P}_m(\mathbb{R}^n; \mathbb{R}^N)$$

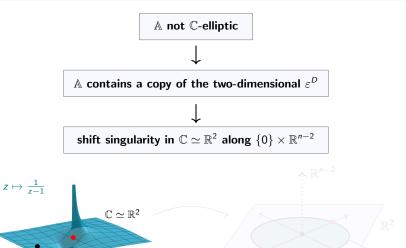
C-ellipticity is equivalent to ker(A) being a

finite dimensional subspace of polynomials

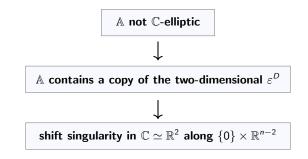
(0,0)

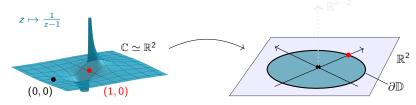
Trace Inequalities & C-ellipticity

(1,0)



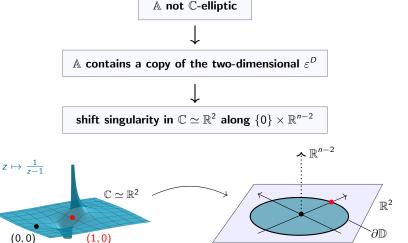
Trace Inequalities & C-ellipticity





Obtain $u \in W^{\mathbb{A},p}(\mathbb{D} \times (-1,1)^{n-2})$ with $\int_{\partial \mathbb{D}(0,1)\times (-1,1)^{n-2}} |u| \, d\mathscr{H}^{n-1} = +\infty$

Trace Inequalities & C-ellipticity

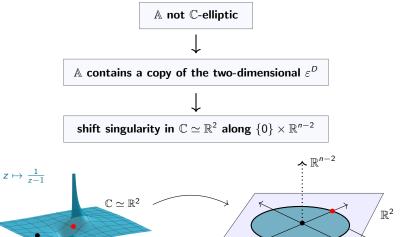


Obtain $u \in W^{\mathbb{A},p}(\mathbb{D} \times (-1,1)^{n-2})$ with $\int_{\partial \mathbb{D}(0,1) \times (-1,1)^{n-2}} |u| \, d\mathscr{H}^{n-1} = +\infty$

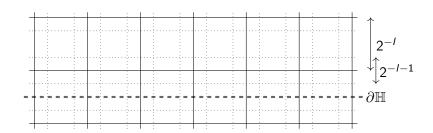
(0,0)

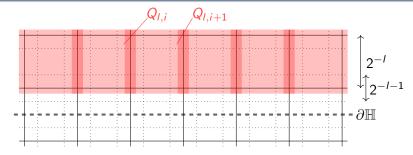
Trace Inequalities & C-ellipticity

(1,0)

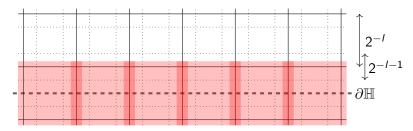


Obtain $u \in W^{\mathbb{A},p}(\mathbb{D} \times (-1,1)^{n-2})$ with $\int_{\partial \mathbb{D}(0,1) \times (-1,1)^{n-2}} |u| \, d\mathscr{H}^{n-1} = +\infty$

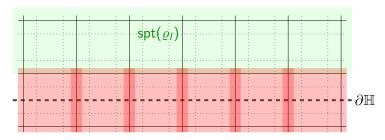




- partition of unity $(\rho_{l,i})_{i\in\mathbb{N}}$ for slightly blown up cubes.
- project u on the cube $Q_{l,i}$ onto $\ker(\mathbb{A}) \longrightarrow \operatorname{obtain} \widetilde{\Pi}_{l,i} u$.



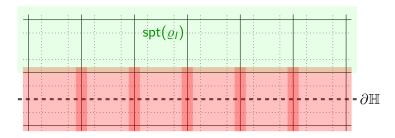
- partition of unity $(\rho_{l,i})_{i\in\mathbb{N}}$ for slightly blown up cubes.
- project u on the cube $Q_{l,i}$ onto $\ker(\mathbb{A}) \longrightarrow \operatorname{obtain} \widetilde{\Pi}_{l,i} u$.



