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ABSTRACT. We announce new existence and ε-regularity results for minimisers of the relaxation of strongly
quasiconvex integrals that on smooth maps u : Ω ⊂ Rn → RN are defined by

u 7→
ˆ

Ω
F (∇ku(x)) dx.

The results cover the case of integrands F with (1, q) growth in the full range of exponents 1 < q < n
n−1

for
which a measure representation of the relaxed functional is possible and the minimizers belong to the space
BVk of maps whose k-th order derivatives are measures.

A key theme in the vectorial calculus of variations is the identification of necessary and sufficient con-
ditions that ensure the existence and (partial) regularity of minima of energy functionals. The challenges
coming from applications, notably mathematical elasticity theory, mean that one must consider a broader
variety of integrands (energy densities) than are normally considered in the standard theory. In this con-
nection various basic problems emerge, including how the functionals should be defined on the natural
spaces where a minimizer is sought. Here we shall adopt the approach taken by MARCELLINI [33] for
quasiconvex integrals in the Sobolev context and define the functionals by relaxation. For further appli-
cations and results for variational problems under nonstandard growth conditions we refer to MINGIONE
[35] and ZHIKOV [42] and the references therein.

If we let Ω be a bounded and open smooth domain in Rn and k ∈ N, such functionals are, ignoring
for ease of exposition lower order terms and other less relevant dependencies, typically given on smooth
maps u : Ω→ RN by

I[u,Ω] :=

ˆ
Ω

F (∇ku) dx(1)

where F : M → R is a continuous integrand defined on the space M := �k(Rn,RN ) of symmetric k-
linear RN -valued maps on Rn. The existence of minima subject to Dirichlet boundary data, that we recall
in the k-th order context means zero order trace on ∂Ω together with normal derivatives on ∂Ω up to and
including order k − 1, is then achieved using the direct method by virtue of growth and quasiconvexity
properties of F . Assuming F satisfies such conditions in a suitably strict form, it is then natural to inquire
as to which regularity properties minimizers share. In this note we announce some new results in this
program, and proceed by discussing our set-up in detail.

The variational problem and existence of minimizers. The space M := �k(Rn,RN ) of symmetric
k-linear RN -valued maps on Rn is equipped with the usual operator norm corresponding to the standard
euclidean norms on the underlying spaces Rn and RN . All these norms are denoted by | · |, the precise
meanings being clear from context. We consider a continuous integrand F : M → R satisfying the (1, q)
growth condition:

(2) c1|z| − c2 ≤ F (z) ≤ c3
(
|z|+ 1

)q ∀z ∈M,

where ci > 0 are positive constants and q ≥ 1 a fixed exponent. It is well-known that quasiconvexity
in the sense of Morrey [36], and its higher order variant considered first by Meyers [34], together with
suitable growth conditions, are closely related to lower semicontinuity and coercivity (see [12, 25] for the
latter in the case when the lower bound in (2) is omitted). Here we recall that F is said to be quasiconvex
if for all z ∈M and all smooth compactly supported maps ϕ : Rn → RN we have

(3)
ˆ
Rn

(
F (∇kϕ(x) + z)− F (z)

)
dx ≥ 0.
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Let g ∈ Wk,q(Rn,RN ) and consider the problem of minimizing the variational integral I[u,Ω] defined
at (1) over u ∈ Wk,q

g (Ω,RN ) := g + Wk,q
0 (Ω,RN ). Clearly any minimizing sequence (uj) ⊂ Wk,q

g for
I[·,Ω] will in view of the lower bound in (2) and Poincaré’s inequality be bounded in Wk,1. It is well-
known that this forces us to consider the minimization over the larger space BVk = BVk(Ω,RN ) of maps
whose derivatives of order k are bounded measures. (See for instance [15] for basic properties of such
maps.) We then find a subsequence (not relabelled) and a map u ∈ BVk so that uj

∗
⇀ u in BVk, meaning

that uj → u strongly in Wk−1,1 and∇kujL n Ω
∗
⇀ Dku in the sense of bounded measures on Ω. Here

Dku is the full distributional k-th derivative of u, which is a bounded M-valued Radon measure on Ω. Its
Lebesgue-Radon-Nikodým decomposition with respect to L n is denoted byDku = ∇kuL n Ω+Dk

su.
An additional complication here is that the trace map is not continuous in the weak∗ topology of BVk and
so, following [23], it is useful to incorporate the Dirichlet boundary condition in the variational problem
as a kind of penalization term. For exponents q > 1 this procedure leads to a rather implicit functional
and penalization term. To define it we fix a bounded open domain Ω′ in Rn with Ω b Ω′. For each
u ∈ BVk(Ω′,RN ) define

Fg[u] =


ˆ

Ω′
F (∇ku) dx when u ∈Wk,q(Ω′,RN ) and u = g on Ω′ \ Ω

∞ otherwise.

The functional to be minimized is now the sequential weak∗ lower semicontinuous envelope of Fg[·] on
BVk(Ω′,RN ):

F g[u] = inf

{
lim inf
j→∞

Fg[uj ] :
(uj) ⊂ BVk(Ω′,RN ),

uj
∗
⇀ u in BVk(Ω′,RN )

}
It is evident that F g[·] admits minimizers on BVk(Ω′,RN ) and these minimizers will all agree with g on
Ω′ \Ω. For q = 1 we have a formula for F g[·] that is a straightforward generalization of the formula that
is known in the first order case k = 1 (see [5, 21, 31]) and we shall therefore in the following mainly focus
on exponents q > 1 where there is no known formula for the relaxed functional. Adapting arguments from
[19] we extend the results of [28] and [40] and show the following:

Proposition 1. Assume F : M→ R is continuous and satisfies (2), (3) for an exponent q ∈ [1, n
n−1 ). For

u ∈Wk,q(Ω′,RN ) with u = g on Ω′ \ Ω we have

F g[u] =

ˆ
Ω′
F (∇ku) dx.

