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Abstract. We establish that for any non-empty, compact set K ⊂ R3×3
sym the 1- and

∞-symmetric div-quasiconvex hulls K(1) and K(∞) coincide. This settles a conjecture

in a recent work of Conti, Müller & Ortiz [10] in the affirmative. As a key novelty, we

construct an L∞-truncation that preserves both symmetry and solenoidality of matrix-

valued maps in L1.

1. Introduction

1.1. Aim and scope. One of the key problems in continuum mechanics is the mathemat-

ical description of the plasticity behaviour of solids. Such solids are usually modelled by

reference configurations Ω ⊂ R3 subject to loads or forces and corresponding velocity fields

v : Ω → R3. The (elasto)plastic behaviour of the material is mathematically described in

terms of the stress tensor σ : Ω → R3×3
sym and is dictated by the precise target K ⊂ R3×3

sym

where it takes values; K is usually referred to as the elastic domain. When ideal plasticity

is assumed and potential hardening effects are excluded, K is a compact set in R3×3
sym with

non-empty interior. As prototypical examples, in the Von Mises or Tresca models used

for the description of metals or alloys, we have K = {σ ∈ R3×3
sym : f(σD) ≤ θ} with a

threshold θ > 0, the deviatoric stress σD := σ − 1
3 tr(σ)E3×3 and convex f : R3×3

sym → R.

Generalising this to K = {σ ∈ R3×3
sym : f(σD) + ϑtr(σ) ≤ θ} for ϑ > 0 as in the Drucker-

Prager or Mohr-Coulomb models for concrete or sand (cf. [15, 25]), such models take

into account persisting volumetric changes induced by the hydrostatic pressure as plasticity

effects. In all of these models, K is a convex set. This opens the gateway to the techniques

from convex analysis, and we refer to [21, 25] for more detail.

As the main motivation for the present paper, the convexity assumption on the elastic

domain K is not satisfied by all materials. A prominent example where the non-convexity

of K can be observed explicitely is fused silica glass (cf. Meade & Jeanloz [28]). Slightly

more generally, for amorphous solids being deformed subject to shear, experiments on the

molecular dynamics (cf. Maloney & Robbins [26]) exhibit the formation of characteristic

patterns in the underlying deformation fields. As a possible explanation of this phenom-

enon, the emergence of such patterns on the microscopic level displays the effort of the

material to cope with the enduring macroscopic deformations. Within the framework of

limit analysis [25], Schill et al. [35] offer a link between the non-convexity of K and the

appearance of such fine microstructure. Working from plastic dissipation principles, the

corresponding static problem is identified in [35] as

sup
σ

inf
v

{ˆ
Ω

σ · ∇v dx : σ ∈ L∞div(Ω;K), v ∈W1,1(Ω;Rn), v = g on ∂Ω

}
(1.1)

for given boundary data g : ∂Ω→ R3. Here, L∞div(Ω;K) is the space of all L∞(Ω;K)-maps

which are row-wise divergence-free (or solenoidal) in the sense of distributions; note that,

if even we admitted general σ ∈ L∞(Ω;K) in (1.1), the variational principle would be

non-trivial only for σ ∈ L∞div(Ω;K). Stability under microstructure formation, in turn,
1
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Figure 1. Molecular dynamics computations for fused silica glass linking

pressure and shear yield stress, taken from Schill et al. [35, Fig. 17(b)].

Within the framework of limit analysis [25], the non-convexity of the crit-

ical state line (thick line) is linked to the instability for microstructure

formation (cf. [35, Sec. 4]) and so a suitable relaxation is required.

is linked to the existence of solutions of (1.1); cf. Müller [30] for a discussion of the

underlying principles. Towards the existence of solutions, the direct method of the Calculus

of Variations requires semicontinuity, and it is here where the set K must be relaxed. By

the constraints on σ, this motivates the passage to the symmetric div-quasiconvex hull of

K as studied by Conti, Müller & Ortiz [10]. In the present paper, we complete the

characterisation of such hulls (cf. Theorem 1.1 below) and thereby answer a conjecture

posed in [10] in the affirmative. To state our result, we pause and introduce the requisite

terminology first.

1.2. Divsym-quasiconvexity and the main result. Following [10], we call a Borel

measurable, locally bounded function F : Rn×nsym → R symmetric div-quasiconvex if

F (ξ) ≤
ˆ
Tn
F (ξ + ϕ(x)) dx(1.2)

holds for all ξ ∈ Rn×nsym and all admissible test maps

ϕ ∈ T :=

{
ϕ ∈ C∞(Tn;Rn×nsym ) div(ϕ) = 0,

ˆ
Tn
ϕdx = 0

}
,(1.3)

where Tn denotes the n-dimensional torus. Here, the divergence is understood in the row-

(or equivalently, column-)wise manner. Accordingly, the symmetric div-quasiconvex (or

divsym-quasiconvex) envelope of a Borel measurable, locally bounded function F : Rn×nsym →
R is defined as the largest symmetric div-quasiconvex function below F ; more explicitely,

QsdqcF (ξ) := inf

{ˆ
Tn
F (ξ + ϕ(x)) dx : ϕ ∈ T

}
.(1.4)

Divsym-quasiconvexity is a strictly weaker notion than convexity, which can be seen Tar-

tar’s example [41] f : Rn×nsym 3 ξ 7→ (n − 1)|ξ|2 − tr(ξ)2. The discussion in Section 1.1

necessitates a notion of divsym-quasiconvexity for sets. Inspired by the separation theory

from convex analysis, we call a compact set K ⊂ Rn×nsym symmetric div-quasiconvex pro-

vided for each ξ ∈ Rn×nsym \K there exists a symmetric div-quasiconvex g ∈ C(Rn×nsym ; [0,∞))

such that g(ξ) > maxK g. The relaxation of the elastic domains K ⊂ Rn×nsym in turn is
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defined in terms of the symmetric div-quasiconvex envelopes of distance functions. For a

compact subset K ⊂ Rn×nsym and 1 ≤ p < ∞, put fp(ξ) := distp(ξ,K). The p-symmetric

div-quasiconvex hull of K then is defined by

K(p) := {ξ ∈ Rn×nsym : Qsdqcfp(ξ) = 0},(1.5)

whereas we set for p =∞:

K(∞) :=

{
ξ ∈ Rn×nsym :

g(ξ) ≤ maxK g for all symmetric

div-quasiconvex g ∈ C(Rn×nsym ; [0,∞))

}
.(1.6)

Both (1.5) and (1.6) are the natural generalisations of the usual convex hulls to the sym-

metric div-quasiconvex context, and one easily sees that K(∞) is the smallest symmetric

div-quasiconvex, compact set containing K.

By our discussion in Section 1.1, it is particularly important to understand the properties

of the symmetric div-quasiconvex hulls. In [10], Conti, Müller & Ortiz established that

K(p) is independent of 1 < p < ∞. Specifically, they conjectured in [10, Rem. 3.9] that

K(1) = K(∞) in analogy with the usual quasiconvex envelopes (see Zhang [45] or Müller

[30, Thm. 4.10]). The present paper answers this question in the affirmative, leading us to

our main result:

Theorem 1.1 (Main result). Let K ⊂ R3×3
sym be compact. Then K(1) = K(∞) and so

K(p) = K(1) = K(∞) for all 1 ≤ p ≤ ∞.(1.7)

Let us note that the p-symmetric div-quasiconvex hulls satisfy the antimonotonicity

property with respect to inclusions, i.e., if 1 ≤ p ≤ q ≤ ∞, then K(q) ⊂ K(p). For

Theorem 1.1, it thus suffices to establish K(1) ⊂ K(∞), and this is exactly what shall be

achieved in Section 5. From a proof perspective, any underlying argument must use an

L∞-truncation of suitable recovery sequences, simultaneously keeping track of the differ-

ential constraint. Contrary to routine mollification, truncations leave the input functions

unchanged on a large set and display an important tool in the study of nonlinear problems

[1, 4, 19, 20, 31, 43]. It is here where Theorem 1.1 cannot be established by analogous

means as in [10, Sec. 3], where a higher order truncation argument in the spirit of Acerbi

& Fusco [2] and Zhang [44] is employed. More precisely, for 1 < p < q < ∞, the

critical inclusion K(p) ⊂ K(q) is established in [10] by passing to the corresponding po-

tentials of divsym-free fields, and as these potentials are of second order, performing a

W2,∞-truncation on the potentials; this shall be referred to as potential truncation. The

underlying potential operators are obtained as suitable Fourier multiplier operators, which

is why they only satisfy strong Lp-Lp-bounds for 1 < p < ∞ (cf. Lemma 2.2 below).

It is well-known that such Fourier multiplier operators do not map L1 → L1 boundedly

(cf. Ornstein [33]), and so this approach is bound to fail in view of Theorem 1.1. In

the regime 1 < p < ∞, this strategy can readily be employed in the general context of

A -quasiconvex hulls in the sense of Fonseca & Müller [18] (cf. Proposition 6.1 and Sec-

tion 6) but is not even required for the inclusion K(p) ⊂ K(q), p < q and can be established

by more elementary means; cf. Lemma 5.2 and its proof for the simplifying argument.

1.3. A truncation theorem and its context. The key tool in establishing Theorem 1.1

therefore consists in the following truncation result, allowing us to truncate a div-free

L1-map u : R3 → R3×3
sym while still preserving the constraint div(u) = 0:

Theorem 1.2 (Main truncation theorem). There exists a constant C > 0 solely depend-

ing on the underlying space dimension n = 3 with the following property: For all u ∈
L1(R3;R3×3

sym) with div(u) = 0 in D ′(R3;R3) and all λ > 0 there exists uλ ∈ L1(R3;R3×3
sym)

satisfying the
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(a) L∞-bound:

‖uλ‖L∞(R3) ≤ Cλ.

(b) strong stability:

‖u− uλ‖L1(R3) ≤ C
ˆ
{|u|>λ}

|u|dx.

(c) small change:

L 3({u 6= uλ}) ≤ Cλ−1

ˆ
{|u|>λ}

|u|dx.

(d) differential constraint: div(uλ) = 0 in D ′(R3;R3).

The same remains valid when replacing the underlying domain R3 by the torus T3.

The way in which Theorem 1.2 implies Theorem 1.1 can be accomplished by analogous

means as in [10] (also see the discussion by the third author [36]), and is sketched for the

reader’s convenience in Section 5. Here we heavily rely on the strong stability property

from item (b), without which the proof of Theorem 1.1 is not clear to us. The detailled

construction that underlies the proof of Theorem 1.2, reminiscent of a geometric version of

the Whitney smoothing or extension procedure [42], is explained in Section 3 and carried

out in detail in Section 4. Here we understand by geometric that the construction is

directly taylored to the problem at our disposal, meaning that the solenoidality constraint

div(u) = 0 is visible in our construction in terms of the Gauß-Green theorem on certain

simplices.

Working on a higher a priori regularity level, Lipschitz truncations that preserve solenoi-

dality constraints are not new and have been studied most notably by Diening et al. [7, 8],

originally developed for problems from mathematical fluid mechanics and since then having

been fruitfully used in a variety of related problems; see, e.g., Süli et al. [13, 40]. Let

us note that the two key approaches in [7, 8] either hinge on locally correcting divergence

contributions on certain bad sets [7] or performing the potential truncation [8]. Whereas the

ansatz in [7] in principle is imaginable to work in the present setting apart from technical

intricacies (cf. Remark 6.3), the key drawback of the potential truncation is the non-

availability of the strong stability estimate. This is essentially a consequence of singular

integrals only mapping L∞ → BMO in general but not L∞ → L∞; see Section 6 and

Proposition 6.1, where the corresponding potential truncations are revisited and discussed

in the general framework of constant rank operators A a lá Schulenberger & Wilcox

[37] or Murat [32].

1.4. Organisation of the paper. Apart from this introductory section, the paper is or-
ganised as follows: In Section 2, we fix notation and gather auxiliary material on maximal
operators and basic facts from harmonic analysis. Section 3 then explains the idea un-
derlying the construction employed in the proof of Theorem 1.2, and is then carried out
in detail in Section 4. Section 5 is devoted to the proof of Theorem 1.1, and the paper
is concluded in Section 6 by revisiting potential truncations. The Appendix, Section 7,
gathers various instrumental computations that underlie some of the results presented in
Section 4.
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2. Preliminaries

2.1. Notation. The linear operators between two finite-dimensional real vector spaces

V,W are denoted L (V ;W ). We denote L n and H n−1 the n-dimensional Lebesgue or

(n− 1)-dimensional Hausdorff measures, respectively. For notational brevity, we shall also

write dn−1 = dH n−1. Given n- or (n− 1)-dimensional measurable subsets Ω and Σ of Rn
with L n(Ω),H n−1(Σ) ∈ (0,∞), respectively, we use the shorthand 

Ω

udx :=
1

L n(Ω)

ˆ
Ω

udx and

 
Σ

v dn−1x :=
1

H n−1(Σ)

ˆ
Σ

v dn−1x

for L n- or H n−1-measurable maps u : Ω → Rm and v : Σ → Rm. As we shall mostly

assume n = 3, we denote Br(z) the open ball of radius r centered at z ∈ R3, whereas

we reserve the notation Br(z) to denote the corresponding open balls in the symmet-

ric (3 × 3)-matrices R3×3
sym; moreover, we put ω3 := L 3(B1(0)). By cubes Q we under-

stand non-degenerate cubes throughout, and use `(Q) to denote their sidelength. Lastly,

for x1, ..., xj ∈ R3, we denote 〈x1, ..., xj〉 the convex hull of the vectors x1, ..., xj , and if

x1, x2, x3 do not lie on a joint line, aff(x1, x2, x3) the affine hyperplane containing x1, x2, x3.

2.2. Maximal operator, bad sets and Whitney covers. For a finite dimensional real

vector space V , w ∈ L1(Rn;V ) and R > 0, we recall the (restricted) centered Hardy-

Littlewood maximal operators to be defined by

MRw(x) := sup
0<r<R

 
Br(x)

|w|dy, x ∈ Rn,

Mw(x) := sup
r>0

 
Br(x)

|w|dy, x ∈ Rn.
(2.1)

Note that, by lower semicontinuity of MRw, the superlevel sets {MRw > λ} are open for

all λ > 0. Moreover, we record that M is of weak-(1, 1)-type, meaning that there exists

c = c(n) > 0 such that

L n({Mw > λ}) ≤ c

λ
‖w‖L1(Rn) for all w ∈ L1(Rn;V ).(2.2)

See [23, 38] for more background information. Now let Ω ⊂ Rn be open. Then there exists

a Whitney cover W = (Qj) for Ω. By this we understand a sequence of open cubes Qj
with the following properties:

(W1) Ω =
⋃
j∈NQj .