- partition of unity $(\rho_{l,i})_{i\in\mathbb{N}}$ for slightly blown up cubes.
- project u on the cube $Q_{l,i}$ onto $\ker(\mathbb{A}) \longrightarrow \operatorname{obtain} \Pi_{l,i} u$.

$$T_I u := \varrho_I u + (1 - \varrho_I) \sum_{i \in \mathbb{N}} \rho_{I,i} \Pi_{I,i} u$$

Proof sketch for the halfspace $\mathbb{H} = \{x_n > 0\}$



- partition of unity $(\rho_{l,i})_{i\in\mathbb{N}}$ for slightly blown up cubes.
- project u on the cube $Q_{l,i}$ onto $\ker(\mathbb{A}) \longrightarrow \operatorname{obtain} \widetilde{\Pi}_{l,i}u$.

$$T_I u := \varrho_I u + (1 - \varrho_I) \sum_{i \in \mathbb{N}} \rho_{I,i} \Pi_{I,i} u$$

• Idea: $u_j \to u$ in $W^{\mathbb{A},1}(\mathbb{H})$ und $Tr(u) = \lim_{j \to \infty} Tr(T_j u)$ in $Tr(W^{k,1})(\partial \mathbb{H})$

- Use $\operatorname{Tr}(u) = \lim_{l \to \infty} \operatorname{Tr}(T_l u) = \sum_{l = -\infty}^{\infty} \operatorname{Tr}(T_{l+1} u T_l u)$
- Then

$$T_{l+1}u - T_lu = (\varrho_l - \varrho_{l+1})(...) + \sum_{i,m \in \mathbb{N}} \varrho_{l+1}\rho_{l,m}\rho_{l+1,i} \underbrace{(\prod_{l+1,i}u - \prod_{l,m}u)}_{\text{polynomials of fixed degree}}$$

• Crucial: If $|\alpha| \leq k$,

$$\begin{split} \int_{Q_{l,m}} |\partial^{\alpha} (\Pi_{l+1,i} u - \Pi_{l,m} u)| \, \mathrm{d}x &\lesssim \frac{1}{\ell(Q_{l,m})^{|\alpha|}} \int_{Q_{l,m}} |\Pi_{l+1,i} u - \Pi_{l,m} u| \, \mathrm{d}x \\ &\lesssim \frac{\ell(Q_{l,m})^k}{\ell(Q_{l,m})^{|\alpha|}} \int_{\text{cubes touching } Q_{l,m}} |\mathbb{A}u| \end{split}$$

and for
$$|\beta| = k - |\alpha|$$
,

$$|\partial^{\beta}(\varrho_{l+1}\rho_{l,m}\rho_{l+1,i})|\lesssim \frac{1}{\ell(Q_{l,m})^{k-|\alpha|}}$$

Traces and potentials

If \mathbb{A} is a first order differential operator, then in particular

- $\mathsf{BV}^{\mathbb{A}}(\mathbb{R}^n) \hookrightarrow \mathsf{L}^{\frac{n}{n-1}}(\mathbb{R}^n; V)$ if A is R-elliptic and cancelling,
- $\operatorname{Tr}_{\mathbb{R}^{n-1} \times \{0\}} : \operatorname{BV}^{\mathbb{A}}(\mathbb{R}^n) \hookrightarrow \operatorname{L}^1(\mathbb{R}^{n-1} \times \{0\}; V)$ if \mathbb{A} is \mathbb{C} -elliptic.

In between:

Theorem (FXG, Raita & Van Schaftingen, Indiana '21)

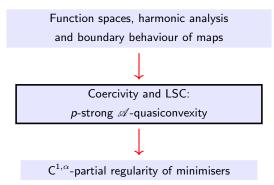
If $0 \le s \le 1$ and $\Sigma \subset \mathbb{R}^n$ (n-s)-dimensional, then

$$\exists \operatorname{\mathsf{Tr}}_\Sigma \colon \operatorname{\mathsf{BV}}^{\mathbb{A}}(\mathbb{R}^n) \to \mathsf{L}^{\frac{n-s}{n-1}}(\mathbb{R}^n; \mathscr{H}^{n-s} \, \mathsf{L} \, \Sigma)$$

provided \mathbb{A} is \mathbb{R} -elliptic and cancelling $(\bigcap_{\xi\neq 0} \mathbb{A}[\xi](V) = \{0\})$.

