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Abstract. The present lecture notes aim to provide a more or less thorough

draft for my course Functions of bounded variation and their applications at

the University of Konstanz in summer 2021. In this course, we give an in-

troduction to a very broad class of functions that allows us to treat problems

that require the incorporation of jumps. This is precisely the framework for

functions of bounded variation – in brief, BV-functions.

As the course is designed as a weekly 2 hours lecture, the present notes not

only comprise the material covered in class but also provide auxiliary back-

ground facts that were only mentioned in class. Whenever a statement was

only mentioned but not proved in class, you directly find a short statement

indicating this circumstance at the beginning of the proof. Besides, every

chapter is concluded with literature references that should help you to get an

idea of what further reading might be useful.

The general structure of the overall document is pretty much routine, but

there are some things that are worth being pointed out:

• A list on notation can be found on page 1.

• Definitions are usually to be found within a gray (•) box.

• Lemmas, propositions, corollaries and theorems are usually to be found

within a light blue (•) box.

• Examples are usually to be found within a light red (•) box.

• Paragraphs with an asterisk (∗) have not been discussed in class – they

either provide additional material or background facts which are useful

for a better understanding of the main text.

As background material for my lecture, the present lecture notes are ex-

clusively meant for attendees of my course. Certainly, these notes are not

free from mathematical or grammatical errors. If you spot any such mistakes,

or have suggestions on how the course and/or the lecture notes could be im-

proved, I would be very grateful to be approached via e-mail:

franz.gmeineder@uni-konstanz.de

A final comment: If you feel that you lack some background knowledge that

would be necessary to follow the ideas explained in class – contact me, and

besides a quick meeting I will add a quick section on the topic to the notes.
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Blackbox on notation

Structures

• | · |: Euclidean norm on Rn

• 〈·, ·〉: Euclidean inner product on Rn

• Br(x0): Open ball (with respect to the euclidean norm) of radius r > 0

centered at x0 ∈ Rn

Measure and integration theory

• L n: n-dimensional Lebesgue measure

• H n−1: (n − 1)-dimensional Hausdorff measure (practically: (n − 1)-

dimensional surface measure)

• B(Ω): Borel σ-algebra

• RM(Ω;Rm): Rm-valued Radon measures on Ω

• RMfin(Ω;Rm): Finite Rm-valued Radon measures on Ω

• µ A: Restriction of µ to the set A

Function spaces

• L1
loc(Ω): Space of locally integrable functions u : Ω→ R (for L n)

• Lp(Ω): Space of p-integrable functions u : Ω→ R (for L n)

• W1,1
loc(Ω): Space of weakly differentiable functions u : Ω→ R

• Wk,p(Ω): Space of k-times weakly differentiable functions u : Ω → R
such that both u and all weak derivatives up to order k belong to Lp(Ω).

• Ck
b (Ω): Space of k-times continuously differentiable functions u : Ω→ R

such that u along with all partial derivatives up to order k are bounded.

• C∞c (Ω): Smooth functions with compact support in Ω (also termed test

functions).
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Graph(u0)

Fig. 1: The situation of Section 1.1.

1 From minimal surfaces to imaging

In this introductory section we aim to describe some variational problems that

will eventually give us good motivation to study the core topic the course –

the functions of bounded variation. In doing so, we devote ourselves to two

major problems: The minimal surface problem and topics from the denoising

of images.

1.1 Minimal surface-type problems

We begin with a simple variant of the (non-parametric) minimal surface prob-

lem. For a certain wire in R3, we aim to find a surface attached to this wire,

yet having minimal surface area.

We simplify this setting even further and suppose that Ω ⊂ R2 is an open

set, u0 : ∂Ω→ R a function and

Graph(u0) := {(x, u0(x)) : x ∈ ∂Ω} ⊂ R3.

We take Graph(u0) as a description of the aforementioned wire and only seek

surfaces that can be written as graphs of functions u : Ω→ R. For sufficiently

nice such functions, the surface area can be written as

Area[u] :=

ˆ
Ω

√
1 + |∇u|2 dx.

Note that this functional can be established by elementary geometry and, in

essence, only uses the theorem of Pythagoras. Our specific problem thus reads

minimise F [u] :=

ˆ
Ω

√
1 + |∇u|2 dx subject to u|∂Ω = u0. (1.1)

The condition u|∂Ω = u0 precisely asserts that the surface has to be attached

to the wire, the latter being modelled as the graph of u0.

For (1.1) to be a sensible problem, we have to specify a class of functions D
on which we consider the minimisation problem; merely prescribing boundary
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Fig. 2: On the denoising of images.

values in fact is not sufficient. A first option to come up with such a candidate

for D are subclasses of the Sobolev space W1,1(Ω) (to be recalled in detail in

Section 2).

However, as shall be discussed in Section 3, this space does not share

good compactness properties. As we will see, this is basically due to the fact

that sequences bounded in the L1-norm might concentrate. Towards a fruitful

existence theory, we thus must consider a slightly larger space – precisely, this

space is given by the functions of bounded variation – the core topic of the

present lecture. As a metaprinciple, we

will gain compactness, but enlarge our spaces substantially.

By enlarging we understand that functions of bounded variation comprise all

W1,1-functions, but might exhibit a variety of other discontinuities. As such,

the chief objectives are to

• rigorously introduce functions of bounded variation,

• understand in which sense they admit ’more’ singularities than W1,1-

functions, and

• how they can be applied to lead to a satisfactory existence theory for

variational problems such as (1.1).

1.2 Denoising of images

Another area where BV-functions will eventually a pivotal rôle is (mathemat-

ical) imaging. This is an extremely rich and vast field, and we shall only be

able to scratch some of the problems arising within this context.

Our first model problem is this: A picture (that we shall refer to as orig-

inal picture O) was subject to some noise. This noise is here assumed to be

Gaußian. We are given the noisy picture N and aim to

produce a denoised variant D of the noisy picture N.

Such a scenario is depicted in Figure 2.
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Which principles should be obeyed by such a denosing process? This was

precisely what Rudin, Osher & Fatemi discussed in their seminal 1992 paper

[4], and the pivotal ideas are roughly as follows:

(P1) On a heuristic level, noise generally has a lot of variation. As such, if we

wish to denoise an image, we aim to reduce the variation of the image.

(P2) On the other hand, the denoised image should still remain close to the

noisy picture. This point is pretty intuitive: We want to come up with

a denoised image that is not fully decoupled from our input.

(P3) Finally, a key point in images are edges – edges help us to distinguish

between the single objects appearing on screen.

In view of this objective, we first have to make a mathematical model of

the situation at our disposal. To do so, we proceed as follows: The rectangle

(over which we see the picture) is modelled as a subset Ω of R2. We then

model a picture or an image as a function v : Ω → [0, 1], where each number

t ∈ [0, 1] represents a certain value in a gray or black/white scale. So, for

instance, t = 0 might refer to white, whereas t = 1 might refer to black.

Now, the noisy picture that we received is modelled by a function f : Ω→
[0, 1]. In order to produce a denoised picture u : Ω → [0, 1] according to our

three principles (P1),(P2) and (P3) from above, we start from the idea that

the variation of an image is linked to the gradient of the modelling function.

For a function F : Rn → R to be discussed below, we wish to minimise

F[u] :=

ˆ
Ω
F (∇u) dx︸ ︷︷ ︸

=:I

+
λ

2

ˆ
Ω
|u− f |2 dx︸ ︷︷ ︸

=:II

(1.2)

over a suitable class of functions u : Ω → [0, 1]. If we minimise F, then we

will also minimise part I, and this will reduce the overall gradient – hence the

variation – of u. Part II reflects (P2) in the sense that it forces u to stay

close to our denoised input image f . The parameter λ ≥ 0 is a free modelling

parameter that influences how close to f the minimiser will be. Think of the

extreme case λ = 0: In this case, the functional F does not refer to f in any

way. Hence, as a metaprinciple, the larger λ is, the better our minimiser will

approximate f .

Until now, we have not incorporated principle (P3) into our discussion.

Principle (P3) refers to preserving important structural properties such as

edges. It is at this stage where the integrand F enters crucially.

Our subsequent discussion will make use of Sobolev spaces and test func-

tions, and the reader is advised to see Section 2 for a recap on the underlying

concepts.

A functional that might be known from an introductory course on partial

differential equations or functional analysis is the Dirichlet integral

Dir[u] :=
1

2

ˆ
Ω
|∇u|2 dx,
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to be considered on a subclass of the Sobolev space W1,2(Ω). As such, a first

choice of an integrand F : Rn → R in (1.2) would be

F (z) :=
1

2
|z|2, z ∈ Rn.