(W2) 1
5`(Qj) ≤ dist(Qj ,Ω

{) ≤ 5`(Qj) for all j ∈ N.

(W3) Finite overlap: There exists a number N = N(n) > 0 such that at most N elements

of W overlap; i.e., for each i ∈ N,

|{j ∈ N : Qj ∈ W andQi ∩Qj 6= ∅}| ≤ N.

(W4) Comparability for touching cubes: There exists a constant c(n) > 0 such that if

Qi, Qj ∈ W satisfy Qi ∩Qj 6= ∅, then

1

c(n)
`(Qi) ≤ `(Qj) ≤ c(n)`(Qi).

Whenever such a Whitney cover is considered, we tacitly understand xj to be the centre

of the corresponding cube Qj . Based on the Whitney cover W from above, we choose a

partition of unity (ϕj) subject to W with the following properties:

(P1) For any j ∈ N, ϕj ∈ C∞c (Qj ; [0, 1]).

(P2)
∑
j∈N ϕj = 1 in Ω.
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(P3) For each l ∈ N, there exists a constant c = c(n, l) > 0 such that

|∇lϕj | ≤
c

`(Qj)l
for all j ∈ N.

2.3. Differential operators and projection maps. For the following sections, we re-

quire some terminology for differential operators and a suitable projection property to be

gathered in the sequel. Let A be a constant coefficient, linear and homogeneous differential

operator of order k ∈ N on Rn (or Tn) between Rd and RN , so A has a representation

A u =
∑
|α|=k

Aα∂
αu, u : Rn → Rd,(2.3)

with fixed Aα ∈ L (Rd;RN ) for |α| = k. Following [32, 37] we say that A has constant

rank (in R) provided the rank of the Fourier symbol A [ξ] =
∑
|α|=k Aαξ

α : Rd → RN is

independent of ξ ∈ Rn \ {0}. A constant coefficient differential operator A of order j ∈ N
on Rn (or Tn) between R` and Rd consequently is called a potential of A provided for each

ξ ∈ Rn \ {0} the Fourier symbol sequence

R` A[ξ]−→ Rd A [ξ]−→ RN

is exact at every ξ ∈ Rn \ {0}, i.e., A[ξ](R`) = ker(A [ξ]) for each such ξ. We moreover

say that A has constant rank (in C) provided A [ξ] : Cd → CN has rank independent of

ξ ∈ Cn\{0}. If we only speak of constant rank, then we tacitly understand constant rank in

R. In Section 6, we require the following two auxiliary results, ensuring both the existence

of potentials and suitable projection operators.

Lemma 2.1 (Existence of potentials, [34, Thm. 1, Lem. 5]). Let A be a differential

operator with constant rank over R. Then A possesses a potential A. Moreover, if u ∈
C∞(Tn;Rd) satisfies

´
Tn udx = 0 and A u = 0, there exists v ∈ C∞(Tn;R`) with Av = u.

Equally, for each u ∈ S (Rn;Rd) with A u = 0 there exists v ∈ S (Rn;R`) with Av = u.

Lemma 2.2 (Projection maps on the torus, [18, Lem. 2.14]). Let 1 < p <∞ and let A be

a differential operator of order k with constant rank in R. Then there is a bounded, linear

projection map PA : Lp(Tn;Rd)→ Lp(Tn;Rd) with the following properties:

(a) PA u ∈ ker A and PA ◦ PA = PA .

(b) ‖u− PA u‖Lp(Tn) ≤ CA ,p‖A u‖W−k,p(Tn) whenever
ffl
Tn udx = 0.

(c) If (uj) ⊂ Lp(Tn;Rd) is bounded and p-equiintegrable, i.e.,

lim
ε↘0

(
sup
j∈N

sup
E : Ln(E)<ε

ˆ
E

|uj |p dx

)
= 0,

then also (PA uj) is p-equiintegrable.

As alluded to in the introduction, Lemma 2.2 does not extend to p = 1 in general, the

reason being Ornstein’s Non-Inequality [33]; also see [9, 24] for more recent approaches

to the matter and Grafakos [23, Thm. 4.3.4] for a full characterisation of L1-multipliers.

3. On the construction of divsym-free truncations

Before embarking on the proof of Theorem 1.2, we comment on the underlying idea of

the proof. To this end, we streamline terminology as follows. Let Ω either be Tn or Rn.

Given a constant rank differential operator A on Ω between R` and Rd and 1 ≤ p ≤ ∞,

we define Sobolev-type spaces WA,p(Ω) := {u ∈ Lp(Ω;R`) : Au ∈ Lp(Ω;Rd)}. A family

of operators (Sλ)λ>0 with Sλ : WA,p(Ω) → WA,∞(Ω) is called an WA,p-WA,∞-truncation

provided there exists a constant c = c(A, p) > 0 such that, for all u ∈WA,p(Ω) and λ > 0,
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(a) ‖Sλu‖L∞(Ω) + ‖ASλu‖L∞(Ω) ≤ cλ.

(b) ‖u− Sλu‖Lp(Ω) + ‖Au− ASλu‖Lp(Ω) ≤ c
´
{|u|+|Au|>λ} |u|

p + |Au|p dx.

(c) L n({u 6= Sλu}) ≤ c
λp

´
{|u|+|Au|>λ} |u|

p + |Au|p dx.

If A = ∇k, then we simply speak of a Wk,p-Wk,∞-truncation. Conversely, if A is a potential

of the differential operator A having the form (2.3) and 1 ≤ p ≤ ∞, we define LpA (Ω) :=

{u ∈ Lp(Ω;Rd) : A u = 0}. A family of operators (Tλ)λ>0 with Tλ : LpA (Ω) → L∞A (Ω) is

called an A -free Lp-L∞-truncation (or simply A -free L∞-truncation) provided there exists

c = c(A, p) > 0 such that the following hold for all u ∈ L∞A (Ω) and λ > 0:

(a) ‖Tλu‖L∞(Ω) ≤ cλ.

(b) ‖u− Tλu‖Lp(Ω)+ ≤ c
´
{|u|>λ} |u|

p dx.

(c) L n({u 6= Tλu}) ≤ c
λp

´
{|u|>λ} |u|

p dx.

Originally, W1,p-W1,∞-truncations as in Acerbi & Fusco [2] leave u ∈ W1,p(Ω) un-

changed on {Mu ≤ λ} ∩ {M(∇u) ≤ λ}. Here, the functions satisfy the Lipschitz estimate

|u(x)− u(y)| . |x− y|(M(∇u)(x) +M(∇u)(y)) . λ|x− y|

for L n-a.e. x, y ∈ {M(∇u) ≤ λ} and thus can be extended to a cλ-Lipschitz function Sλu

by virtue of Mc Shane’s extension theorem [17, Chpt. 3.1.1., Thm. 1]. Note that, if u is

divergence-free, then Sλu is not in general. In view of preserving differential constraints,

this necessitates a more flexible approach. Instead of appealing to the Mc Shane extension,

one may directly perform an Whitney-type extension [42] and truncate u ∈ W1,1(Ω) on

the bad set Oλ = {Mu > λ} ∪ {M(∇u) > λ} via

S̃λu(x) =

{∑
j∈N ϕj(u)Qj x ∈ Oλ,

u(x) x ∈ O{
λ,

or Sλu(x) =

{∑
j∈N ϕju(yj) x ∈ Oλ,

u(x) x ∈ O{
λ,

where yj ∈ O{
λ are chosen suitably. Then S̃λ and Sλ define W1,1-W1,∞-truncations; cf. [13,

38]. Setting v = ∇u, this formula gives a curl-free L1-L∞-truncation, as curl(v) = 0⇔ v =

∇u for some function u. Using (P1)–(P3), we can, however, rewrite ṽ := ∇Sλu purely in

terms of v, i.e.

ṽ(x) =

{∑
i,j∈N ϕi∇ϕj

´ 1

0
v(tyj + (1− t)yi) · (yi − yj) dt x ∈ Oλ,

v(x) x ∈ O{
λ.

(3.1)

The key observation is that the truncation formula (3.1) does not only give a curl-free

L1-L∞-truncation, but is stronger and gives a Wcurl,1-Wcurl,∞-truncation, if we redefine

the bad set to be Õλ := {Mv > λ} ∪ {M curl(v) > λ}. We are then able to formulate an

A -free L1-L∞-truncation of the annihilator of curl, which is div in three dimensions. As

discussed by the third author [36], this approach works for all potential-annihilator pairs

along the exact sequence of exterior derivatives. This is the exact sequence of differential

operators starting with ∇, that is

0 −→ C∞,0(Tn;R)
∇−→ C∞,0(Tn;Rn)

curl−→ C∞,0(Tn;Rn×nskew) −→ ...

−→ C∞,0(Tn;Rn)
div−→ C∞,0(Tn;R) −→ 0,

where C∞,0(Tn;Rm) denotes the space of smooth functions on the torus with average 0.

However, WA,1-WA,∞-truncations are also known in settings where A 6= ∇. In this work,

we use that such a truncation exists for the symmetric gradient, i.e. A = ε = 1
2 (∇+∇>)

(cf. [16, 5]). We use the truncation and the exact sequence

0 −→ C∞,0(T3;R3)
ε−→ C∞,0(T3;R3×3

sym)
curl curl>−−−−−−→ C∞,0(T3;R3×3

sym)(3.2)
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div−→ C∞,0(T3;R3) −→ 0,

where curl curl> v for v ∈ C2(R3;R3×3
sym) is defined as

curl curl> v =

 w2323 w2331 w2312

w3123 w3131 w3112

w1223 w1231 w1212

 ,

wabcd := ∂a∂cvbd + ∂b∂dvac − ∂a∂dvbc − ∂b∂cvad.

The truncation of the symmetric gradient is used to find an analogue of (3.1) for curl curl>,

giving us a curl curl>-free truncation. However, this can be used to get a Wcurl curl>,1-

Wcurl curl>,∞-truncation, giving us the divergence-free L1-L∞-truncation of Section 4 below.

4. Construction of the truncation and the proof of Theorem 1.2

In this section, we establish Theorem 1.2. As a main ingredient, we shall prove the

following variant for smooth maps that will be shown to imply Theorem 1.2 in Section 4.6:

Proposition 4.1. Let w ∈ (C∞ ∩L1)(R3;R3×3
sym) satisfy div(w) = 0. Then there exists a

constant c > 0 such that for all λ > 0 there exists an open set Uλ ⊂ R3 and a function

wλ ∈ (L1 ∩L∞)(R3;R3×3
sym) with the following properties:

(a) w = wλ on U{
λ and L 3({w 6= wλ}) < c

λ

´
{|w|>λ

2 }
|w|dx.

(b) div(wλ) = 0 in D ′(R3;R3).

(c) ‖wλ‖L∞(R3) ≤ cλ.

4.1. Definition of Tλ. Let w = (w1, w2, w3) ∈ (C∞ ∩L1)(R3;R3×3
sym) satisfy div(w) = 0.

In view of locally redefining our given map w on Oλ = {Mw > λ}, we put

Aα,β(i, j, k)(y) :=

 
〈xi,xj ,xk〉

((y − ξ)βwα(ξ)− (y − ξ)αwβ(ξ))νijk d2ξ,

Bα(i, j, k) :=

 
〈xi,xj ,xk〉

wα(ξ) · νijk d2ξ

(4.1)

provided the simplex 〈xi, xj , xk〉 is non-degenerate; if it is degenerate, we then define

Aα,β(i, j, k) := 0 and Bα(i, j, k) := 0. Here and in what follows, we use

νxi,xj ,xk := νijk :=
1

2
(xi − xj)× (xk − xj),(4.2)

provided the simplex 〈xi, xj , xk〉 is non-degenerate. Consider a three-tuple

(α, β, γ) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

For (i, j, k) ∈ N3 and fixed projection points xl ∈ Ql for l ∈ {i, j, k}, we then define

w̃
(k)
αβ = 3

∑
i,j∈N

(∂γϕj∂αϕiBα(i, j, k) + ∂βϕj∂γϕiBβ(i, j, k))

+
∑
i,j∈N

(∂βγϕj∂γϕi − ∂γγϕj∂βϕi)Aβ,γ(i, j, k)

+
∑
i,j∈N

(∂αγϕj∂γϕi − ∂γγϕj∂αϕi)Aγ,α(i, j, k)

+
∑
i,j∈N

(∂αγϕj∂βϕi + ∂βγϕj∂αϕi − 2∂αβϕj∂γϕi)Aα,β(i, j, k).

(4.3)
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We define w̃
(k)
βα = w̃

(k)
αβ by symmetry. For the diagonal terms, we put

w̃(k)
αα = 6

∑
i,j∈N

∂βϕj∂γϕiBα(i, j, k)

+ 2
∑
i,j∈N

(∂γγϕj∂βϕi − ∂βγϕj∂γϕi)Aγ,α(i, j, k)

+ 2
∑
i,j∈N

(∂ββϕj∂γϕi − ∂βγϕj∂βϕi)Aα,β(i, j, k).

(4.4)

Note that, since at most N cubes Qj overlap by (W3), each of the sums in (4.3) and (4.4) are,

in a neighbourhood of each point x ∈ Oλ, actually finite sums and hence w̃(k) := (w
(k)
αβ )αβ

is well-defined. Based on (4.3), we define the truncation operator Tλ by

Tλw := w −
∑
k

ϕk(w − w̃(k)) =

{
w in O{

λ,∑
k ϕkw̃

(k) in Oλ.
(4.5)

Note that on Oλ, Tλw is a locally finite sum of C∞-maps and thus is equally of class

C∞(Oλ;R3×3
sym).

4.2. Auxiliary properties of Aα,β and Bα. In this section, we record some useful prop-

erties and auxiliary bounds on the maps Aα,β(i, j, k) and the (constant) maps Bα(i, j, k)

that will play an instrumental role in the proof of Proposition 4.1. We begin by gather-

ing elementary properties of Aα,β and Bα to be utilised crucially when performing index

permutations for the sums appearing in (4.5):

Lemma 4.2. Let w ∈ C1(R3;R3×3
sym) satisfy div(w) = 0, i, j, k, l ∈ N and define Aαβ ,Bα

for α, β ∈ {1, 2, 3} by (4.1). Then the following hold:

(a) ∂αAα,β(i, j, k) = −Bβ(i, j, k).

(b) ∂βAα,β(i, j, k) = Bα(i, j, k).