Furthermore, if ū ∈ BVk(Ω′,RN ) is a minimizer for F g[·], then for balls B = Br(x0) b Ω we have
ˆ
B

F (∇kū) dx ≤
ˆ
B

F (∇kū+∇kϕ) dx

for all ϕ ∈ Ckc (B,RN ).

When the integrand F is differentiable, the last result of the proposition together with standard argu-
ments yield an Euler-Lagrange equation for the minimizer ū. We emphasize that here ∇kū is merely the
L n density of the full distributional derivative Dkū and as such does not have gradient structure in gen-
eral. The arguments rely on extending the measure representation results from [19] in the (p, q) growth
case to the (1, q) growth case and for this the restriction q < n

n−1 is essential as demonstrated in [1]. We
also remark that the first result of the proposition, that the relaxed functional F g[·] is an extension of Fg

from Wk,q maps agreeing with g off Ω, fails in a related situation of (p, n) growth when p < n − 1, see
[32]. We finally mention that the pointwise definition of the variational integrals that is used in [8], in the
k-th order would require the stronger condition of Wk,1 quasiconvexity and one would still need to make
a relaxation from Wk,1 to BVk that incorporates the Dirichlet boundary condition. However, in this case
the relaxation formula is known in the related first order case, k = 1, and integrands of (p, q) growth with
1 < p ≤ q < np

n−1 (see [29]).
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Regularity of minimizers The main result of [26] concerns the regularity of minimizers of the relaxed
functional F g[·] defined above under an additional natural strong quasiconvexity assumption on the inte-
grand. To define it let

E(z) =
√

1 + |z|2 − 1, z ∈M

be the reduced area integrand as also considered in [25]. Then we say that the continuous integrand
F : M→ R is strongly quasiconvex if there exists a positive constant ` > 0 such that z 7→ F (z)− `E(z)
is quasiconvex:

(4)
ˆ
Rn

(
F (z +∇kϕ(x))− F (z)

)
dx ≥ `

ˆ
Rn

(
E(z +∇kϕ(x))− E(z)

)
dx

holds for all z ∈ M and all ϕ ∈ C∞c (Rn,RN ). It is known that in the p-growth case higher order
quasiconvexity is related to (first order) quasiconvexity (see [41], [13] and [11]), and we show in [27] that
these results persist in the linear growth case.

When u is of class BVk we write for a ball B = Br(x0),

(Du)B =
Du(B)

L n(B)

and  
B

E(Dku− (Dku)B) :=
1

L n(B)

(ˆ
B

E(∇ku(x)− (Dku)B) dx+ |Dk
su|(B)

)
,

where |Dk
su| is the total variation measure for the singular M-valued measure Dk

su. In these terms we
have

Theorem 2. Let F g[·] be the relaxed functional defined above and assume the integrand F : M → R
satisfies

(H1) F is C2,1
loc(M),

(H2) F has (1, q) growth for some exponent q ∈ [1, n
n−1 ),

(H3) F is strongly quasiconvex.

Then for each m > 0 there exists εm > 0 depending on the data in (H1), (H2), (H3) with the following
property. For any minimizer ū ∈ BVk(Ω′,RN ) of F g[·] and each ball B = Br(x0) ⊂ Ω with

|(Dū)B | < m and
 
B

E(Dū− (Dū)B) < εm

we have that ū is Ck+1,α
loc on Br/2(x0) for all α < 1. In particular, ū is partially Ck+1,α regular in Ω for

each α < 1: there exists a relatively closed subset Σū ⊂ Ω with L n(Σū) = 0 such that ū|Ω\Σū
is locally

Ck+1,α for each α < 1.

The case k = q = 1 was proved, in a more general set-up, in [25]. We also remark that the result is
new also when we strengthen the hypothesis (H3) to strong convexity meaning that z 7→ F (z) − `E(z)
is convex for some ` > 0. We also remark that, under slightly more restrictive bounds on the exponent q
(as in [2]), we can in the strongly convex case allow the integrand to depend on x ∈ Ω′, whereby several
examples exhibiting (p, q) growth with p > 1 treated in the literature are extended to the (1, q) growth
scenario.

The results of SCHMIDT [40] (see also [38, 39]) concern the first order case and integrands of (p, q)
growth with p > 1, and more restrictive bounds on the exponent q, but also include certain degenerate
situations not covered here. These results were preceeded by work of FUSCO & HUTCHINSON [22]
on the anisotropic polyconvex case, and certain related quasiconvex situations (see also [16]). Finally
SCHEMM [37] extended the results of [38] to the k-th order case. We refer to [25] for a discussion of
further regularity results for BV minimizers of convex and quasiconvex integrals, and to [35] for a survey
of regularity results in Calculus of Variations and the related PDEs in the Sobolev context.



4 F. GMEINEDER & J. KRISTENSEN

REFERENCES

[1] E. Acerbi and G. Dal Maso: New lower semicontinuity results for polyconvex integrals. Calc. Var. Partial Differ. Equ. 2 (1994),
329–371.
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