In the following, we briefly argue why this is not a good choice in view of (P3).

The argument uses some elliptic regularity theory; if you are not familiar with

the underlying concepts, you may easily drop the following and directly jump

to (1.7).

Let f ∈ L2(Ω) (which is certainly fulfilled for any measurable f : Ω →
[0, 1]), λ > 0 and suppose that u ∈ W1,2(Ω) is a minimiser for F in the sense

that

F[u] ≤ F[u+ εϕ] for all ε > 0, ϕ ∈ C∞c (Ω). (1.3)

Considering (−ϕ) instead of ϕ, (1.3) thus implies that the function

Φ: R 3 ε 7→ F[u+ εϕ] ∈ R

has a minimum in ε = 0 for any fixed ϕ ∈ C∞c (Ω). We then record

Lemma 1.1. Let Ω ⊂ R2 be open, f ∈ L2(Ω) and suppose that u ∈W1,2(Ω)

satisfies (1.3). Then there holds

ˆ
Ω
〈∇u,∇ϕ〉 dx+ λ

ˆ
Ω

(u− f)ϕdx = 0 for all ϕ ∈ C∞c (Ω). (1.4)

Proof. Let ϕ ∈ C∞c (Ω) be arbitrary but fixed. Expanding, we find

Φ(ε) = F[u+ εϕ]

=
1

2

ˆ
Ω
|∇u|2 + 2ε〈∇u,∇ϕ〉+ ε2|∇ϕ|2 dx

+
λ

2

ˆ
Ω
|u− f |2 + 2ε(u− f)ϕ+ ε2|ϕ|2 dx.

(1.5)

This is a polynomial of degree two in ε. Thus, a necessary condition for Φ to

have a minimum in ε = 0 is

d

dε

∣∣∣∣
ε=0

Φ(ε) = 0. (1.6)

Based on (1.5), we obtain

d

dε
Φ(ε) =

ˆ
Ω
〈∇u,∇ϕ〉+ ε|∇ϕ|2 dx+

λ

2

ˆ
Ω

2(u− f)ϕ+ 2ε|ϕ|2 dx,

and (1.6) then implies thatˆ
Ω
〈∇u,∇ϕ〉 dx+ λ

ˆ
Ω

(u− f)ϕdx = 0.

This is (1.4), and the proof is complete.
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Integrating by parts, eqaution (1.4) can be viewed as a weak version of the

partial differential equation

−∆u+ λ(u− f) = 0 in Ω, (1.7)

where we refer the reader to Section 2.3 for a quick discussion of this matter.

Assuming λ > 0, (1.7) can be rewritten as

L u := −∆u+ λu
!

= λf in Ω. (1.8)

The differential operator L is an elliptic operator of degree 2. As a metaprin-

ciple, the regularity of (weak) solutions v of equations

L v = g

will be two regularity degrees higher than that of g. E.g., if g ∈ L2
loc, then

v ∈W2,2
loc, or, more generally,

g ∈Wk,2
loc =⇒ v ∈Wk+2,2

loc .

Informally, this amounts to saying that v will be much smoother than g.

This now has the following impact on our model (1.2): If we choose F (z) =
1
2 |z|

2 in (1.2), minimisers will satisfy (1.4). Even if f ∈ L2(Ω) (so that the

picture modelled by f might in fact reveal sharp edges), u obtained by the

minimisation of F is much smoother than f . In particular, edges might be

smeared out.

Obviously, the behaviour of F has a crucial impact on whether we have

such a smoothing – we have just seen that F (z) := 1
2 |z|

2 leads to an undesired

smoothing of edges. This motivates the following question:

In view of (P3), what is a good choice for F in (1.2)?

Throughout the course, we shall see that a good choice for F is a generalisation

of F (z) := |z|. The problem, however, is slightly more subtle: As we will see

in Section 2, Sobolev functions are never allowed to jump. In consequence,

we will come up with a variant of F (z) := |z| and a function space such that

its elements are allowed to have jump discontinuities. Incorporating jump

discontinuities for the functions that model our pictures, we may indeed hope

for preserving edges.

As one may anticipate, this function space is precisely given by the func-

tions of bounded variation – the core topic of the course.
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2 Recap on distributions and Sobolev spaces

As discussed in the introduction, one of the main objectives of the course is

to come up with a framework that lets us deal with jump functions. Such

functions are discontinuous and hence cannot be differentiated classically. In

consequence, if we wish to speak of a gradient of potentially very irregular

functions, we must come up with a very robust and general notion of differen-

tiability.

This is usually accomplished within the framework of distributions, and

this section aims to give a very quick overview of the underlying concepts.

Distibutions are – in a sense to be specified below – the continuous dual of

the test functions, and the differentation of distributions is inspired by the

integration by parts-formula for smooth functions.

Once the notion of distributional derivatives is at our disposal, we proceed

as follows: Associating with each f ∈ L1
loc a distribution Tf , we may consider

the distributional (partial) derivatives of Tf ; in this way, we will obtain a

notion of (partial) derivatives for all L1
loc-functions. This will be accomplished

in Section 2.1.

We then conclude this chapter in Section 2.2 with a discussion of Sobolev

spaces. Such spaces arise frequently in the study of partial differential equa-

tions and have already been alluded to in the introduction; finally, some gen-

eral ideas on weak formulations of partial differential equations are given in

Section 2.3.

2.1 Distributions

Our chief objective of the present chapter is to come up with a generalisation

of the usual concept of partial derivatives. To do so, we first draw some

conclusions from the integration by parts-formula; this will serve as the key

motivation for the differentiation of distributions later on.

To set the stage, we require some notation: For an open set Ω ⊂ Rn and

a continuous function ϕ : Ω→ R, we define its support by

spt(ϕ) := {x ∈ Ω: ϕ(x) 6= 0},

i.e., as the closure of the set where ϕ does not equal zero. Based on the notion

of support, we introduce the space of test functions by

C∞c (Ω) :=

{
ϕ : Ω→ R :

ϕ ∈ Ck(Ω) for all k ∈ N,
spt(ϕ) is compactly contained in Ω

}
. (2.1)

Here, as usual, we write ϕ ∈ Ck(Ω) provided ϕ : Ω→ R is k-times continuously

differentiable.

2.1.1 Integration by parts and some consequences

From an introductory course on analysis and measure theory we recall that,

for an open and bounded set Ω ⊂ Rn with smooth boundary ∂Ω, we have the
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Gauß-Green formula for vector fields v ∈ C(Ω;Rn) ∩ C1(Ω;Rn)ˆ
Ω

div(v) dx =

ˆ
∂Ω
〈v, ν〉 dH n−1, (2.2)

where ν = (ν1, ..., νn) : ∂Ω → {x ∈ Rn : |x| = 1} denotes the outward unit

normal to ∂Ω.

Let u ∈ C1(Ω) and ϕ ∈ C∞c (Ω). For i ∈ {1, ..., n}, we consider the vector

function v = (0, ..., 0, ϕu, 0, ..., 0) (with ϕu at the i-th entry). Applying (2.2)

to this choice of v, we obtainˆ
Ω

(∂xiu)ϕdx =

ˆ
∂Ω
uϕνi dH n−1 −

ˆ
Ω
u∂xiϕdx = −

ˆ
Ω
u∂xiϕdx. (2.3)

Here, the boundary integral vanishes because ϕ has compact support in Ω and

thus equals zero on ∂Ω.

Even though this calculation requires u to be of class C1, the right hand

side does not involve derivatives of u. It is precisely this insight that will

serve as a definition for distributional derivatives (see Definition 2.8 below).

More precisely, for f ∈ L1
loc(Ω), put

Tf (ϕ) :=

ˆ
Ω
fϕdx, ϕ ∈ C∞c (Ω). (2.4)

Adopting this notation, (2.3) becomes

T∂xiu(ϕ) = −Tu(∂xiϕ) for all ϕ ∈ C∞c (Ω). (2.5)

Based on the previous identity, it is natural to define ∂xiTu as (−Tu(∂xiϕ)).

This definition will even make sense for all u ∈ L1
loc(Ω).

2.1.2 General theory

It is useful to embed the foregoing considerations into a broader context;

this is achieved by realising that Tf as in (2.4) not only is a linear map

Tf : C∞c (Ω) → R but also continuous. Here, continuity refers to a specific

notion of convergence on C∞c (Ω) defined as follows:

Definition 2.1 (Convergence in D(Ω)). Let ϕ,ϕ1, ϕ2, ... ∈ C∞c (Ω). We say

that (ϕj) converges to ϕ in D(Ω) if and only if

(a) spt(ϕ), spt(ϕ1), spt(ϕ2), ... ⊂ K for some compact subset K of Ω, and

(b) for all α ∈ Nn0 there holds ‖∂α(ϕ− ϕj)‖L∞(Ω) → 0 as j →∞.