(c) Antisymmetry of Aα,β : Aα,β(i, j, k) = −Aα,β(j, i, k) = Aα,β(j, k, i).

(d) Antisymmetry of Bα: Bα(i, j, k) = −Bα(j, i, k) = Bα(j, k, i).

(e) divξ((y − ξ)βwα(ξ)− (y − ξ)αwβ(ξ)) = 0.

(f) Bα(i, j, k)−Bα(l, j, k)−Bα(i, l, k)−Bα(i, j, l) = 0.

(g) Aα,β(i, j, k)− Aα,β(l, j, k)− Aα,β(i, l, k)− Aα,β(i, j, l) = 0.

Proof. Properties (a)–(d) are immediate consequences of the definitions. Property (e)

holds, since

divξ((y − ξ)βwα(ξ)− (y − ξ)αwβ(ξ)) = −wαβ(ξ)− ξβ div(wα) + wβα(ξ) + ξα div(wβ) = 0.

To prove (f) we use that by the definition of Bα and the Gauß-Green theorem we have

Bα(i, j, k)−Bα(l, j, k)−Bα(i, l, k)−Bα(i, j, l) =

ˆ
〈xi,xj ,xk,xm〉

div(wα) dx = 0.

Note that this calculation also holds in the case that one or multiple of the simplices are

degenerate. Analogously, we can prove (a) by applying the Gauß-Green theorem as well

as (e) to get

Aα,β(i, j, k)− Aα,β(l, j, k)− Aα,β(i, l, k)− Aα,β(i, j, l)

=

ˆ
〈xi,xj ,xk,xm〉

divξ((y − ξ)βwα(ξ)− (y − ξ)αwβ(ξ)) dx = 0.

The proof is complete. �
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Lemma 4.3. Let u ∈ (L1 ∩C1)(R3;R3) satisfy div(u) = 0 and z0 ∈ {M2Ru ≤ λ}, where

R > 0. Let, in addition, x1, x2, x3 ∈ BR(z0). Then∣∣∣∣∣
 
〈x1,x2,x3〉

u(ξ) · ν123 d2ξ

∣∣∣∣∣ ≤ CλR2.(4.6)

Moreover, if w ∈ (L1 ∩C1)(R3;R3×3
sym) satisfies div(w) = 0 and the cubes Qi, Qj, Qk have

non-empty intersection, y ∈ Qi ∩Qj ∩Qk, we have for Aα,β and Bα as defined in (4.1)

(a) |Aα,β(i, j, k)(y)| ≤ Cλ`(Qi)3.

(b) |Bα(i, j, k)| ≤ Cλ`(Qi)2.

The constant C = C(3) is a dimensional constant, that does not depend on u, i, j, k and

the shape of Oλ.

Proof. Let x1, x2, x3, z0 ∈ R3 be according to the assumption, z0 = (z1
0 , z

2
0 , z

3
0). Then,

using that div u = 0, we find by Gauß’ theorem∣∣∣∣∣
 
〈x1,x2,x3〉

u · ν123 d2ξ

∣∣∣∣∣ ≤ (
ˆ
〈η,x2,x3〉

+

ˆ
〈x1,η,x3〉

+

ˆ
〈x1,x2,η〉

)
|u|d2ξ(4.7)

We now establish the existence of some η ∈ R3 \ aff(xi, xj , xk) such that the right-hand

side of (4.7) is bounded by CR2λ for some C > 0 solely depending on the underlying

space dimension n = 3. Denote QR(z0) the cube centered at z0 with faces parallel to the

coordinate planes and sidelength 2R so that BR(z0) ⊂ QR(z0) ⊂ B√3R(z0). Then
ˆ
BR(z0)

ˆ
〈x1,x2,z〉

|u(ξ)|d2ξ dz ≤
ˆ
QR(z0)

ˆ
〈x1,x2,z〉

|u(ξ)|d2ξ dz

=

ˆ z10+R

z10−R

ˆ z20+R

z20−R

ˆ z30+R

z30−R

ˆ
〈x1,x2,(z1,z2,z3)〉

|u(ξ)|d2ξ dz3 dz2 dz1

≤
ˆ z10+R

z10−R

ˆ z20+R

z20−R

ˆ
QR(z0)

|u|dxdz2 dz1

≤ ω3(
√

3R)3

ˆ z10+R

z10−R

ˆ z20+R

z20−R

 
B√3R(z0)

|u|dx dz2 dz1

≤ ω3(2R)3(2R)2M2Ru(z0)

≤ cλR5.

(4.8)

Here c > 0 is a constant solely depending on the space dimension n = 3. In consequence,

by Markov’s inequality,

L 3(Ux1,x2,·[u, λ
′;BR(z0)]) := L 3

({
z ∈ BR(z0) :

ˆ
〈x1,x2,z〉

|u(ξ)|d2ξ > λ′
})

(4.8)

≤ c
λ

λ′
R5 for any λ′ > 0,

where Ux1,x2,·[u;BR(z0)] is defined in the obvious manner. The same argument equally

works for the remaining simplices that appear in (4.7), and therefore, setting

U := Ux1,x2,·[u, λ
′;BR(z0)] ∪ U·,x2,x3

[u, λ′;BR(z0)] ∪ Ux1,·,x3
[u, λ′;BR(z0)]

with an obvious definition of the sets appearing on the right-hand side, we obtain

L 3(U) ≤ 4cλ

λ′
R5.
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2R

2R

2R

•
z0 ∈ O{

λ xi•
•
xj

• xk
Oλ

QR

Figure 2. The construction in the proof of Lemma 4.3. The point z0 ∈
O{
λ is chosen such that it is close to xi, xj and xk respectively. Instead of

estimating the integral on the triangle with vertices xi, xj and xk directly,

we estimate integrals along triangles with vertices xi, xj and z ∈ QR(z0)

(the triangles with red dashed lines) and use Gauß’ theorem.

We still have the freedom to choose λ′ > 0 and consequently put λ′ := 16
ω3
cλR2 so that

L 3(U{) ≥ 3
4L 3(BR(z0)). We may thus pick η ∈ BR(z0) \ aff(xi, xj , xk) such that η ∈ U{,

and by definition of U , this choice of η gives∣∣∣∣∣
 
〈x1,x2,x3〉

u · ν123 d2ξ

∣∣∣∣∣ ≤ cλR2

with some purely dimension dependent constant c > 0. This completes the proof of (4.6).

The estimates in (a) and (b) are consequences of (4.6). For (a) note that there is z0 ∈ O{
λ

with dist(z0, Qi) ≤ C`(Qi) and Qi ∩Qj ∩Qk ⊂ BC`(Qi)(z0) by (W2) and (W4). Moreover,

Mw(z0) ≤ λ by definition of Oλ and therefore, for fixed y ∈ Qi
M2R((y − ·)βwα(·)− (y − ·)αwβ)(z0) ≤ 2 sup

z∈B2R(z0)

|y − z| · Mw(z0).

Setting R = C`(Qi) and using Lemma 4.2 (e) yields the estimate (a). The estimate for

Bα directly uses the existence of a point z0 ∈ O{
λ, such that Qi, Qj , Qk ⊂ BC`(Qi)(z0) and

that wα is divergence-free. Applying (4.6) in this setting yields (b). �

4.3. Elementary properties of Tλ. We now record various properties of Tλ that play an

instrumental role in the proof of Theorem 1.2. Throughout this section, we tacitly suppose

that w ∈ (C∞ ∩L1)(R3;R3×3
sym), and begin with providing the corresponding L∞-bounds:

Lemma 4.4. There exists a purely dimensional constant c > 0 such that

‖Tλw‖L∞(R3) ≤ cλ holds for all λ > 0.(4.9)
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Proof. Since |w| ≤ λ on O{
λ, it suffices to prove ‖Tλw‖L∞(Oλ) ≤ cλ for some suitable c > 0.

Hence let x ∈ Oλ. Then, by (W1) and (W3), x ∈ Qk for some k ∈ N, and there are

only finitely many cubes Qi, Qj such that Qi ∩ Qj ∩ Qk 6= ∅; note that the number of

such cubes solely depends on the underlying space dimension n = 3. For any choice of

α′, β′, γ′ ∈ {1, 2, 3} and `1 + `2 = 2 we have

|ϕk∂`1β′ϕi∂
`2
γ′ϕj | ≤ c

1Qi∩Qj∩Qk
`(Qk)2

(4.10)

and similarly, if `1 + `2 = 3,

|ϕk∂`1β′ϕi∂
`2
γ′ϕj | ≤ c

1Qi∩Qj∩Qk
`(Qk)3

,(4.11)

which is seen by combining (W4) and (P3). Again, c > 0 is a purely dimensional constant.

By definition of w̃(k), cf. (4.3) and (4.4), on Oλ every summand in (4.5) containing some

Bδ(i, j, k), δ ∈ {α, β, γ}, is of the form ϕk∂
`1
β′ϕi∂

`2
γ′ϕjBδ(i, j, k) with `1 + `2 = 2. Here we

may invoke Lemma 4.3 (b) in conjunction with (4.10) to find

|ϕk∂`1β′ϕi∂
`2
γ′ϕjBδ(i, j, k)| ≤ cλ.

Conversely, every summand in (4.5) on Oλ that contains some Aδ,κ(i, j, k), δ, κ ∈ {α, β, γ},
is of the form ϕk∂

`1
β′ϕi∂

`2
γ′ϕjAδ,κ(i, j, k) with `1 + `2 = 3, and in this case Lemma 4.3 (a)

in conjunction with (4.11) yields

|ϕk∂`1β′ϕi∂
`2
γ′ϕjAδ,κ(i, j, k)| ≤ cλ.

By the uniformly finite overlap of the cubes, cf. (W3), this completes the proof. �

Lemma 4.5. For every α ∈ {1, 2, 3}, Tλ(wα1, wα2, wα3) is solenoidal on Oλ.

The proof of this lemma relies on a slightly elaborate computation, mutually hinging on

index permutations and the properties of the maps Aα,β and Bα as gathered in Lemma 4.2.

For expository purposes, we thus accept Lemma 4.5 for the time being and refer the reader

to the Appendix, Section 7.1, for its proof.

4.4. Global divsym-freeness. As the last ingredient towards Proposition 4.1, we next

address the regularity of div(Tλw):

Lemma 4.6. Let w ∈ (C∞ ∩L1)(R3;R3×3
sym) satisfy div(w) = 0 and define Tλw for λ > 0

by (4.5). Then the distributional divergence of Tλw is an R3-valued regular distribution,

that is, div(Tλw) ∈ L1(R3;R3).

Proof. We focus on the first column (Tλw)1 of Tλw; the other columns are treated by

analogous means. Let ψ ∈ C∞c (R3). By a technical, yet elementary computation to be

explained in detail in the Appendix (cf. Section 7.2), we haveˆ
Oλ

(Tλw)1 · ∇ψ dx = 2
∑
i,j,k

ˆ
Oλ

ϕk(∂2ϕj)(∂3ϕi)B1(i, j, k)∂1ψ dx

+ 2
∑
i,j,k

ˆ
Oλ

ϕk(∂3ϕj)(∂1ϕi)B1(i, j, k)∂2ψ dx

+ 2
∑
i,j,k

ˆ
Oλ

ϕk(∂1ϕj)(∂2ϕi)B1(i, j, k)∂3ψ dx

=: I + II + III.

(4.12)
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We focus on term I first and consider the functions

vI,(1)(y) :=
∑
i,j,k

vijkI (y) :=
∑
i,j,k

ϕk(∂2ϕj)(∂3ϕi)(B1(i, j, k)− w1(y) · νijk),

wI(y) :=
∑
i,j,k

wijkI (y) :=
∑
i,j,k

ϕk(∂2ϕj)(∂3ϕi)(w1(y) · νijk).
(4.13)

We claim that vI,(1) ∈W1,1
0 (Oλ). Note that each summand belongs to C∞c (Oλ), and so it

suffices to establish that the overall sum in (4.13) converges absolutely in W1,1(Oλ). We

give bounds on the single summands: For i, j, k ∈ N, note that whenever y ∈ Qi∩Qj ∩Qk,

then

|B1(i, j, k)− w1(y) · νijk| ≤
 
〈xi,xj ,xk〉

|w1(ξ)− w1(y)| |νijk|d2ξ

≤ c‖∇w1‖L∞(R3)`(Qk)3

(4.14)

as a consequence of the usual Lipschitz estimate, dist(y, 〈xi, xj , xk〉) ≤ c`(Qk) and |νijk| ≤
c`(Qk)2 by (W4). Now, by (W4) and (P3), we consequently obtain by (4.14)

‖vijkI ‖L1(Qk) ≤ c`(Qk)4‖∇w1‖L∞(R3),

‖∇vijkI ‖L1(Qk) ≤ c`(Qk)3‖∇w1‖L∞(R3),

so that, by the uniformly finite overlap of the cubes,∑
i,j,k

‖vijkI ‖W1,1(Oλ) ≤ c
∑
k

(`(Qk)4 + `(Qk)3)‖∇w1‖L∞(R3)

≤ c(1 + L 3(Oλ)
1
3 )
∑
k

`(Qk)3‖∇w1‖L∞(R3)

≤ c(1 + L 3(Oλ)
1
3 )L 3(Oλ)‖∇w1‖L∞(R3) <∞.

Hence, vI,(1) ∈W1,1
0 (Oλ). Extend vI,(1) by zero to the entire R3 to obtain vI,(2) ∈W1,1

0 (R3).