C-ellipticity ellipticity and cancellation s = 1

Where we are now



The historical development

- Idea: $Q = (0,1)^n$, $T: Q \to \mathbb{R}^{N \times n}$ and $\operatorname{curl}(T) = 0 \Rightarrow T = \nabla u$.
- We say that \mathscr{A} is an **annihilator** for \mathbb{A} , and \mathbb{A} is a **potential** for \mathscr{A} if $V \xrightarrow{\mathbb{A}[\xi]} W \xrightarrow{\mathscr{A}[\xi]} Z$ is exact for any $\xi \in \mathbb{R}^n \setminus \{0\}$.

Based on Dacorogna (80s), Fonseca & Müller defined

\mathcal{A} -quasiconvexity

An integrand $F: W \to \mathbb{R}$ is called \mathscr{A} -quasiconvex provided

$$F(z) \le \int_{(0,1)^n} F(z+\psi) \, \mathrm{d} x$$

holds for all $z \in W$, $\psi \in C^{\infty}(\mathbb{T}^n; W)$ with $(\psi)_{(0,1)^n} = 0$ and $\mathscr{A}\psi = 0$.

Lower semicontinuity

Call \mathscr{A} a constant-rank operator provided $\dim(\mathscr{A}[\xi](W))$ does not depend on $\xi \in \mathbb{R}^n \setminus \{0\}$.

Metatheorem a lá Fonseca & Müller SIAM '99, 1

If F is \mathscr{A} -quasiconvex and of p-growth, the associated integral functional

$$v\mapsto \int_{\Omega}F(v)\,\mathrm{d}x$$

is weakly lower semicontinuous along sequences (v_j) with $\mathscr{A}v_j=0$.

• Paradigm shift:

Theorem (Raita, Calc Var PDE '19)

Any constant rank operator $\mathscr A$ has a potential $\mathbb A$, and then F is $\mathscr A\text{-QC}$ iff

$$F(z) \leq \int_{(0,1)^n} F(z + \mathbb{A}\varphi) dx \qquad \forall z \in W \, \forall \varphi \in \mathsf{C}^\infty_c((0,1)^n; V).$$

- also see Arroyo-Rabasa & Simental '21: Homological approach
- Existence of minimisers!

Function spaces, harmonic analysis and boundary behaviour of maps

Coercivity and LSC:

p-strong A-quasiconvexity

C^{1,\alpha}-partial regularity of minimisers

Partial regularity – main theorem

Theorem (Conti & FXG, '21 based on FXG, J. Math. Pures Appl. '21)

Let $\mathbb A$ be an elliptic differential operator of order one and $F\colon W \to \mathbb R$ satisfy

- (H1) $F \in C^2(W)$,
- (H2) $|F(z)| \lesssim c(1+|z|^p)$ for all $z \in W$ (growth bound, 1),
- (H3) $F \ell V_p$ is \mathscr{A} -QC.

Then any local minimiser of the integral functional

$$v \mapsto \int F(\mathbb{A}v) \, \mathrm{d}x$$

is $C^{1,\alpha}$ -partially regular.

- higher order equally possible, here first order for simplicity
- Classical setting: among others Evans, Acerbi, Fusco, Pasarelli di Napoli, Carozza, Mingione, Kristensen, Duzaar, Schmidt, Diening, Fuchs, Breit, ... and many, many others

Proof outline

The essential cone and span of ${\mathbb A}$

For a differential operator A, define

$$v\otimes_{\mathbb{A}}\xi:=\sum_{j=1}^n \xi_j\mathbb{A}_j v, \qquad v\in V,\, \xi\in\mathbb{R}^n.$$

We then define the

- essential cone by $\mathscr{C}(\mathbb{A}) := \{ v \otimes_{\mathbb{A}} \xi \colon v \in V, \xi \in \mathbb{R}^n \}.$
- essential span by $\mathscr{R}(\mathbb{A}) := \operatorname{span}(\mathscr{C}(\mathbb{A})) \subset W$.

Upshot: If $N := \dim(V)$, then $\mathscr{R}(\mathbb{A}) \hookrightarrow \mathbb{R}^{N \times n}$.

 \longrightarrow upon identification, we may assume that $W = \mathscr{R}(\mathbb{A}) \subset \mathbb{R}^{N \times n}$.

For $F \colon W \to \mathbb{R}$ \mathscr{A} -quasiconvex, now define

$$G(z) := F(\Pi_{\mathbb{A}}(z)), \qquad z \in \mathbb{R}^{N \times n},$$

with $\Pi_{\mathbb{A}} : \mathbb{R}^{N \times n} \to \mathscr{R}(\mathbb{A})$ such that $\Pi_{\mathbb{A}}[\nabla v] = \mathbb{A}v$.