It is important to note that (a) does not follow from (b) and vice versa. In

particular, condition (a) ensures that the supports of ϕ1, ϕ2, ... do not approach

the boundary of Ω. Moreover, as ϕ,ϕ1, ... are smooth, (b) precisely means

∀α ∈ Nn0 : sup
x∈Ω
|∂α(ϕ− ϕj)(x)| → 0, j →∞,
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and this is to say that all partial derivatives converge uniformly.

Based on the previous definition, we may now introduce the distributions

as continuous linear maps from C∞c (Ω) to R:

Definition 2.2 (Distributions). Let Ω ⊂ Rn be open. A distribution on Ω

is a linear functional T : C∞c (Ω) → R that is continuous with respect to the

convergence in D(Ω), so satisfies

uj → u in D(Ω) =⇒ T (uj)→ T (u) in R.

We denote D ′(Ω) the (linear) space of distributions on Ω.

We now return to Tf as given by (2.4) and discuss how it fits into the

framework of distributions:

Example 2.3 (Regular distributions). Let Ω ⊂ Rn be open and let f ∈
L1

loc(Ω). We define a linear functional on C∞c (Ω) by

Tf (ϕ) :=

ˆ
Ω
fϕdx, ϕ ∈ C∞c (Ω). (2.6)

Then T is a distribution. Indeed, let ϕ,ϕ1, ϕ2, ... ∈ C∞c (Ω) be such that

ϕj → ϕ in D(Ω). By definition, there exists a compact subset K ⊂ Ω such

that spt(ϕ), spt(ϕ1), spt(ϕ2), ... ⊂ K. Since f ∈ L1
loc(K), f |K ∈ L1(K). Now,

|Tf (ϕ− ϕj)| ≤
ˆ
K
|f | |ϕ− ϕj | dx ≤ ‖f‖L1(K)‖ϕ− ϕj‖L∞(Ω) → 0, j →∞.

If T ∈ D ′(Ω) is such that there exists f ∈ L1
loc(Ω) with T = Tf , then we call

T a regular distribution.

If T is a regular distribution with T = Tf , f is often referred to as the

regular representative. As we shall see in Corollary 2.5, this terminology

makes sense indeed. As an important preparation, we require

Lemma 2.4 (Du Bois-Reymond). Let U ⊂ Rn be open and suppose that

f ∈ L1
loc(U) is such that

ˆ
U
f · ϕdx = 0 holds for all ϕ ∈ C∞c (U). (2.7)

Then there holds f = 0 L n-a.e..
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Proof. The proof has not been given in the lecture. We let ρ ∈ C∞c (Rn) be a

non-negative, radial function that is supported in B1(0) and has integral one.

For ε > 0, we define

ρε(x) :=
1

εn
ρ
(x
ε

)
, x ∈ Rn.

As known from a course on integration theory, for any g ∈ L1(Rn) the molli-

fication

ρε ∗ g(x) :=

ˆ
Rn

ρε(x− y)g(y) dy, x ∈ Rn,

satisfies ‖g − ρε ∗ g‖L1(Rn) → 0 as ε↘ 0. Moreover, we have ρε ∗ g ∈ C∞(Rn)

and, if g vanishes outside a bounded set V , then ρε ∗ g satisfies

spt(ρε ∗ g) ⊂ V + Bε(0) := {x+ y : x ∈ V, y ∈ Bε(0)}.

After these preparations, we embark on the actual proof. For f ∈ L1
loc(U) as

in the lemma, we define F≷ := {x ∈ U : f(x) ≷ 0} and

F≷j := {x ∈ F≷ : |x| < j, dist(x, ∂Ω) > 1
j }, j ∈ N. (2.8)

Each F≷j is bounded, has a distance at least 1
j from the boundary ∂Ω and we

have F≷ =
⋃
j∈N F≷j . Since 1

F
≷
j

∈ L1(Rn), 1
F

≷
j

− ρε ∗ 1F≷
j

→ 0 in L1(Rn) as

ε↘ 0, and so we find a sequence (εk) with εk ↘ 0 such that 1
F

≷
j

−ρεk∗1F≷
j

→ 0

L n-a.e. in Rn. Now, since |ρεk ∗ 1F≷
j

| ≤ 1 everywhere and g ∈ L1
loc(U), we

obtain by Lebesgue’s theorem on dominated convergence:

ˆ
Rn

f1
F

≷
j

− f(ρεk ∗ 1F≷
j

) dx→ 0, k →∞. (2.9)

Note carefully that, by (2.8), spt(ρεk ∗ 1F≷
j

) ⊂ U provided 0 < εk < 1
j .

Therefore ρεk ∗ 1F≷
j

∈ C∞c (U), so that by (2.7),

ˆ
Rn

f(ρεk ∗ 1F≷
j

) dx = 0 for all k with 0 < εk <
1
j . (2.10)

We thus obtain for any fixed j ∈ N and k ∈ N with 0 < εk <
1
j

ˆ
F

≷
j

|f | dx =

ˆ
Rn

|f |1
F

≷
j

dx =

ˆ
Rn

f1F>
j

dx−
ˆ
Rn

f1F<
j

dx

(2.10)
=

ˆ
Rn

f1F>
j
− fρεk ∗ 1F>

j
dx−

ˆ
Rn

f1F<
j
− fρεk ∗ 1F<

j
dx

(2.9)→ 0, k →∞.

Thus, L n(F≷j ) = 0 for all j ∈ N. Since F≷j =
⋃
j∈N F≷j , L n(F≷) = 0. In

consequence, f = 0 L n-a.e., and the proof is complete.
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We may now deal with the aforementioned uniqueness of the regular rep-

resentative:

Corollary 2.5. Let Ω ⊂ Rn be open and T ∈ D ′(Ω) be a regular distribution.

If T = Tf for some f ∈ L1
loc(Ω), then f is uniquely determined L n-a.e..

Proof. Suppose that T = Tf = Tg for some f, g ∈ L1
loc(Ω). The equality

Tf = Tg can be restated as

ˆ
Ω

(f − g)ϕdx = 0 for all ϕ ∈ C∞c (Ω),

and from here the claim the follows by Lemma 2.4.

So far, we have only encountered regular distributions. As can be seen

from the next example, not every distribution is regular:

Example 2.6 (Non-regular distributions). Let Ω ⊂ Rn be open and x0 ∈ Rn.

We define a distribution on Ω by

T (ϕ) := ϕ(x0), for all ϕ ∈ C∞c (Ω).

This is a distribution indeed. Linearity of T can be checked directly; moreover,

if ϕ,ϕ1, ϕ2, ... ∈ C∞c (Ω) are such that ϕj → ϕ in D(Ω), we obtain

|T (ϕ)− T (ϕj)| = |ϕ(x0)− ϕj(x0)| ≤ sup
x∈Ω
|ϕ(x)− ϕj(x)| → 0, j →∞.

More importantly, we claim that T is not a regular distribution. To see this,

we suppose towards a contradiction that there exists f ∈ L1
loc(Ω) such that

T = Tf , i.e.,

ϕ(x0) =

ˆ
Ω
fϕdx for all ϕ ∈ C∞c (Ω). (2.11)

We put U := Ω \ {x0} (which is open again). Whenever ϕ ∈ C∞c (U), we have

ϕ(x0) = 0 since x0 /∈ spt(ϕ). Thus, (2.11) yields

0 = ϕ(x0) =

ˆ
U
fϕdx for all ϕ ∈ C∞c (U).

We then deduce from Lemma 2.4 that f = 0 L n-a.e. on U , and since {x0}
is a Lebesgue nullset, f = 0 L n-a.e. on Ω. In consequence, we obtain from

(2.11) that ϕ(x0) = 0 for all ϕ ∈ C∞c (Ω) – which is the desired contradiction.

Hence, T is not a regular distribution.
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It is interesting to observe that the distribution T still can be written as

T (ϕ) =

ˆ
Ω
ϕdδx0 , ϕ ∈ C∞c (Ω), (2.12)

where δx0 is the Dirac measure centered at x0. For A ⊂ Ω, this measure is

defined by

δx0(A) :=

{
1 if x0 ∈ A,
0 otherwise.

To see (2.12), we use that for any measure space (Ω,A, µ) and any non-

negative, measurable function g : Ω→ [0,∞) we have

ˆ
Ω
g dµ =

ˆ ∞
0

µ({x ∈ Ω: g(x) > t}) dt.