Then an integration by parts yields

I = 2

ˆ
Oλ

vI,(1)∂1ψ dy + 2

ˆ
Oλ

wI∂1ψ dy

= 2

ˆ
R3

vI,(2)∂1ψ dy + 2

ˆ
Oλ

wI∂1ψ dy

vI,(2)∈W1,1
0 (R3)

= −2

ˆ
R3

(∂1vI,(2))ψ dy + 2

ˆ
Oλ

wI∂1ψ dy =: I1 + I2,

(4.15)

and ∂1vI,(2) ∈ L1(R3). Towards term I2, observe that for all y ∈ R3,

−2νijk = −(xi − xj)× (xk − xj)
= (y − xj)× (xj − xk) + (xi − y)× (y − xk) + (xi − xj)× (xj − y),

(4.16)

which follows by direct computation using that (xj − y)× (y− xj) = 0. Working from the

definition of wI as in (4.13), we consequently find by (4.16)

I2 = 2

ˆ
Oλ

wI(y)∂1ψ dy = 2

ˆ
Oλ

∑
i,j,k

ϕk(∂2ϕj)(∂3ϕi)(w1(y) · νy,xj ,xk)∂1ψ dy (= 0)

+ 2

ˆ
Oλ

∑
i,j,k

ϕk(∂2ϕj)(∂3ϕi)(w1(y) · νxi,y,xk)∂1ψ dy (= 0)

+ 2

ˆ
Oλ

∑
i,j

(∂2ϕj)(∂3ϕi)(w1(y) · νxi,xj ,y)∂1ψ dy =: I3,
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where we have used that
∑
i ∂3ϕi = 0 on Oλ for the first,

∑
j ∂2ϕj = 0 on Oλ for the

second and
∑
k ϕk = 1 on Oλ for the ultimate term. By a similar argument as above, the

sum in the integrand of I3 has an integrable majorant, whereby we may change the sum

and the integral. Hence, integrating by parts with respect to ∂2,

I3 = I1
3 := 2

∑
ij

ˆ
Oλ

∂2(ϕj(∂3ϕi)(w1(y) · νxi,xj ,y)∂1ψ) dy (= T1)

− 2
∑
ij

ˆ
Oλ

(ϕj(∂23ϕi)(w1(y) · νxi,xj ,y)∂1ψ) dy (= T2)

− 2
∑
ij

ˆ
Oλ

(ϕj(∂3ϕi)(∂2w1(y) · νxi,xj ,y)∂1ψ) dy (= T3)

− 2
∑
ij

ˆ
Oλ

(ϕj(∂3ϕi)(w1(y) · ∂2νxi,xj ,y)∂1ψ) dy (= T4)

− 2
∑
ij

ˆ
Oλ

(ϕj(∂3ϕi)(w1(y) · νxi,xj ,y)∂12ψ) dy (= T5),

but on the other hand, now integrating by parts with respect to ∂3,

I3 = I2
3 := 2

∑
ij

ˆ
Oλ

∂3(ϕi(∂2ϕj)(w1(y) · νxi,xj ,y)∂1ψ) dy (= T6)

− 2
∑
ij

ˆ
Oλ

(ϕi(∂23ϕj)(w1(y) · νxi,xj ,y)∂1ψ) dy (= T7)

− 2
∑
ij

ˆ
Oλ

(ϕi(∂2ϕj)(∂3w1(y) · νxi,xj ,y)∂1ψ) dy (= T8)

− 2
∑
ij

ˆ
Oλ

(ϕi(∂2ϕj)(w1(y) · ∂3νxi,xj ,y)∂1ψ) dy (= T9)

− 2
∑
ij

ˆ
Oλ

(ϕi(∂2ϕj)(w1(y) · νxi,xj ,y)∂13ψ) dy (= T10).

We then have I3 = 1
2 (I1

3+I2
3). To proceed further, note that T1 = T6 = 0 by the fundamental

theorem of calculus. Moreover, 1
2 (T2 +T7) = 0, which follows from permuting indices i↔ j

in T2 and using the antisymmetry property νxi,xj ,y = −νxj ,xi,y:

T2 = −2
∑
ji

ˆ
Oλ

(ϕi(∂23ϕj)(w1(y) · νxj ,xi,y)∂1ψ) dy

= 2
∑
ji

ˆ
Oλ

(ϕi(∂23ϕj)(w1(y) · νxi,xj ,y)∂1ψ) dy = −T7.

For treating terms T3 and T8, define the smooth function vI,(3) : Oλ → R by

vI,(3) :=
∑
ij

(ϕj(∂3ϕi)(∂2w1(y) · νxi,xj ,y)) + (ϕi(∂2ϕj)(∂3w1(y) · νxi,xj ,y)).

By an argument similar to the one employed in (4.13)ff., we have vI,(3) ∈ W1,1
0 (Oλ).

Extending it by zero to vI,(4) ∈W1,1
0 (R3), then obtain

1
2 (T3 + T8) =

ˆ
R3

(∂1vI,(4))ψ dy.(4.17)
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Since I3 = 1
2 (I1

3 + I2
3), the above arguments, permuting i↔ j in I2

3 and (4.17) combine to

I3 =− 1

2

∑
ij

ˆ
Oλ

(ϕj(∂3ϕi)(w1(y) · ((xi − xj)× e2))∂1ψ) dy (= 1
2T4)

+
1

2

∑
ij

ˆ
Oλ

(ϕj(∂2ϕi)(w1(y) · ((xi − xj)× e3))∂1ψ) dy (= 1
2T9)

−
∑
ij

ˆ
Oλ

(ϕj(∂3ϕi)(w1(y) · νxi,xj ,y)∂12ψ) dy (= 1
2T5)

+
∑
ij

ˆ
Oλ

(ϕj(∂2ϕi)(w1(y) · νxi,xj ,y)∂13ψ) dy (= 1
2T10)

+

ˆ
R3

(∂1vI,(4))ψ dy.

Next note that, expanding and using
∑
i ϕi = 1 as well as

∑
i ∂3ϕi = 0 on Oλ,

1
2T4 =− 1

2

∑
ij

ˆ
Oλ

(ϕj(∂3ϕi)(w1(y) · ((xi − y)× e2))∂1ψ) dy

− 1

2

∑
ij

ˆ
Oλ

(ϕj(∂3ϕi)(w1(y) · ((y − xj)× e2))∂1ψ) dy (= 0)

= −1

2

∑
i

ˆ
Oλ

((∂3ϕi)(w1(y) · ((xi − y)× e2))∂1ψ) dy

=
1

2

∑
i

ˆ
Oλ

(ϕi∂3w1(y) · ((xi − y)× e2))∂1ψ) dy

+
1

2

ˆ
Oλ

(w1(y) · (−e3 × e2)∂1ψ) dy

+
1

2

∑
i

ˆ
Oλ

(ϕiw1(y) · ((xi − y)× e2)∂13ψ) dy.

As above, we use w ∈ C∞(R3;R3×3
sym) to see that the function

vI,(5)(y) := −1

2

∑
i

ϕi∂3w1(y) · ((xi − y)× e2))

belongs to W1,1
0 (Oλ), and hence, again denoting its trivial extension to R3 by vI,(6) and

recalling that e2 × e3 = e1,

1
2T4 =

ˆ
R3

(∂1vI,(6))ψ dx+
1

2

ˆ
Oλ

(w11(y)∂1ψ) dy

+
1

2

∑
i

ˆ
Oλ

(ϕiw1(y) · ((xi − y)× e2)∂13ψ) dy
(4.18)

Handling the summand 1
2T9 in the same fashion (with the roles of the indices 2 and 3

swapped) and introducing vI,(7) ∈ W1,1
0 (Oλ), vI,(8) ∈ W1,1

0 (R3) by analogous means, we

arrive at

1
2 (T4 + T9) =

ˆ
R3

(∂1(vI,(6) + vI,(8))ψ dy +

ˆ
Oλ

(w11(y)∂1ψ) dy

+
1

2

∑
i

ˆ
Oλ

(ϕiw1(y) · ((xi − y)× e2)∂13ψ) dy

− 1

2

∑
i

ˆ
Oλ

(ϕiw1(y) · ((xi − y)× e3)∂12ψ) dy.

(4.19)
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To summarise, by (4.12), (4.15) and (4.19), there exists vI ∈W1,1
0 (R3), such that

I =

ˆ
R3

(∂1vI)ψ dx+

ˆ
Oλ

(w11(y)∂1ψ) dy

+
1

2

∑
i

ˆ
Oλ

(ϕiw1(y) · ((xi − y)× e2)∂13ψ) dy

− 1

2

∑
i

ˆ
Oλ

(ϕiw1(y) · ((xi − y)× e3)∂12ψ) dy

−
∑
ij

ˆ
Oλ

(ϕj(∂3ϕi)(w1(y) · νxixjy)∂12ψ) dy

+
∑
ij

ˆ
Oλ

(ϕj(∂2ϕi)(w1(y) · νxixjy)∂13ψ) dy

(4.20)

The same calculations with the coordinates 1 → 2 → 3 → 1 permuted imply that there

exist vII, vIII ∈W1,1
0 (R3), such that

II =

ˆ
R3

(∂2vII)ψ dx+

ˆ
Oλ

(w12(y)∂2ψ) dy

+
1

2

∑
i

ˆ
Oλ

(ϕiw1(y) · ((xi − y)× e3)∂21ψ) dy

− 1

2

∑
i

ˆ
Oλ

(ϕiw1(y) · ((xi − y)× e1)∂23ψ) dy

−
∑
ij

ˆ
Oλ

(ϕj(∂1ϕi)(w1(y) · νxixjy)∂23ψ) dy

+
∑
ij

ˆ
Oλ

(ϕj(∂3ϕi)(w1(y) · νxixjy)∂21ψ) dy

(4.21)

and

III =

ˆ
R3

(∂3vIII)ψ dx+

ˆ
Oλ

(w13(y)∂3ψ) dy

+
1

2

∑
i

ˆ
Oλ

(ϕiw1(y) · ((xi − y)× e1)∂32ψ) dy

− 1

2

∑
i

ˆ
Oλ

(ϕiw1(y) · ((xi − y)× e2)∂31ψ) dy

−
∑
ij

ˆ
Oλ

(ϕj(∂2ϕi)(w1(y) · νxixjy)∂31ψ) dy

+
∑
ij

ˆ
Oλ

(ϕj(∂1ϕi)(w1(y) · νxixjy)∂32ψ) dy,

(4.22)

and ∂1vI, ∂2vII, ∂3vIII all vanish outside Oλ. Combining (4.20), (4.21) and (4.22), we get

that there is h ∈ L1(Oλ), h = ∂1vI + ∂2vII + ∂3vIII, such thatˆ
Oλ

(Tλw)1 · ∇ψ dx =

ˆ
Oλ

hψ dx+

ˆ
Oλ

w1 · ∇ψ dx.(4.23)

Recall that w satisfies div(w) = 0 and that Tλw = w on O{
λ. Therefore,ˆ

R3

(Tλw)1 · ∇ψ dx =

ˆ
O{
λ

(Tλw)1 · ∇ψ dx+

ˆ
Oλ

(Tλw)1 · ∇ψ dx
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=

ˆ
O{
λ

w1 · ∇ψ dx+

ˆ
Oλ

w1 · ∇ψ dx+

ˆ
Oλ

hψ dx

=

ˆ
Oλ

hψ dx.

Therefore, div((Tλw)1) ∈ L1(R3). Arguing in the exactly same way for the other columns,

div(Tλw) ∈ L1(R3;R3), and the proof is complete. �

As an immediate consequence of Lemmas 4.5 and 4.6, we obtain the following

Corollary 4.7. Let w ∈ (C∞ ∩L1)(R3;R3×3
sym) satisfy div(w) = 0 and define Tλw for λ > 0

by (4.5). Then for L 1-almost every λ > 0, div(Tλw) = 0 in D ′(R3;R3).

Proof. Observe that on R3 \ ∂Oλ the function Tλw is strongly differentiable and, as w is

(row-wise) solenoidal on R3 and div(Tλw) = 0 on Oλ (Lemma 4.5), div(Tλw) = 0 on the

open set R3 \ ∂Oλ. As w ∈ C∞, Mw ∈ C(R3) and the set

{λ > 0: L 3(∂Oλ) 6= 0} ⊂ {λ > 0: L 3({Mw = λ}) 6= 0}

is an L 1-null set. Hence, for all λ not contained in this set, div(Tλw) ∈ L1(R3;R3) and

div(Tλw) = 0 L 3-a.e.. Thus, for L 1-almost every λ, div(Tλw) = 0 in D ′(R3;R3). �

Remark 4.8. It is not clear to us whether Tλw belongs to W1,1(R3;R3×3
sym). This is so

because Tλw is precisely constructed in a way such that handling of the divergence is

possible (cf. Lemma 4.6), whereas the control of the full gradients does not come up as a

consequence of Lemma 4.3; in particular, there seems to be no reason for the series in (4.5)

to converge in W1,1
0 (R3;R3×3

sym). Note that, if it did, we could directly infer from Lemma 4.5

that div(Tλw) = 0.

4.5. Strong stability and the proof of Proposition 4.1. In view of Lemma 4.4

and Corollary 4.7, Proposition 4.1 will follow provided we can prove the strong stabil-

ity (cf. Proposition 4.1 (a)). Towards this aim, we begin with

Lemma 4.9. Then there exists a purely dimensional constant C > 0 such that, for each

w ∈ L1(R3;R3×3
sym) and each λ > 0, we have

L 3({Mw > λ}) ≤ C

λ

ˆ
{|w|>λ/2}

|w(x)|dx

The rough idea of the proof of this statement is to use the weak-(1, 1)-estimate for the

Hardy-Littlewood maximal operator M (cf. (2.1)) for the function h defined via

h(x) = max{0, |w(x)| − λ/2},(4.24)

see Zhang [44] for the details. As an important consequence of Lemma 4.9 and the L∞-

bound of wλ is the following:

Corollary 4.10. Let w ∈ L1(R3;R3×3
sym) satisfy div(w) = 0. Moreover, for λ > 0, let

wλ := Tλw be as in (4.5). Then we have with a purely dimensional constant C > 0

‖w − wλ‖L1(R3) ≤ C
ˆ
{|w|>λ/2}

|w|dx.(4.25)

Proof. Recall that Oλ := {Mw > λ}. By construction, w = wλ on O{
λ. Therefore,

‖w − wλ‖L1(R3) ≤
ˆ
Oλ
|w − wλ|dx ≤

ˆ
Oλ
|w|dx+

ˆ
Oλ
|wλ|dx.(4.26)
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On the one hand, Lemma 4.9 gives usˆ
Oλ
|w|dx ≤ λL 3(Oλ) +

ˆ
{|w|>λ}

|w|dx ≤ C
ˆ
{|w|>λ/2}

|w|dx,(4.27)

and, on the other hand, using Lemma 4.4 and Lemma 4.9,ˆ
Oλ
|wλ|dx ≤ ‖wλ‖L∞(R3)L

3(Oλ) ≤ C
ˆ
{|w|>λ/2}

|w|dx,(4.28)

C > 0 still being a purely dimensional constant. In view of (4.26), (4.27) and (4.28), we

obtain (4.25), and this completes the proof. �

Proof of Proposition 4.1. Let w ∈ (C∞ ∩L1)(R3;R3×3
sym) satisfy div(w) = 0 and let λ > 0.

Pick some λ̃ ∈ (λ, 2λ) such that L 3(∂Oλ̃) = 0 and define wλ := Tλ̃w and Uλ := Oλ̃. Then

(a) w = wλ on U{
λ by construction.