The case $p \geq 2$: Properties of $G = F \circ \Pi_{\mathbb{A}}$

- (H1') $G \in C^2$ if $F \in C^2$.
- (H2') $|G(z)| \lesssim (1+|z|^p)$ since F satisfies this estimate.
- (H3') As a consequence of the *p*-strong \mathscr{A} -quasiconvexity, with $Q=(0,1)^n$,

$$\nu \int_{Q} (1+|z|^2+|\mathbb{A}\varphi|^2)^{\frac{p-2}{2}} |\mathbb{A}\varphi|^2 dx \leq \int_{Q} F(z+\mathbb{A}\varphi) - F(z) dx.$$

Thus with $\phi(t) := t^2 + t^p$,

$$\begin{split} & \int_{Q} |D\varphi|^{2} + |D\varphi|^{p} \, \mathrm{d}x \lesssim \int_{Q} |\mathbb{A}\varphi|^{2} + |\mathbb{A}\varphi|^{p} \, \mathrm{d}x \\ & \lesssim \int_{Q} F(\Pi_{\mathbb{A}}(z) + \mathbb{A}\varphi) - F(\Pi_{\mathbb{A}}(z)) \, \mathrm{d}x \lesssim \int_{Q} G(z + D\varphi) - G(z) \, \mathrm{d}x \end{split}$$

A note on 1

More intricate, hinges on Diening's shifted ϕ -functions and

$$\int_{Q} (1+|z|^2+|D\varphi|^2)^{\frac{\rho-2}{2}}|D\varphi|^2\,\mathrm{d}x \lesssim \int_{Q} \underbrace{\left(1+|\Pi_{\mathbb{A}}(z)|^2+|D\varphi|^2\right)^{\frac{\rho-2}{2}}|D\varphi|^2}_{\equiv \phi_{\mathrm{ID}_{\mathbb{A}}(z)}|D\varphi|}\,\mathrm{d}x$$

The case p > 2: Properties of $G = F \circ \Pi_{\mathbb{A}}$

Function spaces & Harmonic Analysis

- (H1') $G \in \mathbb{C}^2$ if $F \in \mathbb{C}^2$.
- (H2') $|G(z)| \lesssim (1+|z|^p)$ since F satisfies this estimate.
- (H3') As a consequence of the p-strong \mathscr{A} -quasiconvexity, with $Q=(0,1)^n$,

$$\nu \int_Q (1+|z|^2+|\mathbb{A}\varphi|^2)^{\frac{p-2}{2}} |\mathbb{A}\varphi|^2 dx \leq \int_Q F(z+\mathbb{A}\varphi) - F(z) dx.$$

Thus with $\phi(t) := t^2 + t^p$,

$$\int_{Q} |D\varphi|^{2} + |D\varphi|^{p} dx \lesssim \int_{Q} |\mathbb{A}\varphi|^{2} + |\mathbb{A}\varphi|^{p} dx$$

$$\lesssim \int_{Q} F(\Pi_{\mathbb{A}}(z) + \mathbb{A}\varphi) - F(\Pi_{\mathbb{A}}(z)) dx \lesssim \int_{Q} G(z + D\varphi) - G(z) dx$$

A note on 1

More intricate, hinges on Diening's shifted ϕ -functions and

$$\int_Q (1+|z|^2+|D\varphi|^2)^{\frac{p-2}{2}}|D\varphi|^2\,\mathrm{d}x \lesssim \int_Q \underbrace{(1+|\Pi_{\mathbb{A}}(z)|^2+|D\varphi|^2)^{\frac{p-2}{2}}|D\varphi|^2}_{\approx \phi_{|\Pi_{\mathbb{A}}(z)|}(D\varphi)}\mathrm{d}x$$

Coda

References

Function spaces & harmonic analysis _

D. Breit, L. Diening & FXG – Analysis & PDE, 2020: On the trace operator for functions of bounded A-variation

FXG, B. Raita, Van Schaftingen – Indiana J. Math. 2021 Limiting trace inequalities for vectorial differential operators

L. Diening & FXG – ArXiv Preprint, May 2021: Sharp trace and Korn inequalities for differential operators

Regularity _____

FXG – J. Math. Pures Appl., 2020: Partial regularity for symmetric quasiconvex functionals on BD

S. Conti & FXG – ArXiv Preprint, 2020: \$\mathscr{A}\$-quasiconvexity and partial regularity