For a non-negative ϕ ∈ C∞c (Ω), we thus obtain

ˆ
Ω
ϕdδx0 =

ˆ ∞
0

δx0({x ∈ Ω: ϕ(x) > t}) dt =

ˆ ϕ(x0)

0
dt = ϕ(x0).

This is (2.12) for non-negative ϕ ∈ C∞c (Ω), and the general case follows by

splitting ϕ into its non-negative and negative parts.

Whilst δx0 is not Lebesgue measure, it is still has a very simple structure.

As a far-reaching generalisation, we will now extend our theory to a very broad

class of distributions that arise from certain measures.

To begin our discussion, we strengthen terminology first. Let Ω ⊂ Rn
and denote B(Ω) the Borel σ-algebra1 on Ω. A measure µ : B(Ω) → [0,∞]

is called a Radon measure if it respects the topological structure in the

following sense:

• Local finiteness: We have µ(K) <∞ for any compact set K ⊂ Ω.

• Inner regularity: For any A ∈ B(Ω) we have

µ(A) = sup{µ(K) : K ⊂ A compact}.

Similarly as L1
loc(Ω)-functions induce regular distributions, Radon measures

induce the so-called measure regular distributions:

1 This is the σ-algebra generated by the open subsets of Ω, i.e., the smallest σ-algebra

containing all open subsets of Ω. Here, openness refers to the usual euclidean topology on

Rn.
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Example 2.7 (Measure regular distributions). Let Ω ⊂ Rn be open and let

µ : B(Ω) → [0,∞] be a Radon measure. We define a linear functional on

C∞c (Ω) by

Tµ(ϕ) :=

ˆ
Ω
ϕdµ, ϕ ∈ C∞c (Ω) (2.13)

and claim that this functional belongs to D ′(Ω). To this end, let ϕ,ϕ1, ϕ2 ∈
C∞c (Ω) be such that ϕj → ϕ in D(Ω) as j → ∞. Then, in particular, there

exists a compact set K ⊂ Ω such that spt(ϕ), spt(ϕ1), spt(ϕ2), ... ⊂ K and

supx∈Ω |(ϕ−ϕj)(x)| → ∞ as j →∞. Since µ is a Radon measure, it is locally

finite and so µ(K) <∞. Therefore,

|Tµ(ϕ)− Tµ(ϕj)| =
∣∣∣∣ˆ

Ω
(ϕ− ϕj) dµ

∣∣∣∣
=

∣∣∣∣ˆ
K

(ϕ− ϕj) dµ

∣∣∣∣ ≤ (sup
Ω
|ϕ− ϕj |)µ(K)→ 0.

As Tµ is linear, we therefore obtain Tµ ∈ D(Ω). If T ∈ D ′(Ω) is such that

T = Tµ for some Radon measure µ on Ω, we call T a measure regular

distribution.

After the discussion of several examples, we return to the general objective

of the chapter – namely, the differentation of distributions. Recall that our

point of departure is just (2.5), which we derived from the integration by

parts-formula.

Theorem and Definition 2.8 (Differentiation of distributions). Let Ω ⊂ Rn
be open and let T ∈ D ′(Ω). For each j ∈ {1, ..., n},

(∂xjT )(ϕ) := −T (∂xjϕ), ϕ ∈ C∞c (Ω),

defines a distribution on Ω. We call ∂xjT the j-th distributional (partial)

derivative of T , and call

(∂x1T, ..., ∂xnT ) ∈ (D ′(Ω))n

the distributional gradient of T .

Proof. First, ∂xjT is well-defined: If ϕ ∈ C∞c (Ω), then ∂xjϕ ∈ C∞c (Ω) and so

(−T (∂xjϕ)) has a clear meaning. Second, linearity is a direct consequence of

the linearity of T and the (classical) partial derivatives. Now let ϕ,ϕ1, ... ∈
C∞c (Ω) be such that ϕl → ϕ in D(Ω) as l→∞. As a consequence of this sort
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of convergence, we have supx∈Ω |∂α(ϕ − ϕl)(x)| → 0 as l → ∞ for all α ∈ N.

Since this convergence holds for all α ∈ Nn0 (and since partial derivatives

commute), we have supx∈Ω |∂α(∂xjϕ − ∂xjϕl)(x)| → 0. Hence, ∂xjϕl → ∂xjϕ

in D(Ω) as l→∞, and so we obtain

(∂xjT )(ϕ)
Def
= −T (∂xjϕ) = lim

l→∞
−T (∂xjϕl)

Def
= lim

l→∞
(∂xjT )(ϕl),

where we have used that T ∈ D ′(Ω) in the second step. Therefore, ∂xjT ∈
D ′(Ω), and the proof is complete.

If we want to call the distributional partial derivatives a generalisation of

the classical ones, we have to make a consistency check; this is now a direct

consequence of (2.5) and the previous definition:

Remark 2.9 (Consistency). Let Ω ⊂ Rn be open and u ∈ C1(Ω). Denoting

Tu the regular distribution associated with u, i.e.,

Tu(ϕ) :=

ˆ
Ω
uϕdx, ϕ ∈ C∞c (Ω),

we have

(∂xjTu) = T∂xju for all j ∈ {1, ..., n}.

Indeed, directly employing Definition 2.8 and (2.3), we have

(∂xiTu)(ϕ)
Def
= −Tu(∂xiϕ)

Def
= −

ˆ
Ω
u∂xiϕdx

u∈C1(Ω)
=

ˆ
Ω

(∂xiu)ϕdx
Def
= T∂xiu(ϕ) for all ϕ ∈ C∞c (Ω).

2.2 Weak differentiability and Sobolev spaces

Let Ω ⊂ Rn be open. If u ∈ L1
loc(Ω), we may consider the regular distribution

Tu in the sense of Example 2.3, consider its distributional partial derivatives

∂xjTu in the sense of Definition 2.8 and ask

whether all ∂xjTu, j ∈ {1, ..., n} are regular distributions again.

If so, we say that u is weakly differentiable and belongs to the (local)

Sobolev space W1,1
loc(Ω).

If u ∈ L1
loc(Ω) is weakly differentiable – so ∂xjTu = Tuj for uj ∈ L1

loc(Ω) –

uj is uniquely determined by Corollary 2.5. With slight abuse of notation, yet

in accordance with Remark 2.9, we then define

∂xju := uj , j ∈ {1, ..., n}.
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In this context, we also refer to ∂xju as j-th weak partial derivative.

Until now, we only worked in the L1
loc-framework. Sobolev spaces arise

when we impose Lp-size conditions on weak derivatives as follows:

Definition 2.10 (Sobolev spaces). Let Ω ⊂ Rn be open and let 1 ≤ p ≤ ∞.

The Sobolev space W1,p(Ω) is defined as the linear space of all

(a) u ∈ Lp(Ω) which are

(b) weakly differentiable, and

(c) all of their weak partial derivatives belong to Lp(Ω), in brief

‖u‖W1,p(Ω) := (‖u‖pLp(Ω) + ‖∂x1u‖
p
Lp(Ω) + ...+ ‖∂xnu‖

p
Lp(Ω))

1
p <∞

if 1 ≤ p <∞, and, if p =∞,

‖u‖W1,∞(Ω) := ‖u‖L∞(Ω) + ‖∂x1u‖L∞(Ω) + ...+ ‖∂xnu‖L∞(Ω) <∞.

The higher order variants of weak differentiability and hereafter higher

order Sobolev spaces are defined inductively: For instance, we say that u ∈
L1

loc(Ω) is twice weakly differentiable provided all first weak partial deriva-

tives are weakly differentiable. In this context, it is also customary to denote

∂αu the α-th weak partial derivative (provided it exists). Analogously, the

Sobolev space Wk,p(Ω) then is defined as the collection of all k-times weakly

differentiable functions u : Ω→ R such that

‖u‖Wk,p(Ω) :=
( ∑
|α|≤k

‖∂αu‖pLp(Ω)

) 1
p
<∞ (2.14)

with the usual modifications if p =∞.

We now collect some basic facts on Sobolev functions. These facts are

stated without proof, and we refer the reader to [3, Chpt. 5] for more detail.

Throughout, let Ω ⊂ Rn be open.

• Completeness. For any k ∈ N and all 1 ≤ p ≤ ∞, (Wk,p(Ω), ‖·‖Wk,p(Ω))

is a Banach space.

• Smooth approximation. For any k ∈ N and all 1 ≤ p < ∞, the

subspace (C∞ ∩Wk,p)(Ω) is dense in Wk,p(Ω) for the norm topology2.