(b) Lemma 4.9 implies that

L 3({w 6= wλ}) ≤
c

λ̃

ˆ
{|w|>λ̃/2}

|w|dx ≤ c

λ

ˆ
{|w|>λ/2}

|w|dx.

(c) div(wλ) = 0 in D ′(R3;R3) by Corollary 4.7.

(d) ‖wλ‖L∞(R3) ≤ cλ̃ ≤ 2cλ by Lemma 4.4.

To summarise, wλ satisfies all the required properties, and the proof is complete. �

4.6. Proof of Theorem 1.2. We now establish Theorem 1.2, and hence let λ > 0 be given.

Let u ∈ L1(R3;R3×3
sym) satisfy div(u) = 0 and pick a sequence (wj) ⊂ (C∞ ∩L1)(R3;R3×3

sym)

such that wj → u strongly in L1(R3;R3×3
sym) as j →∞, still satisfying div(wj) = 0 for each

j ∈ N. Such a sequence can be constructed by convolution with smooth bumps.

For λ > 0 consider the truncation wj4λ of wj according to Proposition 4.1. Note that

this sequence is uniformly bounded in L∞ by 4cλ. Therefore, a suitable, non-relabeled

subsequence converges in the weak*-sense to some uλ in L∞(R3;R3×3
sym). First of all,

‖uλ‖L∞(R3) ≤ sup
j∈N
‖wj4λ‖L∞(R3) ≤ 4cλ, div(uλ) = 0.

We claim that wj4λ → u strongly in L1 on the set {Mu ≤ 2λ} as j →∞, and hence uλ = u

on {Mu ≤ 2λ}. If this claim is proven, then Lemma 4.9 and Corollary 4.10 imply the

small change and strong stability properties (b), (c) of Theorem 1.2. Therefore uλ will

satisfy all properties displayed in Theorem 1.2 and thus finish the proof.

It remains to show the claim. Recall that the maximal function M is sublinear. Thus,

{Mwj > 4λ} \ {M(wj − u) > 2λ} ⊂ {Mu > 2λ}.(4.29)

Note that L 3({M(wj − u) > 2λ}) converges to zero as j → ∞ since wj − u → 0 in L1

and M is weak-(1, 1). After picking a suitable, non-relabeled subsequence of (wj) we may

suppose that ‖wj − u‖L1(R3) ≤ 2−jλ for all j ∈ N and hence

L 3{M(wj − u) > 2λ} ≤ C2−j for all j ∈ N.

Therefore, for each J ∈ N, the L 3-measure of the set

EJ :=
⋃
j>J

{M(wj − u) > 2λ}

can be bounded by C2−J . Due to (4.29), we have {Mu ≤ 2λ} \ EJ ⊂ {Mwj ≤ 4λ} for

j > J . Let us fix J ∈ N and bound the L1-norm of wj4λ − u on {Mu ≤ 2λ} for j > J :ˆ
{Mu≤2λ}

|wj4λ − u|dx ≤
ˆ
EJ

|wj4λ − u|dx+

ˆ
{Mu≤2λ}\EJ

|wj4λ − u|dx
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≤
ˆ
EJ

|wj4λ|+ |u|dx+

ˆ
{Mwj≤4λ}

|wj4λ − u|dx

≤ C2−Jλ+

ˆ
EJ

|u|dx+

ˆ
{Mwj≤4λ}

|wj − u|dx

≤ C2−Jλ+

ˆ
EJ

|u|dx+ ‖wj − u‖L1(R3).

Letting J →∞ yields wj4λ − u→ 0 in L1({Mu ≤ 2λ}). As (wj4λ) weakly*-converges to uλ

in L∞(R3,R3×3
sym), we conclude that u = uλ on {Mu ≤ 2λ}, proving the claim. �

5. Proof of Theorem 1.1

The proof of Theorem 1.1 heavily depends on the validity of the truncation theorem

1.2. In fact, Theorem 1.1 has been proven in a different setting, where the divergence is

replaced by some other differential operator (e.g. [45, 36]). For convenience of the reader,

let us shortly present the argument here. First of all, note that the statement of Theorem

1.2 also holds if we consider functions u ∈ L1(T3;R3×3
sym) instead of functions defined on R3.

Proposition 5.1. There exists C > 0 with the following property: For all u ∈ L1(T3;R3×3
sym)

with div(u) = 0 in D ′(T3;R3) and λ > 0, there is uλ ∈ L1(T3;R3×3
sym) satisfying

(a) ‖uλ‖L∞ ≤ Cλ. (L∞-bound)

(b) ‖u− uλ‖L1 ≤ C
´
{|u|>λ} |u|dx. (Strong stability)

(c) L 3({u 6= uλ}) ≤ Cλ−1
´
{|u|>λ} |u|dx. (Small change)

(d) div(uλ) = 0, i.e., the differential constraint is still satisfied.

To see this, one can either repeat the proof presented in Section 4 or write u ∈
L1(T3;R3×3

sym) as a Z3-periodic function on R3 and apply the obvious L1
loc-version of Theo-

rem 1.2.

Proof of Theorem 1.1. As Qsdqcf1 is a continuous symmetric div-quasiconvex function van-

ishing on K, all y ∈ K(∞) are by definition also in K(1). It remains to show the other

direction. Suppose that ξ ∈ K(1) and (um) ⊂ L1(T3;R3×3
sym) ∩ T is a test sequence with

0 = Qsdqcf1(ξ) = lim
m→∞

ˆ
T3

f1(ξ + um(x)) dx.(5.1)

As K is a compact set, we find R > 0 with K ⊂ BR(0) and ξ ∈ BR(0). Thus, by (5.1),

lim
m→∞

ˆ
{|um|>3R}

|um|dx = 0.(5.2)

Applying Proposition 5.1 gives a sequence ṽm ∈ L∞(T3;R3×3
sym), such that

(a) div(ṽm) = 0.

(b) ‖ṽm − um‖L1(T3) → 0 as m→∞.

(c) ‖ṽm‖L∞(T3) ≤ CR.

Mollification and subtracting the average gives a sequence (vm) ⊂ L∞(T3;R3×3
sym) ∩ T also

satisfying properties (a)–(c). Hence,

0 = Qsdqcf1(ξ) = lim
m→∞

ˆ
T3

f1(ξ + vm(x)) dx.(5.3)

Take now a symmetric div-quasiconvex function g ∈ C(R3×3
sym). We may suppose that

max g(K) = 0 and, as max {0, g} is again symmetric div-quasiconvex, that g ≡ 0 on K.

Using uniform boundedness of vm we may estimate with C > 0 as in (c)

|g(ξ + vm(x))| ≤ sup
η∈B(2C+1)R(0)

|g(η)| <∞.(5.4)
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Due to (5.3), dist(ξ + vm,K) → 0 in measure, and by passing to a non-relabeled subse-

quence, we may assume that dist(ξ + vm,K) → 0 L 3-a.e.. As g is uniformly continuous

on B(2C+1)R(0), we get by (5.4) and dominated convergence

g(ξ) ≤ lim
m→∞

ˆ
T3

g(ξ + vm(x)) dx ≤
ˆ
T3

lim
m→∞

g(ξ + vm(x)) dx = 0.(5.5)

Therefore, ξ ∈ K(∞). The proof is complete. �

Let us, for the sake of completeness, also discuss a proof of the statement K(p) = K(q),

1 < p, q < ∞, which can be easily adapted to general constant rank operators A of the

form (2.3). To this end, recall that a Borel measurable function F : Rd → R is called A -

quasiconvex provided it satisfies (1.2) for all ξ ∈ Rd and ϕ ∈ T , where T = TA is now the

set of all ϕ ∈ C∞(Tn;Rd) with zero mean and A ϕ = 0. The A -quasiconvexifications QA f

of functions f and, for non-empty, compact sets K ⊂ Rd, the corresponding sets K(p) for

1 ≤ p ≤ ∞ are defined as in (1.4), now systematically replacing the divsym-quasiconvexity

by A -quasiconvexity. In contrast to [10], we even do not need to use potentials, but can

directly appeal to Lemma 2.2. Note that the construction of the projection PA from

Lemma 2.2 crucially relies on Fourier multipliers and hence is not applicable for p = 1 and

p =∞. Using this projection operator PA , we can prove the following statement.

Lemma 5.2. Let A be a constant rank operator of the form (2.3) and let K ⊂ Rd be

compact. Then, for 1 < p < q <∞, K(p) = K(q).

Proof. With slight abuse of notation, let K ⊂ BR(0) := {η ∈ Rd : |η| < R} and y ∈ BR(0).

Ad ’K(q) ⊂ K(p)’. Let y ∈ K(q) and let (um) ⊂ TA be a test sequence such that

0 = QA fq(y) = lim
m→∞

ˆ
Tn
fq(y + um(x)) dx.

As K is compact, (um) is bounded in Lq(Tn;Rd) and, as q > p, also bounded in Lp(Tn;Rd).
Also note that for any ε > 0, there is Cε > 0 such that fp ≤ ε+ Cεfq. Therefore,

Qsdqcfp(y) ≤ lim
m→∞

ˆ
Tn
fp(y + um(x)) dx ≤ lim

m→∞

ˆ
Tn
ε+ Cεfq(y + um(x)) dx ≤ ε.

Thus, y ∈ K(p). The direction K(p) ⊂ K(q) uses a similar, yet easier truncation statement

than Theorem 1.1. Let y ∈ K(p) and let (um) ⊂ TA be a test sequence, such that

0 = Qsdqcfp(y) = lim
m→∞

ˆ
Tn
fp(y + um(x)) dx.

Note that (um) is uniformly bounded in Lp(Tn;Rd) and that

lim
m→∞

ˆ
Tn

distp(um(x),B2R(0)) dx = 0.

Write

ũm = 1{|um|≤2R}um −
 
Tn
1{|um|≤2R}(x)um(x) dx

and define vm := PA ũm with the projection operator PA from Lemma 2.2. Observe that

(a) A vm = 0 by Lemma 2.2 (a).

(b) (ũm) is bounded in L∞(Tn;Rd) and q-equiintegrable. Since 1 < q < ∞, the pro-

jection PA : Lq(Tn;Rd)→ Lq(Tn;Rd) is bounded, (vm) is bounded in Lq(Tn;Rd),
q-equiintegrable by Lemma 2.2 (c), Moreover, by Lemma 2.2 (b) and 1 < p <∞,

‖um − vm‖Lp(Tn) ≤ ‖um − ũm‖Lp(Tn) + ‖ũm − vm‖Lp(Tn)

≤ ‖um − ũm‖Lp(Tn) + CA ,p‖A (ũm − um)‖W−k,p(Tn)



DIVSYM-FREE L∞-TRUNCATIONS AND DIVSYM-QUASICONVEX HULLS 21

≤ CA ,p‖um − ũm‖Lp(Tn) → 0.

Hence, also

lim
m→∞

ˆ
Tn
fp(y + vm(x)) dx = 0.

We conclude that fq(y + vm) → 0 in measure. Combining this with the Lq-boundedness

and q-equiintegrability, we obtain

lim
m→∞

ˆ
Tn
fq(y + vm(x)) dx = 0.

Therefore, y ∈ K(q), concluding the proof. �

6. Potential truncations

In this concluding section, we come back to the potential truncations alluded to in the

introduction and discuss the limitations of this strategy in view of Theorems 1.1 and 1.2.

Let A be a constant rank operator in the sense of Section 2.3. Recall that the potential

truncation strategy, originally pursued in [8] for A = div, is to represent u ∈ Lp(Tn;Rd)
with A u = 0 and

ffl
Tn udx = 0 as u = Av for some potential A of order l ∈ N (cf.

Lemma 2.1) and then performing a Wl,p-Wl,∞-truncation on the potential v. We then

write with slight abuse of notation1 v = A−1u. Since it is of independent interest but also

motivates the need for a different strategy for Theorem 1.2 for p = 1, we record

Proposition 6.1. Let A be a constant rank differential operator of order k ∈ N and

A be a potential of A of order l ∈ N. Let 1 < p < ∞. Then there exists a constant

C > 0 such that the following hold: If u ∈ Lp(Tn;Rd) ∩ ker A and λ > 0 then there exists

uλ ∈ L∞(Tn;Rd) ∩ ker A satisfying the

(a) L∞-bound: ‖uλ‖L∞(Tn) ≤ Cλ.

(b) weak stability:

‖uλ − u‖pLp(Tn) ≤ C
ˆ
{
∑l
j=0 |∇j◦A−1u|>λ}

l∑
j=0

|∇j ◦ A−1u|p dx.

(c) small change:

L n({uλ 6= u}) ≤ C

λp

ˆ
{
∑l
j=0 |∇j◦A−1u|>λ}

l∑
j=0

|∇j ◦ A−1u|p dx

For simplicity, we state this result on Tn; a version on Rn follows by analogous means.

Proof. We start by outlining the Wm,p-Wm,∞-truncation that seems hard to be traced in

the literature; here, we choose a direct approach instead of appealing to McShane-type

extensions. Let m ∈ N. For v ∈Wm,p(Tn;Rd), let Oλ := {
∑m
j=0M(∇jv) > λ}. Since the

sum of lower semicontinuous functions is lower semicontinuous, Oλ is open. We choose a

Whitney decomposition W = (Qj) of Oλ satisfying (W1)–(W4), and a partition of unity

(ϕj) subject to W with (P1)–(P3). We note that the Whitney cover can be arranged in a

way such that L n(Qj ∩Qj′) ≥ cmax{L n(Qj),L n(Qj′)} holds for some c = c(n) > 0 and

all j, j′ ∈ N such that Qj ∩Qj′ 6= ∅. For each j ∈ N, we then denote πj [v] the (m− 1)-th

order averaged Taylor polynomial of v over Qj ; cf. [27, Chpt. 1.1.10]. In particular, we

have the scaled version of Poincaré’s inequality 
Qj

|∂α(w − πj [w])|q dx ≤ c(q,m, n)`(Qj)
q(m−|α|)

 
Qj

|∇mw|q dx(6.1)

1The notation A−1 is only symbolic as A might be non-invertible.
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for all 1 ≤ q <∞, w ∈Wm,q(Tn;Rd) and |α| ≤ m. We then put

vλ := v −
∑
j

ϕj(v − πj [v]) =

{
v in O{

λ,∑
j ϕjπj [v] in Oλ.