• Lipschitz functions. The space W1,∞(Ω) consists of functions which

have a (locally) Lipschitz continuous representative. Recall that a func-

tion f : Ω→ R is called locally Lipschitz provided for any x0 ∈ Ω and

2 We will revisit and modify the underlying argument when studying smooth approxima-

tion for functions of bounded variation.
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R > 0 such that BR(x0) b Ω there exists L > 0 such that |f(x)−f(y)| <
L|x−y| holds for all x, y ∈ BR(x0). It is called globally Lipschitz pro-

vided the ultimate inequality holds for all x, y ∈ Ω.

Note that, if Ω ⊂ Rn not only is open but also bounded with smooth

boundary, then W1,∞(Ω) precisely consists of global Lipschitz functions.

Remark 2.11 (Smooth approximation). If p = ∞, we recall from the the-

ory of Lp-spaces that C∞ ∩L∞ is not dense in L∞. Similarly, the Sobolev

spaces Wk,∞(Ω) do not admit smooth approximation in the sense that

(Wk,∞ ∩C∞)(Ω) is not dense in Wk,∞(Ω). This is seen by considering k = 1

as follows.

Let Ω ⊂ Rn be open and bounded with smooth boundary. Suppose to-

wards a contradiction that (C∞ ∩W1,∞)(Ω) is dense in W1,∞(Ω) for the norm

topology on W1,∞(Ω). Pick some u : Ω → R which is bounded and globally

Lipschitz (and thus belongs to W1,∞(Ω) by the third item from above), but

does not belong to C1
b(Ω). Here, C1

b(Ω) denotes the continuously differentiable

functions which, along with their partial derivatives of order one, are bounded.

For the following, we recall that C1
b(Ω) is a Banach space with respect to the

norm

‖v‖C1
b(Ω) := ‖v‖L∞(Ω) + ‖∂x1v‖L∞(Ω) + ...+ ‖∂xnv‖L∞(Ω).

Since we assumed smooth approximation, we consequently find a sequence

(uj) ⊂ (C∞ ∩W1,∞)(Ω) such that ‖uj − u‖W1,∞(Ω) → 0 as j → ∞. As a

consequence, (uj) is a Cauchy sequence for the W1,∞-norm. However, since the

W1,∞-norm coincides with the C1
b -norm on smooth functions, it is a Cauchy

sequence in C1
b(Ω). As the latter is Banach, it will converge to some v ∈

C1
b(Ω). As necessarily u = v, this would imply that every Lipschitz function

is continuously differentiable – which is obviously wrong.

Before we come to the discussion of jumps, let us note that the smooth ap-

proximation for Wk,p-functions motivates to define a subspace of functions

vanishing at the boundary :

Definition 2.12. Let Ω ⊂ Rn, 1 ≤ p <∞ and k ∈ N. We define the Sobolev

space of order (k, p) with zero boundary values by

Wk,p
0 (Ω) := C∞c (Ω)

‖·‖
Wk,p(Ω)

As a key problem of the present lecture, we aim to provide a framework

within which we may allow for jumps. Until now, we merely have a heuristic
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•

Fig. 3: The sign function as a prototypical example of a function that jumps.

understanding of what jumps should mean. The easiest example of a func-

tion which displays our heuristic understanding of jumps is the sign function,

see Figure 3. As the next example establishes, this function does not belong

to W1,1
loc(Ω) – in other words, it is not weakly differentiable. In consequence,

Sobolev spaces do not provide the right framework to deal with jump func-

tions.

Example 2.13. As alluded to above, let u : (−1, 1)→ {−1, 0, 1} be the sign-

function:

u(x) :=


−1 if − 1 < x < 0,

0 if x = 0,

1 if 0 < x < 1.

We now compute the distributional derivative of Tu. For this, let ϕ ∈
C∞c ((−1, 1)) be arbitrary. Using the fundamental theorem of calculus, we

then find

∂xTu(ϕ)
Def
= −Tu(∂xϕ) = −

ˆ
(−1,1)

u ∂xϕdx

= −
ˆ 0

−1
u∂xϕdx−

ˆ 1

0
u∂xϕdx =

ˆ 0

−1
∂xϕdx−

ˆ 1

0
∂xϕdx

= (ϕ(0)− ϕ(−1))− (ϕ(1)− ϕ(0)) = 2ϕ(0) = T2δ0(ϕ).

By Example 2.7, T2δ0 is a measure regular distribution which is not regular.

Therefore, u /∈W1,1
loc(Ω).

2.3 Weak formulations of partial differential equations*

This section – which has not been addressed in class – serves to recall some

concepts from the weak theory of partial differential equations. Weak solutions

are a more general notion of solution than the usual classical solutions. By

virtue of the higher generality of the concept of solutions, weak solutions are
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easier to find by means of functional analytic methods. As a drawback, the

true difficulty then often lies in establishing regularity properties of such weak

solutions, sometimes identifying them as classical solutions.

In general, weak formulations involve only lower order derivatives than

actually required by the underlying differential operator; usually, they are

obtained by succesive application of the integration by parts formula (2.3).

As will become obvious from the discussion below, this is reflected by weak

formulations being defined via testing the equation against C∞c (Ω)-functions.

This is also why C∞c (Ω) are often referred to as test functions.

Here is an example: Given an open set Ω ⊂ Rn, suppose that we wish to

solve the partial differential equation

−∆u = f in Ω (2.15)

where f ∈ L∞(Ω). This equation cannot be stated classically. To obtain a

weak formulation, we let ϕ ∈ C∞c (Ω) be arbitrary. We multiply both sides of

the equation with ϕ and integrate over Ω to find

ˆ
Ω

(−∆u)ϕdx =

ˆ
Ω
fϕdx.

Using that ϕ ∈ C∞c (Ω), we integrate by parts and obtain

ˆ
Ω
〈∇u,∇ϕ〉dx =

ˆ
Ω
fϕdx for all ϕ ∈ C∞c (Ω). (2.16)

This equation only involves zero and first order derivatives on u ∈ W1,2
loc(Ω),

and thus might be regarded as a weak version of the partial differential equa-

tion (2.15). Also note that it is crucial for (2.16) to hold for all C∞c -functions

– which is a key aspect of weak formulations.

Lecture 1, April 16, 2021

Lecture 2, April 16, 2021
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3 The direct method of the Calculus of Variations

In the introductory Section 1 we have encountered two minimisation problems

– the minimal surface problem (1.1) and the minimisation of Rudin-Osher-

Fatemi-type functionals (1.2). In this chapter we discuss a method that –

subject to some assumptions on the functionals – allows us to conclude the

existence of minimisers. This is the direct method of the Calculus of

Variations.

By the very nature of the method, we shall see that the minimisation of a

large class of functionals can be tackled succesfully in Sobolev spaces. As we

will discover, however, the functional analytic setup for the model problems

from the introduction is not directly implementable in Sobolev spaces. This

will give us a solid motivation to study BV-functions from the viewpoint of

functional analysis.

3.1 An abstract version of the direct method

In this section we provide a scheme to establish the existence of minimisers of

functionals. Our setting is not the most general one, but it suffices for all of

what follows.

Let (X, ‖ · ‖) be a normed space, D ⊂ X a non-empty subset and let

F : X → R (3.1)

be a functional. Our aim is to establish the existence of a minimiser of F
over D, i.e., an element x ∈ D such that

F [x] = inf
y∈D
F [y]. (3.2)

In the sequel, we present several assumptions on X, D and F that turn out

crucial for this objective. Let us hereafter assume that

(a) F is bounded below on D: There exists m̃ ∈ R such that F [x] ≥ m̃

holds for all x ∈ X. In consequence,

m := inf
y∈D
F [y]

exists and is finite. Therefore, by the very definition of the infimum, we

find a minimising sequence (xj) ⊂ D such that

F [xj ]→ m = inf
y∈D
F [y]. (3.3)

Our overall aim now is to establish that (xj) possesses a subsequence which, in

a suitable sense, converges to a minimiser. This is a compactness feature.

Compactness relies on boundedness, and so we further assume that
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•

Fig. 4: The graph of a function f : R→ R that is not lower semicontinuous at

the origin. One directly sees that f does not admit a minimiser.

(b) F is coercive: If (yj) ⊂ X is a sequence with ‖yj‖ → ∞, then there

holds limj→∞F [yj ] = +∞.

For us, this has the following implication: By (3.3), supj∈NF [xj ] < ∞.

Thus, the assumed coercivity of F yields that (xj) is bounded: There

exists R > 0 such that ‖xj‖ ≤ R holds for all j ∈ N.