(6.2)

Then vλ ∈Wm,p(Tn;Rd), which can be seen as follows: On Oλ, vλ is a locally finite sum

of C∞-maps and hence of class C∞ too. For an arbitrary |α| ≤ m, (6.1) yields∑
j

‖∂α(ϕj(v − πj [v])‖qLq(Oλ)

(P3)

≤
∑
j

∑
β+γ=α

c(n, q)

`(Qj)q(|β|+|γ|)
`(Qj)

q|γ|‖∂γ(v − πj [v])‖qLq(Qj)

≤ c(n,m, q)
∑
j

`(Qj)
q(m−|α|)‖∇mv‖qLq(Qj)

(W3)

≤ c(n,m, q)L n(Oλ)
q(m−|α|)

n ‖∇mv‖qLq(Oλ).

In conclusion, applying the previous inequality with q = 1, on (0, 1)n the series in (6.2)

converges absolutely in Wm,1
0 ((0, 1)n;Rd) and hence vλ ∈ Wm,1(Tn;Rd); then applying

the previous inequality with q = p yields vλ ∈Wm,p(Tn;Rd). Whenever x ∈ Qj0 for some

j0 ∈ N, (W2) implies that we may blow up Qj0 by a fixed factor c > 0 so that cQj0∩O{
λ 6= ∅.

Fix some z ∈ cQj0 ∩ O{
λ. Then, for some c′ = c′(n) > 0, Qj0 ⊂ Bc′`(Qj0 )(z) and so 

Qj0

|∂αv|dx ≤ c(n)

 
Bc′(n)`(Qj0

)(z)

|∂αv|dx ≤ c(n)M(∇|α|v)(z) ≤ c(n)λ(6.3)

for all |α| ≤ m. Now let Qj ∈ W be another cube with Qj ∩Qj0 6= ∅; by (W3), there are

only N = N(n) <∞ many such cubes. Since ∇mπj0 [v] = 0 and
∑
j ϕj = 1 on Oλ,

|∇mvλ(x)| ≤

∣∣∣∣∣∣
∑

j : Qj∩Qj0 6=∅

∇m(ϕj(πj [v]− πj0 [v]))(x)

∣∣∣∣∣∣
(P3)

≤ c
∑

j : Qj∩Qj0 6=∅
|α|+|β|=m

1

`(Qj)|α|
‖∇|β|(πj [v]− πj0 [v])‖L∞(Qj∩Qj0 )

(∗)
≤ c

∑
j : Qj∩Qj0 6=∅
|α|+|β|=m

1

`(Qj)|α|

( 
Qj

|∇|β|(πj [v]− v)|dx+

 
Qj0

|∇|β|(v − πj0 [v])|dx
)

≤ c
∑

j : Qj∩Qj0 6=∅

 
Qj

|∇mv|dx (by (6.1))

≤ cλ (by (6.3) and (W3)),

(6.4)

where have used at (∗) that on the polynomials of degree at most (m − 1) on cubes,

all norms are equivalent (in particular, the L1- and L∞-norms), and scaling (recall that

L n(Qj ∩Qj0) ≥ cmax{L n(Qj),L n(Qj0)}) whenever Qj ∩Qj0 6= ∅, and (W3)). Hence,

(i) ‖∇mv‖L∞(Tn) ≤ c(m,n)λ,

(ii) L n({u 6= uλ}) ≤ c(m,n,p)
λp

∑m
j=0 ‖∇jv‖

p
Lp(Tn).

We now let u ∈ Lp(Tn;Rd)∩ ker A satisfy
´

(0,1)
udx = 0. Since A−1 has a Fourier symbol

of class C∞ off zero and homogeneous of degree (−l), ∇l◦A−1 has a Fourier symbol of class

C∞ off zero and homogeneous of degree zero. By Mihlin’s theorem (cf. [38]), applicable

because of 1 < p < ∞ and by Poincaré’s inequality, we thus find that A−1u ∈ Wl,p(Tn)

together with ‖A−1u‖Wl,p(Tn) ≤ c‖u‖Lp(Tn). We then perform a Wl,p-Wl,∞-truncation on

v = A−1u as in the first part of the proof, yielding vλ, and define uλ := Avλ. By the
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properties gathered in the first part of the proof, we may employ Zhang’s trick (see (4.24)

ff.) to conclude (b) and (c) as well. The proof is complete. �

Remark 6.2 (Strong stability and 1 < p < ∞ versus p = 1). It is clear from the above

proof that the potential truncation only works fruitfully in the case 1 < p < ∞ by the

entering of Mihlin’s theorem; indeed, the operator A−1 is defined via Fourier multipliers

and by Ornstein’s Non-Inequality, we cannot conclude that A−1u ∈Wl,1 provided u ∈ L1.

However, the potential truncations from Proposition 6.1 do not satisfy the strong stability

property ‖u − uλ‖pLp(Tn) ≤ C
´
{|u|>λ} |u|

p dx. The underlying reason is that ∇l ◦ A−1 is a

Fourier multiplication operator with symbol smooth off zero and homogeneous of degree

zero; by Ornstein’s Non-Inequality, we only have that ∇l ◦ A−1 : L∞ → BMO in general,

and here BMO cannot be replaced by L∞. The potential truncation is performed on

the sets where
∑l
j=0M(∇j ◦ A−1u) > λ. Thus, even if u ∈ L∞(Tn;Rd) is A -free with

‖u‖L∞(Tn) ≤ λ, the potential truncation might modify u regardless of λ > 0 and hence

strong stability cannot be achieved. As established by Conti, Müller and Ortiz [10],

in the case 1 < p < ∞ this issue still can be circumvented to arrive at Lemma 5.2, but

in the context of p = 1 the underlying techniques break down. In essence, this was the

original motivation for the different proof displayed in Sections 3 and 4.

We conclude the paper with possible other approaches and extensions of Theorem 1.2.

Remark 6.3. As mentioned in the introduction, [7] constructs a divergence-free W1,p-W1,∞-

truncation. Here a Whitney-type truncation is performed first, leading to a non-divergence-

free truncation. To arrive at a divergence-free truncation, the local divergence overshoots

are then corrected by substracting special solutions of suitable divergence equations. This

is achieved by invoking the Bogovskĭı operator. In our situation, the main drawback of the

Bogovskĭı operator is that if equations div(Y ) = f for f : (0, 1)n → Rn are considered, then

the solution Y obtained by the Bogovskĭı operator does not necessarily take values in Rn×nsym ;

note that passing to the symmetric part Y sym destroys the validity of the divergence equa-

tion. While this, in principle, could be repaired by passing to different solution operators,

the method requires tools that are not fully clear to us in the present lower regularity con-

text of Theorem 1.2. With our proof in Section 4 being taylored to divergence constraints,

in principle it can be modified to yield divergence-free W1,p-W1,∞-truncations as well. We

shall pursue this together with possible extensions of the approach in [7] elsewhere.

We finally comment on possible extensions of the strategy explained in Section 3 in

the A -free context. As discussed in Section 3, the key ingredients for the underlying

construction is the availability of a WA,1-WA,∞-truncation for a suitable operator A and

the analogue of (3.1). Since for the class of C-elliptic operators2, such truncations are

available [5] (see [22] for a similar strategy in view of extension operators), this should

then give truncations along the whole exact sequence starting with A. As a consequence,

we expect Theorem 1.2 to hold true for all operators with constant rank in C:

Conjecture 6.4 (Theorem 1.2 for operators with constant rank in C). Let

0→ C∞,0(Tn;Rd0)
A1−−→ C∞,0(Tn;Rd1)

A2−−→ ...
Ak−−→ C∞,0(Tn;Rdk)

Ak+1−−−→ ...

be an exact sequence of differential operators with constant rank in C, in particular, A1

being C-elliptic. This is equivalent to

0→ Cd0 A1[ξ]−−−→ Cd1 A2[ξ]−−−→ Cd2 A3[ξ]−−−→ ...
Ak[ξ]−−−→ Cdk Ak+1[ξ]−−−−−→ ...

2This means that A[ξ] has trivial nullspace for each ξ ∈ Cn \ {0}, cf. Smith [39].
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being exact for all ξ ∈ Cn\{0}. Then for any differential operator Ak contained in this exact

sequence there is Ck > 0, such that for u ∈ L1(Tn;Rdk) with Aku = 0 in D ′(Tn;Rdk+1)

and λ > 0, there is uλ ∈ L1(Rn;Rdk) satisfying

(a) ‖uλ‖L∞ ≤ Cλ. (L∞-bound)

(b) ‖u− uλ‖L1 ≤ C
´
|u|>λ |u|dx. (Strong stability)

(c) L n({u 6= uλ} ≤ Cλ−1
´
|u|>λ |u|dx. (Small change)

(d) Akuλ = 0, i.e. the differential constraint is still satisfied.

If any differential operator A with constant rank over C is a part of such an exact sequence,

this means that the A -free truncation is possible for every such operator.

7. Appendix

In this appendix, we give the computational details for some of the identities used in

the main part of the paper. We will need the following

Lemma 7.1. Let a, b, c ∈ N3 be multi-indices with |a|, |b|, |c| ≥ 1 and α, β ∈ {1, 2, 3}. Then

on the set Oλ have

(7.1)
∑
ijk

∂aϕk∂bϕj∂cϕiBα(i, j, k) = 0,

and

(7.2)
∑
ijk

∂aϕk∂bϕj∂cϕiAα,β(i, j, k) = 0.

Proof. Recall from the definition of the ϕl that
∑
ϕl ≡ 1 on Oλ. We therefore have∑

∂aϕl =
∑
∂bϕl =

∑
∂cϕl = 0. We can use this to get∑

ijk

∂aϕk∂bϕj∂cϕiBα(i, j, k)

=
∑
ijkm

∂aϕk∂bϕj∂cϕi

(
Bα(i, j, k)−Bα(m, j, k)−Bα(i,m, k)−Bα(i, j,m)

)
Now (7.1) follows from Lemma 4.2 (f); (7.2) can be shown completely analogously. �

7.1. Proof of Lemma 4.5. We focus on the case α = 1. Let thus D := div(Tλw)1. To

avoid notational overload we omit the arguments i, j and k of Aα,β(i, j, k) and Bα(i, j, k)

in the following equation. Thus, all Aα,β and Bα implicitly depend on the summation

indices. By the definition of Tλw on Oλ, (4.5), we have

D =6
∑
ijk

∂1(ϕk∂2ϕj∂3ϕi)B1 (= T1)

+ 2
∑
ijk

∂1(ϕk(∂33ϕj∂2ϕi − ∂23ϕj∂3ϕi))A3,1 (= T2)

+ 2
∑
ijk

ϕk(∂33ϕj∂2ϕi − ∂23ϕj∂3ϕi)∂1A3,1 (= T3)

+ 2
∑
ijk

∂1(ϕk(∂22ϕj∂3ϕi − ∂23ϕj∂2ϕi))A1,2 (= T4)

+ 2
∑
ijk

ϕk(∂22ϕj∂3ϕi − ∂32ϕj∂2ϕi)∂1A1,2 (= T5)

+ 3
∑
ijk

∂2(ϕk∂3ϕj∂1ϕi)B1 (= T6)
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+ 3
∑
ijk

∂2(ϕk∂2ϕj∂3ϕi)B2 (= T7)

+
∑
ijk

∂2(ϕk(∂23ϕj∂3ϕi − ∂33ϕj∂2ϕi))A2,3 (= T8)

+
∑
ijk

ϕk(∂23ϕj∂3ϕi − ∂33ϕj∂2ϕi)∂2A2,3 (= T9)

+
∑
ijk

∂2(ϕk(∂13ϕj∂3ϕi − ∂33ϕj∂1ϕi))A3,1 (= T10)

+
∑
ijk

ϕk(∂13ϕj∂3ϕi − ∂33ϕj∂1ϕi)∂2A3,1 (= T11)

+
∑
ijk

∂2(ϕk(∂13ϕj∂2ϕi + ∂23ϕj∂1ϕi − 2∂12ϕj∂3ϕi))A1,2 (= T12)

+
∑
ijk

(ϕk(∂13ϕj∂2ϕi + ∂23ϕj∂1ϕi − 2∂12ϕj∂3ϕi))∂2A1,2 (= T13)

+ 3
∑
ijk

∂3(ϕk∂2ϕj∂3ϕi)B3 (= T14)

+ 3
∑
ijk

∂3(ϕk∂1ϕj∂2ϕi)B1 (= T15)

+
∑
ijk

∂3(ϕk(∂12ϕj∂2ϕi − ∂22ϕj∂1ϕi))A1,2 (= T16)

+
∑
ijk

(ϕk(∂12ϕj∂2ϕi − ∂22ϕj∂1ϕi))∂3A1,2 (= T17)

+
∑
ijk

∂3(ϕk(∂23ϕj∂2ϕi − ∂22ϕj∂3ϕi))A2,3 (= T18)

+
∑
ijk

(ϕk(∂23ϕj∂2ϕi − ∂22ϕj∂3ϕi))∂3A2,3 (= T19)

+
∑
ijk

∂3(ϕk(∂23ϕj∂1ϕi + ∂12ϕj∂3ϕi − 2∂13ϕj∂2ϕi))A3,1 (= T20)

+
∑
ijk

(ϕk(∂23ϕj∂1ϕi + ∂12ϕj∂3ϕi − 2∂13ϕj∂2ϕi))∂3A3,1 (= T21)

=
∑
ijk

f
(1)
ijkB1 + f

(2)
ijkB2 + f

(3)
ijkB3 + f

(1,2)
ijk A1,2 + f

(2,3)
ijk A2,3 + f

(3,1)
ijk A3,1 =: (∗)

for suitable coefficient maps f
(·)
ijk or f

(·,·)
ijk , respectively. To achieve this grouping we use

Lemma 4.2 (a) and (b) as well as the fact that T11 = T17 = 0. In the following we will

show that each of the six sums in (∗) vanishes individually. This is done by a very similar

calculation every time.

Ad f
(1)
ijk . Here the coefficients are determined by terms T1, T6, T13, T15 and T21. Therefore,

f
(1)
ijk = 6∂1ϕk∂2ϕj∂3ϕi + 6ϕk∂12ϕj∂3ϕi + 6ϕk∂2ϕj∂13ϕi + 3∂2ϕk∂3ϕj∂1ϕi

+ 3ϕk∂23ϕj∂1ϕi + 3ϕk∂3ϕj∂12ϕi + ϕk∂13ϕj∂2ϕi + ϕk∂23ϕj∂1ϕi

+ (−2)ϕk∂12ϕj∂3ϕi + 3∂3ϕk∂1ϕj∂2ϕi + 3ϕk∂13ϕj∂2ϕi + 3ϕk∂1ϕj∂23ϕi

+ (−1)ϕk∂23ϕj∂1ϕi + (−1)ϕk∂12ϕj∂3ϕi + 2ϕk∂13ϕj∂2ϕi =: P ijk1 + ...+ P ijk15 .
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In the next step we group those of the P ijkl together, that have the same structure apart

from a permutation of the indices i, j and k. For example, we have

P ijk1 = 2P jki4 = 2P kij10 .

We now group all the terms and then perform the corresponding index permutations:

∑
ijk

f
(1)
ijkB1(i, j, k) =

∑
ijk

[
(P ijk1 + P ijk4 + P ijk10 ) + (P ijk2 + P ijk6 + P ijk9 + P ijk14 )

+ (P ijk3 + P ijk7 + P ijk11 + P ijk15 ) + (P ijk5 + P ijk8 + P ijk12 + P ijk13 )
]
B1(i, j, k)

=
∑
ijk

P ijk1

(
B1(i, j, k) + 1

2B1(j, k, i) + 1
2B1(k, i, j)

)
+ P ijk2

(
B1(i, j, k) + 1

2B1(j, i, k)− 1
3B1(i, j, k)− 1

6B1(i, j, k)
)

+ P ijk3

(
B1(i, j, k) + 1

6B1(j, i, k) + 1
2B1(j, i, k) + 1

3B1(j, i, k)
)

+ P ijk5

(
B1(i, j, k) + 1

3B1(i, j, k) + B1(j, i, k)− 1
3B1(i, j, k)

)
= 2

∑
ijk

P ijk1 B1(i, j, k) =: (∗∗),

where we used Lemma 4.2 (d) to get the last equality. Finally, Lemma 7.1 implies that

(∗∗) vanishes identically.

Ad f
(2)
ijk . For the corresponding coefficients, only terms T5, T7 and T19 matter here. There-

fore,

f
(2)
ijk = −2ϕk∂22ϕj∂3ϕi + 2ϕk∂23ϕj∂2ϕi + 3∂2ϕk∂2ϕj∂3ϕi + 3ϕk∂22ϕj∂3ϕi

+ 3ϕk∂2ϕj∂23ϕi + ϕk∂23ϕj∂2ϕi + (−1)ϕk∂22ϕj∂3ϕi =: Qijk1 + ...+Qijk7 .

Grouping similar terms and permuting indices as above we get∑
ijk

f
(1)
ijkB2(i, j, k) =

∑
ijk

[
(Qijk1 +Qijk4 +Qijk7 ) + (Qijk2 +Qijk5 +Qijk6 ) +Qijk3

]
B2(i, j, k)

=
∑
ijk

Qijk1

(
B2(i, j, k)− 3

2B2(i, j, k) + 1
2B2(i, j, k)

)
+Qijk2

(
B2(i, j, k) + 3

2B2(j, i, k) + 1
2B2(i, j, k)

)
+Qijk3 B2(i, j, k)

=
∑
ijk

Qijk3 B2(i, j, k) = 0,

where we again used Lemma 4.2 (d) and in the last step Lemma 7.1.

Ad f
(3)
ijk . Here, only terms T3, T9, T14 contribute to the corresponding coefficients. Thus,

f
(3)
ijk = 2ϕk∂33ϕj∂2ϕi + (−2)ϕk∂23ϕj∂3ϕi + (−1)ϕk∂23ϕj∂3ϕi + ϕk∂33ϕj∂2ϕi

+ 3∂3ϕk∂2ϕj∂3ϕi + 3ϕk∂23ϕj∂3ϕi + 3ϕk∂2ϕj∂33ϕi =: Sijk1 + ...+ Sijk7 .

We thus get∑
ijk

f
(3)
ijkB3(i, j, k) =

∑
ijk

[
(Sijk1 + Sijk4 + Sijk7 ) + (Sijk2 + Sijk3 + Sijk6 ) + Sijk5

]
B3(i, j, k)

=
∑
ijk

Sijk1 (B3(i, j, k) + 1
2B3(i, j, k) + 3

2B3(j, i, k))

+ Sijk2 (B3(i, j, k) + 1
2B3(i, j, k)− 3

2B3(i, j, k)) + Sijk5 B3(i, j, k)
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=
∑
ijk

Sijk5 B3(i, j, k) = 0.

Ad f
(1,2)
ijk . These coefficients are determined by T4, T12 and T16. In consequence,

f
(1,2)
ijk = 2∂1ϕk∂22ϕj∂3ϕi + 2ϕk∂122ϕj∂3ϕi + 2ϕk∂22ϕj∂13ϕi + (−2)∂1ϕk∂23ϕj∂2ϕi

+ (−2)ϕk∂123ϕj∂2ϕi + (−2)ϕk∂23ϕj∂12ϕi + ∂2ϕk∂13ϕj∂2ϕi + ϕk∂123ϕj∂2ϕi

+ ϕk∂13ϕj∂22ϕi + ∂2ϕk∂23ϕj∂1ϕi + ϕk∂223ϕj∂1ϕi + ϕk∂23ϕj∂12ϕi

+ (−2)∂2ϕk∂12ϕj∂3ϕi + (−2)ϕk∂122ϕj∂3ϕi + (−2)ϕk∂12ϕj∂23ϕi + ∂3ϕk∂12ϕj∂2ϕi

+ ϕk∂123ϕj∂2ϕi + ϕk∂12ϕj∂23ϕi + (−1)∂3ϕk∂22ϕj∂1ϕi + (−1)ϕk∂223ϕj∂1ϕi

+ (−1)ϕk∂22ϕj∂13ϕi =: U ijk1 + ...+ U ijk21 .

Here we can first note that by Lemma 7.1 for each l ∈ {1, 4, 7, 10, 13, 16, 19} the terms

U ijkl A1,2(i, j, k) sum up to zero. We thus have∑
ijk

f
(1,2)
ijk A1,2(i, j, k) =

∑
ijk

[
(U ijk2 + U ijk14 ) + (U ijk3 + U ijk9 + U ijk21 ) + (U ijk5 + U ijk8 + U ijk17 )

+ (U ijk6 + U ijk12 + U ijk15 + U ijk18 ) + (U ijk11 + U ijk20 )
]
A1,2(i, j, k)

=
∑
ijk

U ijk2 (A1,2(i, j, k)− A1,2(i, j, k))

+ U ijk3 (A1,2(i, j, k) + 1
2A1,2(j, i, k)− 1

2A1,2(i, j, k))

+ U ijk5 (A1,2(i, j, k)− 1
2A1,2(i, j, k)− 1

2A1,2(i, j, k))

+ U ijk6 (A1,2(i, j, k)− 1
2A1,2(i, j, k) + A1,2(j, i, k)− 1

2A1,2(j, i, k))

+ U ijk11 (A1,2(i, j, k)− A1,2(i, j, k)) = 0.

Ad f
(2,3)
ijk . Only the terms T8 and T18 matter here. In particular,

f
(2,3)
ijk = ∂2ϕk∂23ϕj∂3ϕi + (−1)∂2ϕk∂33ϕj∂2ϕi + ∂3ϕk∂23ϕj∂2ϕi + (−1)∂3ϕk∂22ϕj∂3ϕi

+ 2ϕk∂23ϕj∂23ϕi + (−1)ϕk∂33ϕj∂22ϕi + (−1)ϕk∂22ϕj∂33ϕi =: V ijk1 + ...+ V ijk7

We first note that the terms V ijkl A2,3(i, j, k) for l ∈ {1, 2, 3, 4} all sum up to zero (Lemma

7.1). Consequently,∑
ijk

f
(2,3)
ijk A2,3(i, j, k) =

∑
ijk

[
(V ijk6 + V ijk7 ) + V ijk5

]
A2,3(i, j, k)

=
∑
ijk

V ijk6 (A2,3(i, j, k) + A2,3(j, i, k)) + V ijk5 A2,3(i, j, k)

=
∑
ijk

V ijk5 A2,3(i, j, k).

To see that the final term vanishes, we notice V ijk5 = V jik5 and thus∑
ijk

V ijk5 A2,3(i, j, k) =
∑
ijk

V ijk5 ( 1
2A2,3(i, j, k) + 1

2A2,3(j, i, k)) = 0.

Ad f
(3,1)
ijk . Here, only the terms T2, T10 and T20 are relevant and therefore

f
(3,1)
ijk = 2∂1ϕk∂33ϕj∂2ϕ1 + (−2)2∂1ϕk∂23ϕj∂3ϕi + 2ϕk∂133ϕj∂2ϕi + (−2)ϕk∂123ϕj∂3ϕi

+ 2ϕk∂33ϕj∂12ϕi + (−2)ϕk∂23ϕj∂13ϕi + ∂2ϕk∂13ϕj∂3ϕi + (−1)∂2ϕk∂33ϕj∂1ϕi

+ ϕk∂123ϕj∂3ϕi + (−1)ϕk∂233ϕj∂1ϕi + ϕk∂13ϕj∂23ϕi + (−1)ϕk∂33ϕj∂12ϕi
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+ ∂3ϕk∂23ϕj∂1ϕi + ∂3ϕk∂12ϕj∂3ϕi + (−2)∂3ϕk∂13ϕj∂2ϕi + ϕk∂233ϕj∂1ϕi

+ ϕk∂123ϕj∂3ϕi + (−2)ϕk∂133ϕj∂2ϕi + ϕk∂23ϕj∂13ϕi + ϕk∂12ϕj∂33ϕi

+ (−2)ϕk∂13ϕj∂23ϕi =: W ijk
1 + ...+W ijk

21

We first apply Lemma 7.1 to see that we can ignore the terms corresponding to W ijk
l for

l ∈ {1, 2, 7, 8, 13, 14, 15}. For the remaining terms we calculate∑
ijk

f
(3,1)
ijk A3,1(i, j, k) =

∑
ijk

[
(W ijk

3 +W ijk
18 ) + (W ijk

4 +W ijk
9 +W ijk

17 ) + (W ijk
5 +W ijk

12 +W ijk
20 )

+ (W ijk
6 +W ijk

11 +W ijk
19 +W ijk

21 ) + (W ijk
10 +W ijk

16 )
]
A3,1(i, j, k)

=
∑
ijk

W ijk
3 (A3,1(i, j, k)− A3,1(i, j, k))

+W ijk
4 (A3,1(i, j, k)− 1

2A3,1(i, j, k)− 1
2A3,1(i, j, k))

+W ijk
5 (A3,1(i, j, k)− 1

2A3,1(i, j, k) + 1
2A3,1(j, i, k))

+W ijk
6 (A3,1(i, j, k)− 1

2A3,1(j, i, k)− 1
2A3,1(i, j, k) + A3,1(j, i, k))

+W ijk
10 (A3,1(i, j, k)− A3,1(i, j, k)) = 0.

We thus have shown that D = (∗) = 0, yielding that the truncation is solenoidal on Oλ.

7.2. Proof of the identity (4.12). Let ψ ∈ C∞c (R3) be arbitrary. In order to obtain

formula (4.12), we writeˆ
Oλ

(Tλw)1 · ∇ψ dx =

ˆ
Oλ

T(A1,2,∇ψ) dx+

ˆ
Oλ

T(A2,3,∇ψ) dx+

ˆ
Oλ

T(A3,1,∇ψ) dx

+

ˆ
Oλ

T(B1,∇ψ) dx+

ˆ
Oλ

T(B2,∇ψ) dx+

ˆ
Oλ

T(B3,∇ψ) dx

=:

6∑
`=1

S`,

where we indicate e.g. by T(A1,2,∇ψ) that, when writing out w1 · ∇ψ directly by means

of (4.3) and (4.4), T(A1,2,∇ψ) contains all appearances of A1,2(i, j, k) and analogously

for the remaining terms. The underlying procedure of dealing with the different terms is

analogous for the remaining columns w2 and w3, which is why we exclusively focus on w1

but give all the details in this case.

In the following, we will frequently interchange the triple sum
∑
ijk and the integral over

Oλ, which allows us treat the single terms via integration by parts. This interchanging of

sums and integrals is allowed since every sum
∑
ijk(...) has an integrable majorant, in turn

being seen similarly to the reasoning that underlies the proof of Lemma 4.4.

We begin with S1. This term is constituted by three parts S1
1 , S

2
1 , S

3
1 given below, which

stem from w11∂1ψ, w12∂2ψ and w13∂3ψ (in this order). Here we have

S1
1 = 2

∑
ijk

ˆ
Oλ

ϕk(∂22ϕj∂3ϕi − ∂23ϕj∂2ϕi)A1,2(i, j, k)∂1ψ dx

= −2
∑
ijk

ˆ
Oλ

(∂2ϕj)(∂2ϕk∂3ϕiA1,2(i, j, k)∂1ψ) dx (= T 1
1 )

− 2
∑
ijk

ˆ
Oλ

(∂2ϕj)(ϕk∂23ϕiA1,2(i, j, k)∂1ψ) dx (= T 1
2 )



DIVSYM-FREE L∞-TRUNCATIONS AND DIVSYM-QUASICONVEX HULLS 29

− 2
∑
ijk

ˆ
Oλ

(∂2ϕj)(ϕk∂3ϕi∂2A1,2(i, j, k)∂1ψ) dx (= T 1
3 )

− 2
∑
ijk

ˆ
Oλ

(∂2ϕj)(ϕk∂3ϕiA1,2(i, j, k)∂12ψ) dx (= T 1
4 )

− 2
∑
i,j,k

ˆ
Oλ

ϕk∂23ϕj∂2ϕiA1,2(i, j, k)∂1ψ dx (= T 1
5 ).

Permuting indices j ↔ k and using the antisymmetry from Lemma 4.2 (c), we obtain

T 1
1 = −2

∑
ijk

ˆ
Oλ

(∂2ϕj)(∂2ϕk∂3ϕiA1,2(i, j, k)∂1ψ) dx

= 2
∑
ijk

ˆ
Oλ

(∂2ϕj)(∂2ϕk∂3ϕiA1,2(i, k, j)∂1ψ) dx

= 2
∑
ikj

ˆ
Oλ

(∂2ϕj)(∂2ϕk∂3ϕiA1,2(i, k, j)∂1ψ) dx = −T 1
1 ,

(7.3)

and hence T 1
1 = 0. Equally, permuting i↔ j, we find that T 1

2 + T 1
5 = 0. Therefore, using

Lemma 4.2 (b) for T 1
3 and integrating by parts in term T 1

4 with respect to ∂1,

S1
1 = T 1

3 + T 1
4 = −2

∑
ijk

ˆ
Oλ

(∂2ϕj)(ϕk∂3ϕiB1(i, j, k)∂1ψ) dx (= T 1
6 )

+ 2
∑
ijk

ˆ
Oλ

(∂12ϕj)ϕk∂3ϕiA1,2(i, j, k)∂2ψ dx (= T 1
7 )

+ 2
∑
ijk

ˆ
Oλ

(∂2ϕj)∂1ϕk∂3ϕiA1,2(i, j, k)∂2ψ dx (= T 1
8 )

+ 2
∑
ijk

ˆ
Oλ

(∂2ϕj)ϕk∂13ϕiA1,2(i, j, k)∂2ψ dx (= T 1
9 )

Lem. 4.2 (a)
− 2

∑
ijk

ˆ
Oλ

(∂2ϕj)ϕk∂3ϕiB2(i, j, k)∂2ψ dx (= T 1
10).