Toward compactness, we now make another assumption:

(c) Compactness: There exists a notion of convergence ’ ’ with the fol-

lowing property: If (yj) ⊂ X is a sequence which is bounded with respect

to ‖ · ‖, then there exists y ∈ X and a subsequence (yj(k)) ⊂ (yj) such

that yj(k)  y as k →∞.

Then the minimising sequence (xj) (which is bounded because of (b))

possesses a subsequence (xj(k)) such that xj(k)  x as k →∞.

The element x provided in the ultimate item will turn out the right candidate

for a minimiser. In order to identify it as a minimiser, we need two final

ingredients:

(d) Compatibility: The set D is closed with respect to the convergence

’ ’. By (c), we have xj(k) ∈ D for all k ∈ N, and xj(k)  x will con-

sequently imply that x ∈ D. Thus x is admissible for the minimisation

problem (3.2).

(e) Lower semicontinuity: We finally assume that F is lower semicontin-

uous with respect to the convergence ’ ’: If (yj) ⊂ X and y ∈ X are

such that yj  y, then there holds

F [y] ≤ lim inf
j→∞

F [yj ]. (3.4)

The importance of lower semicontinuity for the existence of minima is

depicted in Figure 4.

If all of (a)–(e) are in action, we conclude the existence of a minimiser as

follows: By (c), xj(k)  x for some subsequence (xj(k)) ⊂ (xj). By (d), we
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have x ∈ D and finally, by (e),

inf
y∈D
F [y]

x∈D
≤ F [x]

(3.4)

≤ lim inf
k→∞

F [xj(k)]
(3.3)
= inf

y∈D
F [y].

In consequence, x ∈ D is a minimiser for F over D. We have thus proved the

following abstract version of the direct method :

The direct method of CoV: Let (X, ‖ · ‖) be a normed space, D ⊂ X a

non-empty subset and F : X → R be a function such that the following hold:

(a) F is bounded below.

(b) F is coercive: If (yj) ⊂ X satisfies limj→∞ ‖yj‖ = ∞, then

limj→∞F [yj ] =∞.

(c) There exists a notion of convergence ’ ’ with the following properties:

• Compactness: If (yj) ⊂ X is a sequence that is bounded for ‖ · ‖,
then there exists y ∈ X and a subsequence (yj(k)) ⊂ (yj) such that

yj(k)  y, k →∞.

• Lower semicontinuity: F is lower semicontinuous with respect

to ’ ’: Whenever yj  x as j →∞, then

F [y] ≤ lim inf
j→∞

F [yj ].

• Compatibility with D: D is closed with respect to ’ ’: If (yj) ⊂
D is a sequence that converges to y ∈ X with respect to ’ ’, then

y ∈ D.

Then there exists a minimiser x ∈ D of F over D.

We conclude with a remark:

Remark 3.1 (On compactness and lower semicontinuity).

• Note that compactness and lower semicontinuity are two compet-

ing properties for the functional F : The weaker our notion of con-

vergence ’ ’, the more sequences will converge and so it is harder for

F to qualify as a lower semicontinuous functional. As such, we need to

strike a balance: The convergence ’ ’ must be weak enough to ensure

sufficient compactness properties, but strong enough to not destroy the

lower semicontinuity of F .
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• The usual norm convergence is not a good candidate. To see this,

recall that in any infinite dimensional space there is at least one sequence

that is bounded but does not possess any convergent subsequence (for the

norm topology). The standard example is this: Consider, for 1 ≤ p <∞,

the sequence spaces `p(N). For j ∈ N, define a sequence ej := (δij)i∈N.

Then ‖ej‖`p(N) = 1 for any 1 ≤ p < ∞, so (ej) is bounded. Now, if

ej → x = (x1, x2, ...) for the norm topology in `p(N), we conclude that

xi = 0 for all i ∈ N. However, then we have ‖x−ej‖`p(N) = ‖ej‖`p(N) = 1

for all j ∈ N and so there is no subsequence of (ej) that converges to x

for the norm topology.

3.2 A class of model functionals

In this section, we come up with a unifying framework that allows to deal

with the functionals considered so far. We will consequently exhibit scenarious

where the direct method of the previous section can be applied.

Let Ω ⊂ Rn be open and bounded with boundary of class C1. For 1 ≤ p <
∞, we moreover suppose that

• F : Rn → R is a continuously differentiable3 and convex function4 which

satisfies the growth bounds

c1|z|p − c2 ≤ F (z) ≤ c3(1 + |z|p) for all z ∈ Rn (3.5)

for fixed constants ci > 0, i ∈ {1, 2, 3}. Let us recall that F is called

convex provided

F (λξ + (1− λ)η) ≤ λF (ξ) + (1− λ)F (η)

holds for all ξ, η ∈ Rn and λ ∈ [0, 1].

• q ≥ p is an exponent for which there exists c > 0 such that there holds

‖u‖Lq(Ω) ≤ c‖u‖W1,p(Ω) for all u ∈W1,p(Ω). (3.6)

We will see later that we may always take some q that is strictly larger

than p. This is the content of the so-called Sobolev embedding theorem.

Subject to these assumptions, we then consider the functionals (where λ ≥ 0)

F [u] :=

ˆ
Ω
F (∇u) dx+

λ

2

ˆ
Ω
|u− f |q dx (3.7)

in two different settings – one linked to the minimal surface functional, one

to the Rudin-Osher-Fatemi functional. In any case, note that subject to the

above assumptions, the functional F is well-defined on the entire Sobolev

space W1,p(Ω) and so in particular on any of its subsets.

The relevant subsets D that we are interested in most are
3 This assumption appears for simplicity only; mere continuity would do as well.
4 As convexity implies continuity in this context, this assumption is slightly redundant.



3 The direct method of the Calculus of Variations 23

• Dirichlet classes: For a given u0 ∈W1,p(Ω), the Dirichlet class corre-

sponding to u0 is given by

D1 := u0 + W1,p
0 (Ω).

The terminology is natural: Recalling Definition 2.12, elements of W1,p
0 (Ω)

are interpreted to vanish at the boundary ∂Ω, and so elements of D1 will

precisely have the boundary values of u0 along ∂Ω.

• Neumann5 classes: Here we put

D2 := W1,p(Ω) ∩
{
v ∈ L1(Ω):

ˆ
Ω
v dx = 0

}
.

Subject to the above assumptions, we aim to establish the existence of a

minimiser, so a solution of the variational principle

minimise F [u] over u ∈ D1 or u ∈ D2. (3.8)

Our plan is to implement the direct method as discussed in the previous sec-

tion. Towards this aim, we need some background from functional analysis

and Sobolev spaces to be recorded in the subsequent section6. This, in par-

ticular, will canonically lead to the distinction of the cases 1 < p < ∞ and

p = 1.

3.2.1 Auxiliary facts from functional analysis and Sobolev spaces

In view of the direct method, we must come up with a notion of convergence

that yields some sort of compactness. That is, if (uj) ⊂W1,p(Ω) is bounded,

we wish to conclude uj(k)  u for some u ∈W1,p(Ω) and some sort of conver-

gence ’ ’.

For a variety of spaces, compactness still can be saved when passing to a

weaker sort of convergence than norm convergence. Let (X, ‖ · ‖) be a normed

space. We say that (xj) ⊂ X converges weakly to x ∈ X provided

x′(xj)→ x′(x) for all x′ ∈ X ′,

and write xj ⇀ u. Here, as usual, X ′ denotes the continuous dual of X. On

the other hand, a sequence (x′j) ⊂ X ′ converges in the weak*-sense to

x′ ∈ X ′ provided

x′j(x)→ x′(x) for all x ∈ X,

and write x′j
∗
⇀ x′.

The fundamental compactness principle we shall rely on is this:

5 In class, we did not call these classes ’Neumann’ classes. The reason will become clear

later, and we accept this terminology for the time being.
6 For more detail, see the lecture notes of Robert Denk (in particular, chapters 3b), 5c)

and 9).

https://www.mathematik.uni-konstanz.de/typo3temp/secure_downloads/89928/0/e0d84c4e0e20561b541155109cb6120883f27089/fa_ss17.pdf
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Theorem 3.2 (Banach-Alaoglu-Bourbaki). Let (X, ‖ · ‖X) be a separable

Banach space. Whenever (x′j) ⊂ X ′ is a sequence which is bounded for

‖ · ‖X′ , there exists x′ ∈ X ′ and a subsequence (x′j(k)) ⊂ (x′j) such that

x′j(k)
∗
⇀ x′ as k →∞.

In the form as given in Theorem 3.2, the Banach-Alaoglu-Bourbaki theo-

rem yields a compactness result on dual spaces; note that not every Banach

space arises as a dual space7. For a very vast class of Banach spaces it is still

possible to obtain a compactness result for the spaces themselves. These are

the reflexive spaces to be discussed next.