On the other hand,

S2
1 =

∑
ijk

ˆ
Oλ

ϕk(∂13ϕj∂2ϕi)A1,2(i, j, k)∂2ψ dx (= T 2
1 )

+
∑
ijk

ˆ
Oλ

ϕk(∂23ϕj∂1ϕi)A1,2(i, j, k)∂2ψ dx (= T 2
2 )

−
∑
ijk

ˆ
Oλ

ϕk(2∂12ϕj∂3ϕi)A1,2(i, j, k)∂2ψ dx (= T 2
3 )

We finally turn to S3
1 . Here we have

S3
1 =

∑
ijk

ˆ
Oλ

ϕk(∂12ϕj∂2ϕi − ∂22ϕj∂1ϕi)A1,2(i, j, k)∂3ψ dx

= −
∑
ijk

ˆ
Oλ

∂1ϕj∂2ϕk∂2ϕiA1,2(i, j, k)∂3ψ dx (= T 3
1 )

−
∑
ijk

ˆ
Oλ

∂1ϕjϕk∂22ϕiA1,2(i, j, k)∂3ψ dx (= T 3
2 )
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−
∑
ijk

ˆ
Oλ

∂1ϕjϕk∂2ϕi∂2A1,2(i, j, k)∂3ψ dx (= T 3
3 )

−
∑
ijk

ˆ
Oλ

∂1ϕjϕk∂2ϕiA1,2(i, j, k)∂23ψ dx (= T 3
4 )

−
∑
ijk

ˆ
Oλ

ϕk(∂22ϕj∂1ϕi)A1,2(i, j, k)∂3ψ dx (= T 3
5 )

Again, T 3
1 vanishes by the same argument as for (7.3), T 3

2 + T 3
5 = 0 by permuting indices

i↔ j, and so we obtain analogously to above

S3
1 = −

∑
ijk

ˆ
Oλ

∂1ϕjϕk∂2ϕiB1(i, j, k)∂3ψ dx (= T 3
6 )

+
∑
ijk

ˆ
Oλ

∂13ϕjϕk∂2ϕiA1,2(i, j, k)∂2ψ dx (= T 3
7 )

+
∑
ijk

ˆ
Oλ

∂1ϕj∂3ϕk∂2ϕiA1,2(i, j, k)∂2ψ dx (= T 3
8 )

+
∑
ijk

ˆ
Oλ

∂1ϕjϕk∂23ϕiA1,2(i, j, k)∂2ψ dx (= T 3
9 )

+
∑
ijk

ˆ
Oλ

∂1ϕjϕk∂2ϕi ∂3A1,2(i, j, k)︸ ︷︷ ︸
=0

∂2ψ dx.

Permuting indices i ↔ j in T 2
1 and T 3

7 yields by virtue of the antisymmetry property of

A1,2 that T 1
9 + T 2

1 + T 3
7 = 0, and we directly find that T 1

7 + T 2
3 = 0. For terms T 1

8 and T 3
8 ,

we permute indices i↔ j and j ↔ k in term T 3
8 to obtain

T 1
8 + T 3

8 = 3
∑
ijk

ˆ
Oλ

(∂1ϕk)(∂2ϕj)(∂3ϕi)A1,2(i, j, k)∂2ψ dx(7.4)

For terms T 2
2 and T 3

9 , we permute indices i↔ j in T 3
9 to obtain T 2

2 + T 3
9 = 0. Having left

T 1
6 and T 3

6 untouched, we thus obtain

S1 = −2
∑
ijk

ˆ
Oλ

(∂2ϕj)(ϕk∂3ϕiB1(i, j, k)∂1ψ) dx (= T 1
6 )

−
∑
ijk

ˆ
Oλ

∂1ϕjϕk∂2ϕiB1(i, j, k)∂3ψ dx (= T 3
6 )

− 2
∑
ijk

ˆ
Oλ

(∂2ϕj)ϕk∂3ϕiB2(i, j, k)∂2ψ dx (= T 1
10)

+ 3
∑
ijk

ˆ
Oλ

(∂1ϕk)(∂2ϕj)(∂3ϕi)A1,2(i, j, k)∂2ψ dx (= T 1
8 + T 3

8 )

=: S1 + S2 + S3 + S′4.

(7.5)

We now claim that S′4 = 0. Let us first note that the overall sum in the definition of S′4
converges absolutely in L1(Oλ). This can be seen similarly to the proof of Lemma 4.4, and

is a consequence of (P3), Lemma 4.3 (b) and L 3(Oλ) <∞, together with the bound∑
ijk

ˆ
Oλ
|(∂1ϕk)(∂2ϕj)(∂3ϕi)A1,2(i, j, k)∂2ψ|dx ≤ cλ‖∇w1‖L1(R3)L

3(Oλ),
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where c = c(3) > 0 is a constant only depending on the underlying space dimension n = 3.

By Lemma 7.1, we have∑
ijk

(∂1ϕk)(∂2ϕj)(∂3ϕi)A1,2(i, j, k)∂2ψ ≡ 0 pointwisely in Oλ,(7.6)

to be understood as the limit of the corresponding partial sums. Therefore,

S1 = −2
∑
ijk

ˆ
Oλ

(∂2ϕj)(ϕk∂3ϕiB1(i, j, k)∂1ψ) dx (= T 1
6 )

−
∑
ijk

ˆ
Oλ

∂1ϕjϕk∂2ϕiB1(i, j, k)∂3ψ dx (= T 3
6 )

− 2
∑
ijk

ˆ
Oλ

(∂2ϕj)ϕk∂3ϕiB2(i, j, k)∂2ψ dx (= T 1
10)

=: S1 + S2 + S3.

(7.7)

We now turn to S2. Our line of action is similar to that for dealing with S1 and so,

integrating by parts twice, we successively obtain

S2 =
∑
ijk

ˆ
Oλ

ϕk(∂23ϕj∂3ϕi − ∂33ϕj∂2ϕi)A2,3(i, j, k)∂2ψ dx

+
∑
ijk

ˆ
Oλ

ϕk(∂23ϕj∂2ϕi − ∂22ϕj∂3ϕi)A2,3(i, j, k)∂3ψ dx

=
∑
ijk

(−1)

ˆ
Oλ

(∂2ϕj)(∂3ϕk∂3ϕiA2,3(i, j, k)∂2ψ) dx (= T1)

−
∑
ijk

ˆ
Oλ

(∂2ϕj)(ϕk∂33ϕiA2,3(i, j, k)∂2ψ) dx (= T2)

−
∑
ijk

ˆ
Oλ

(∂2ϕj)(ϕk∂3ϕi∂3A2,3(i, j, k)∂2ψ) dx (= T3)

−
∑
ijk

ˆ
Oλ

(∂2ϕj)(ϕk∂3ϕiA2,3(i, j, k)∂23ψ) dx (= T4)

−
∑
ijk

ˆ
Oλ

(ϕk∂33ϕj∂2ϕi)A2,3(i, j, k)∂2ψ dx (= T5)

−
∑
ijk

ˆ
Oλ

(∂3ϕj)(∂2ϕk∂2ϕiA2,3(i, j, k)∂3ψ) dx (= T6)

−
∑
ijk

ˆ
Oλ

(∂3ϕj)(ϕk∂22ϕiA2,3(i, j, k)∂3ψ) dx (= T7)

−
∑
ijk

ˆ
Oλ

(∂3ϕj)(ϕk∂2ϕi∂2A2,3(i, j, k)∂3ψ) dx (= T8)

−
∑
ijk

ˆ
Oλ

(∂3ϕj)(ϕk∂2ϕiA2,3(i, j, k)∂23ψ) dx (= T9)

−
∑
ijk

ˆ
Oλ

(ϕk∂22ϕj∂3ϕi)A2,3(i, j, k)∂3ψ dx (= T10).

Terms T1 and T6 vanish by the same argument as in (7.3). Permuting indices i ↔ j, we

then obtain T2 +T5 = 0, and in a similar manner we see that T7 +T10 = 0 and T4 +T9 = 0.
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To conclude, we use Lemma 4.2 to obtain

S2 = T3 + T8 =−
∑
ijk

ˆ
Oλ

(∂2ϕj)(ϕk∂3ϕiB2(i, j, k)∂2ψ) dx

+
∑
ijk

ˆ
Oλ

(∂3ϕj)(ϕk∂2ϕiB3(i, j, k)∂3ψ) dx =: S4 + S5.

(7.8)

Term S3 is given by

S3 := 2
∑
ijk

ˆ
Oλ

(∂33ϕj∂2ϕi − ∂23ϕi∂3ϕi)A3,1(i, j, k)∂1ψ

+
∑
ijk

ˆ
Oλ

(∂13ϕj∂3ϕi − ∂33ϕj∂1ϕi)A3,1(i, j, k)∂2ψ

+
∑
ijk

ˆ
Oλ

(∂23ϕj∂1ϕi + ∂12ϕj∂3ϕi − 2∂13ϕj∂2ϕi)A3,1(i, j, k)∂3ψ

=: S1
3 + S2

3 + S3
3

Terms S1
3 and S2

3 are treated as as term S1
1 , where we now integrate by parts with respect to

∂3 in S1
3 or with respect to ∂1 in S2

3 , respectively. Similary to the computation underlying

S1, this gives us

S3 = 2
∑
ijk

ˆ
Oλ

(∂3ϕj)ϕk(∂2ϕi)B1(i, j, k)∂1ψ (= T ′1)

+ 2
∑
ijk

ˆ
Oλ

(∂13ϕj)ϕk∂2ϕiA3,1(i, j, k)∂3ψ (= T ′2)

+ 2
∑
ijk

ˆ
Oλ

(∂3ϕj)∂1ϕk∂2ϕiA3,1(i, j, k)∂3ψ (= T ′3)

+ 2
∑
ijk

ˆ
Oλ

(∂3ϕj)ϕk∂12ϕiA3,1(i, j, k)∂3ψ (= T ′4)

+ 2
∑
ijk

ˆ
Oλ

(∂3ϕj)ϕk∂2ϕiB3(i, j, k)∂3ψ (= T ′5)

+
∑
ijk

ˆ
Oλ

∂1ϕjϕk∂3ϕiB1(i, j, k)∂2ψ dx (= T ′6)

+
∑
ijk

ˆ
Oλ

(∂2∂1ϕj)ϕk∂3ϕiA3,1(i, j, k)∂3ψ (= T ′7)

+
∑
ijk

ˆ
Oλ

(∂1ϕj)∂2ϕk∂3ϕiA3,1(i, j, k)∂3ψ (= T ′8)

+
∑
ijk

ˆ
Oλ

(∂1ϕj)ϕk∂23ϕiA3,1(i, j, k)∂3ψ (= T ′9)

+
∑
ijk

ˆ
Oλ

ϕk(∂23ϕj∂1ϕi)A3,1(i, j, k)∂3ψ (= T ′10)

+
∑
ijk

ˆ
Oλ

ϕk(∂12ϕj∂3ϕi)A3,1(i, j, k)∂3ψ (= T ′11)

− 2
∑
ijk

ˆ
Oλ

ϕk∂13ϕj∂2ϕiA3,1(i, j, k)∂3ψ (= T ′12).
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By an argument analogous to (7.5)ff., T ′3 = T ′8 = 0. Moreover, permuting indices yields as

above T ′4 +T ′7 +T ′11 = 0 and T ′9 +T ′10 = 0, whereas T ′2 +T ′12 = 0 follows directly. Therefore,

S3 = 2
∑
ijk

ˆ
Oλ

(∂3ϕj)ϕk(∂2ϕi)B1(i, j, k)∂1ψ

+ 2
∑
ijk

ˆ
Oλ

(∂3ϕj)ϕk∂2ϕiB3(i, j, k)∂3ψ

+
∑
ijk

ˆ
Oλ

∂1ϕjϕk∂3ϕiB1(i, j, k)∂2ψ dx =: S6 + S7 + S8

(7.9)

Until now, we have only considered the contributions from A1,2, A3,1 and A2,3. The

contributions containing B1,B2,B3 then read as

S4 + S5 + S6 = 6
∑
ijk

ˆ
Oλ

ϕk∂2ϕj∂3ϕiB1(i, j, k)∂1ψ

+ 3
∑
ijk

ˆ
Oλ

ϕk∂3ϕj∂1ϕiB1(i, j, k)∂2ψ

+ 3
∑
ijk

ˆ
Oλ

ϕk∂1ϕj∂2ϕiB1(i, j, k)∂3ψ

+ 3
∑
ijk

ˆ
Oλ

ϕk∂2ϕj∂3ϕiB2(i, j, k)∂2ψ

+ 3
∑
ijk

ˆ
Oλ

ϕk∂2ϕj∂3ϕiB3(i, j, k)∂3ψ

= S9 + S10 + S11 + S12 + S13.

Combining this with (7.7), (7.8) and (7.9), we may then build the overall sum S1+...+S6 =

S1 + ...+S13. Summing up all terms, we note by an analogous permutation argument that

S3 + S4 + S12 = 0, S5 + S7 + S13 = 0, and soˆ
Oλ

(Tλw)1 · ∇ψ dx = 2
∑
ijk

ˆ
Oλ

ϕk∂2ϕj∂3ϕiB1(i, j, k)∂1ψ dx (∼ S1 + S6 + S9)

+ 2
∑
ijk

ˆ
Oλ

ϕk∂1ϕi∂3ϕjB1(i, j, k)∂2ψ dx (∼ S8 + S10)

+ 2
∑
ijk

ˆ
Oλ

ϕk∂1ϕj∂2ϕiB1(i, j, k)∂3ψ dx (∼ S2 + S11),

where we use the symbol ’∼’ to indicate where the single terms stem from. This is pre-

cisely (4.12), and so the proof is complete.
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