As usual, we denote X ′′ := (X ′)′ the bidual of a normed space (X, ‖ · ‖X).

To motivate the concept of reflexivity, note that elements of X ′′ are continuous

linear functionals on X ′. The probably easiest example of such an object is,

for a given x ∈ X, the map

ι(x) : X ′ 3 x′ 7→ x′(x).

This is nothing but the evaluation functional that evaluates x′ ∈ X ′ at

x ∈ X.

By means of ι : X 3 x 7→ ι(x) ∈ X ′′, we obtain a linear isometry from

X to X ′′ (this step uses the Hahn-Banach theorem). We may hereafter say

that X embeds into X ′′. If every x′′ ∈ X ′′ arises in this way – that is to say,

ι : X → X ′′ is surjective – then we call X reflexive. Now we have

Corollary 3.3 (Banach-Alaoglu-Bourbaki, reflexive spaces). Let (X, ‖ · ‖) be

a separable and reflexive Banach space. Whenever (xj) ⊂ X is a sequence

which is bounded for ‖ · ‖X , there exists x ∈ X and a subsequence (xj) ⊂ X

such that

xj(k) ⇀ x as k →∞.

Proof. Since ι : X → X ′′ is an isometry, the sequence (ι(xj)) is bounded in

X ′′. On the other hand, since X is reflexive and separable, so is (X ′′, ‖ · ‖X′′)

(take a countable dense subset of X and use ι to obtain a countable dense

subset of X ′′ – then ι being an isometry yields the desired countable dense

subset of X ′′). As a consequence of Hahn-Banach, if (X ′′, ‖ ·‖X′′) is separable,

(X ′, ‖ · ‖X′) must be separable, too.

7 Using the so-called Krein-Milman theorem, one is able to prove that, e.g., L1 is not the

dual of any normed space, and we will pick up on this fact later on.
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We are now in the situation of Theorem 3.2, being applied to X ′ and X ′′.

Theorem 3.2 implies the existence of some y′′ ∈ X ′′ such that ι(xj(k))
∗
⇀ y′′ for

some suitable subsequence (xj(k)). Since ι is bijective, there exists a unique

x ∈ X with y′′ = ι(x). Therefore, ι(xj(k)−x)
∗
⇀ 0 as k →∞. Now let x′ ∈ X ′

be arbitrary. Then,

x′(xj(k) − x) = ι(xj(k) − x)(x′)→ 0, k →∞,

and so xj(k) ⇀ x in X. The proof is complete.

As we wish to finally apply the foregoing theory to Sobolev spaces, we now

identify the reflexive Sobolev spaces.

Remark 3.4 (Reflexivity of Wk,p). Let Ω ⊂ Rn be open, k ∈ N and 1 ≤ p ≤
∞. Then we have

(Wk,p(Ω); ‖ · ‖Wk,p(Ω)) reflexive ⇐⇒ 1 < p <∞.

Proof of Remark 3.4. The proof of the remark was not discussed in class. We

start from the fact that (Lp(Ω), ‖ · ‖Lp(Ω)) is a reflexive Banach space if and

only if 1 < p <∞. Now consider the linear map

Φ: Wk,p(Ω) 3 u 7→ (∂αu)|α|≤k ∈ (Lp(Ω))k,

where k := {α ∈ Nn0 : |α| ≤ k}. We claim:

(a) Φ is a linear isometry for a suitable equivalent norm on Wk,p(Ω),

(b) Φ(Wk,p(Ω)) is closed in Lp(Ω)k,

(c) Closed subspaces of reflexive Banach spaces are reflexive,

(d) If (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are isometrically isomorphic and (Y, ‖ · ‖Y )

is reflexive, so is (X, ‖ · ‖X).

Ad (a). The space Lp(Ω)k is endowed with the norm ‖(fα)|α|≤k‖Lp(Ω)k :=∑
|α|≤k ‖fα‖Lp(Ω). The norm on Wk,p(Ω) is given by

‖u‖Wk,p(Ω) := (
∑
|α|≤k

‖∂αu‖pLp(Ω))
1
p ,

but ‖u‖∼
Wk,p(Ω)

:=
∑
|α|≤k ‖∂αu‖Lp(Ω) is an equivalent norm on Wk,p(Ω) for

which the latter still is reflexive. Equipping Wk,p(Ω) with this norm, by defi-

nition, Φ then is an isometry as indicated.

Ad (b). Let (Φ(uj))j converge to some v = (vα)|α|≤k ∈ Lp(Ω)k in Lp(Ω)k.

This means that for every α ∈ Nn0 there exists vα ∈ Lp(Ω) such that ∂αuj →
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vα. We have to prove that v ∈ Wk,p(Ω) and ∂αv = vα. Let ϕ ∈ C∞c (Ω) be

arbitrary. Then there holdsˆ
Ω
v∂αϕdx =

ˆ
Ω

(v − uj)∂αϕdx+

ˆ
Ω
uj∂

αϕdx

=

ˆ
Ω

(v − uj)∂αϕdx+ (−1)|α|
ˆ

Ω
((∂αuj)− vα)ϕdx

+ (−1)|α|
ˆ

Ω
vαϕdx

=: Ij + IIj + (−1)|α|
ˆ

Ω
vαϕdx.

Now, by Hölder’s inequality (where p′ = p
p−1),

|Ij |+ |IIj | ≤ ‖v − uj‖Lp(Ω)‖∂αϕ‖Lp′ (Ω)
+ ‖∂αuj − vα‖Lp(Ω)‖ϕ‖Lp′ (Ω)

→ 0

as j →∞. Therefore,ˆ
Ω
v∂αϕdx = (−1)|α|

ˆ
Ω
vαϕdx for all ϕ ∈ C∞c (Ω),

and so v belongs to Wk,p(Ω) with Φ(v) = (∂αv)|α|≤k. In consequence, Φ(Wk,p(Ω))

is closed.

Ad (c). Let U be a closed subspace of a reflexive space (X, ‖ · ‖X). Then

(U, ‖ · ‖X) is a normed space, too. Let u′′ ∈ U ′′. We need to show that there

exists u ∈ U with u′′ = ι(u). To use the reflexivity of X, we first extend u′′ to

some x′′ by

x′′(x′) := u′′(x′|U ), x′ ∈ X ′. (3.9)

Note carefully that x′|U ∈ U ′ for any x′ ∈ X ′: Indeed, x′|U is linear and

‖x′|U‖U ′ = sup{x′(x) : x ∈ U, ‖x‖X ≤ 1}
≤ sup{x′(x) : x ∈ X, ‖x‖X ≤ 1} ≤ ‖x′‖X′ .

Thus x′′ given by (3.9) is well-defined and belongs to X ′′. By reflexivity of

X, there exists ξ ∈ X with x′′ = ι(ξ). Suppose that ξ /∈ U . Then, using

a corollary of Hahn-Banach and the closedness of U , we find x̃′ ∈ X ′ with

x̃′|U = 0 and x̃′(ξ) = 1. Then,

1 = x̃′(ξ) = x′′(x̃′) = u′′(x̃′|U ) = 0,

which is an obvious contradiction. Thus, ξ ∈ U , and so U is reflexive.

Ad (d). Denote the underlying isometric isomorphism by Φ: X → Y . In

this situation, we have for any y ∈ Y ′:

‖y′‖Y ′ = sup{y′(y) : ‖y‖Y ≤ 1} = sup{y′(Φ(x)) : ‖x‖X ≤ 1} = ‖y′ ◦ Φ‖X′ .

In consequence, the duals (and by iteration) the biduals are isomorphic as

well, and from here the claim follows.

For p = 1,∞, one may either imitate the construction that leads to the

non-reflexivity of L1 or L∞. Alternatively, we shall see later by an explicit

example that Wk,1(Ω) is not reflexive.
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3.2.2 (Sequential) Lower semicontinuity in Sobolev spaces

The previous section has provided us with useful (weak) compactness results

in Sobolev spaces – at least, if 1 < p < ∞. Towards the implementation of

the direct method, we moreover need a lower semicontinuity result. We begin

with

Theorem 3.5 (Weak lower semicontinuity in Lebesgue spaces). Let F : Rn →
R≥0 be continuously differentiable and convex. Let Ω ⊂ Rn be open and

bounded, z, z1, z2, ... ∈ L1(Ω;Rn) be such that

zj ⇀ z in L1(Ω;Rn).

Then there holds ˆ
Ω
F (z) ≤ lim inf

j→∞

ˆ
Ω
F (zj) dx.

Lecture 2, April 23, 2021

Lecture 3, April 30, 2021

To prove Theorem 3.5, we require the following result from measure theory8:

Lemma 3.6 (Lusin). Let f : Rn → R be measurable and be such that f ≡ 0

outside an open set A of finite Lebesgue measure. Then, for any ε > 0, there

exists gε ∈ C0(A) such that

L n({x ∈ Rn : f(x) 6= gε(x)}) < ε.

Proof of Theorem 3.5. We split the proof into three steps:

• Step 1. Approximation and reduction to continuous functions,

• Step 2. Convexity and lower semicontinuity,

• Step 3. Coming back to our original setting.

Step 1. For each i ∈ N there exists a measurable set K̃i such that z|
K̃i

is

continuous together with L n(Ω \ K̃i) < 1
2i . By the regularity properties

8 See Thm. 6.18 in the lecture notes by Robert Denk.

https://www.mathematik.uni-konstanz.de/typo3temp/secure_downloads/89928/0/83b7f4327490f39d624491a387c660c7cdcf83c2/a3_b_2017_02_16.pdf
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•
ξ
•
η

t 7→ F (ξ) + 〈F ′(ξ), t− ξ〉

Fig. 5: The idea behind the convexity inequality (3.10): Whenever we form

the tangent at some point ξ, the tangent will remain below the graph

of F .

of Lebesgue measure, we thus even find a compact set Ki ⊂ K̃i such that

L n(Ω \Ki) <
1
i . Now,

ˆ
Ω
|1Ω − 1Ki | dx = L n(Ω \Ki) <

1

i
→ 0, i→∞.

Passing to a subsequence if necessary, we may thus assume that 1Ki → 1Ω

L n-a.e. on Ω. Now, by our assumptions on F (i.e., continuity and non-

negativity),

ˆ
Ω
F (z) dx ≤ lim inf

i→∞

ˆ
Ω
1KiF (z) dx ≤

ˆ
Ω
F (z) dx

so that the lim inf is actually a limit. In particular,

(a) f |Ki is continuous, and

(b) there exists θ : N→ R≥0 with θ(i)→ 0 as i→∞ such that

ˆ
Ki

F (z) dx ≥
ˆ

Ω
F (z) dx− θ(i) for all i ∈ N.

Step 2. We now come to the crucial impact of convexity for lower semicon-

tinuity. Namely, if F : Rn → R is a convex and continuously differentiable

function, then we have

F (ξ) + 〈F ′(ξ), η − ξ〉 ≤ F (η) for all ξ, η ∈ Rn. (3.10)

Inequality (3.10) means nothing but that, as F is convex, the tangent planes

to the graph of F lies under the graph of F – see Figure 5. We apply (3.10)

pointwisely with η = zj(x) and ξ = z(x) to get

〈F ′(z(x)), zj(x))− z(x)〉 ≤ F (zj(x))− F (z) for all x ∈ Ω. (3.11)
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We now use (3.11) to conclude that for each i ∈ N there holds

ˆ
Ki

F (zj) dx ≥
ˆ
Ki

F (z) dx+

ˆ
Ki

F (zj)− F (z) dx

≥
ˆ
Ki

F (z) dx+

ˆ
Ki

〈F ′(z), zj − z〉 dx

=

ˆ
Ki

F (z) dx+

ˆ
Ω
〈1KiF

′(z), zj − z〉dx

−→
ˆ
Ki

F (z) dx j →∞.

(3.12)

For the ultimate step, note that z|Ki is continuous and Ki is compact, so

F ′ ◦ z : Ki → Rn is continuous and bounded. In particular, as zj ⇀ z in

L1(Ω;Rn),

ˆ
Ω
〈1KiF

′(z), zj − z〉dx→ 0, j →∞.

Step 3. We now combine (3.12) and (b) to find by virtue of F ≥ 0:

lim inf
j→∞

ˆ
Ω
F (zj) dx ≥ lim inf

j→∞

ˆ
Ki

F (zj) dx

≥
ˆ

Ω
F (z) dx− θ(i) i→∞−→

ˆ
Ω
F (z) dx.

The proof is complete.

We now provide a useful corollary for functionals defined on gradients of

Sobolev functions.

Corollary 3.7. Let F : Rn → R≥0 be continuously differentiable, convex and

satisfy the growth bound

c1|z|p − c2 ≤ F (z) ≤ c3(1 + |z|p) for all z ∈ Rn. (3.13)

Let Ω ⊂ Rn be open and bounded and u, u1, u2, ... ∈W1,p(Ω) such that

uj ⇀ u in W1,p(Ω).

Then there holds ˆ
Ω
F (∇u) dx ≤ lim inf

j→∞

ˆ
Ω
F (∇uj) dx.

Proof. Note that by (3.13), the functional

W1,p(Ω) 3 v 7→
ˆ

Ω
F (∇v) dx
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is well-defined. By Theorem 3.5, it now suffices to prove that uj ⇀ u in

W1,p(Ω) implies ∇uj ⇀ ∇u in L1(Ω;Rn). Let ϕ ∈ L∞(Ω;Rn). Consider the

functional

Ψ: W1,p(Ω) 3 v 7→
ˆ

Ω
〈∇v, ϕ〉 dx

Then, since Ω ⊂ Rn is open and bounded,

|Ψ(v)| ≤ c‖∇v‖Lp(Ω)‖ϕ‖Lp′ (Ω)
≤ cL n(Ω)

1
p′ ‖v‖W1,p(Ω)‖ϕ‖L∞(Ω)

and so Ψ ∈ (W1,p(Ω))′. Hence Ψ(uj) → Ψ(u), and thus ∇vj ⇀ ∇v in L1(Ω).

Theorem 3.5 now completes the proof.

3.2.3 Minimisers for the model functionals, 1 < p <∞

We now have gathered all the tools that we need to implement the direct

method for our model functionals from the very beginning of this section

(cf. (3.7)):

Theorem 3.8. Let 1 < p <∞. Moreover, let Ω ⊂ Rn be open and bounded,

u0 ∈ W1,p(Ω) and suppose that F : Rn → R is a continuous and convex inte-

grand that satisfies (3.5). Then the following hold:

(a) Ad D1. For each u0 ∈W1,p(Ω), the variational principle

to minimise F [v] =

ˆ
Ω
F (∇v) dx over v ∈ D1 = u0 + W1,p

0 (Ω)

has a solution u ∈ D1.

(b) Ad D2. If Ω moreover is connected and has boundary of class C1, then

the variational principle

to minimise F [v] =

ˆ
Ω
F (∇v) dx

over v ∈ D2 = W1,p
0 (Ω) ∩ {v ∈ L1(Ω):

ˆ
Ω
v dx = 0}

has a solution u ∈ D2.

We argue via the direct method, cf. Section 3.1, which we implement in

the Sobolev space W1,p(Ω). We first deal with the case of Dirichlet classes D1.

• Boundedness from below. The growth bounds from (3.5) imply that

F [v] ≥ −c2L n(Ω) for all v ∈ W1,p(Ω). Hence, in particular, F is

bounded below on D1. We denote (uj) ⊂ D1 a corresponding minimising

sequence so that

F [uj ]→ inf
v∈D1

F [v] as j →∞.
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In particular, (F [uj ]) is bounded.

• Coercivity. For each j ∈ N, we may write uj = u0 + vj with vj ∈
W1,p

0 (Ω). Now, invoking the Poincaré inequalities (see Section 3.4 for a

derivation), that is,

‖ϕ‖Lp(Ω) ≤ cPoinc‖∇ϕ‖Lp(Ω) for all ϕ ∈W1,p
0 (Ω) (3.14)

and repeatedly making use of the elementary inequality

|a+ b|p = 2p
∣∣∣∣a+ b

2

∣∣∣∣p t7→tp convex
≤ 2p−1(|a|p + |b|p) for all a, b ∈ Rn,

(3.15)

we succesively obtain by the triangle inequality:

‖uj‖pW1,p(Ω)
≤ (‖vj‖W1,p(Ω) + ‖u0‖W1,p(Ω))

p

(triangle inequality on W1,p)

≤ 2p−1(‖vj‖pW1,p(Ω)
+ ‖u0‖pW1,p(Ω)

)

(by (3.15))

= 2p−1((1 + cpPoinc)‖∇vj‖
p
Lp(Ω) + ‖u0‖pW1,p(Ω)

)

(by (3.14))

= 2p−1((1 + cpPoinc)‖∇uj −∇u0‖pLp(Ω) + ‖u0‖pW1,p(Ω)
)

≤ 2p−1(2p−1(1 + cpPoinc)‖∇uj‖
p
Lp(Ω) + 2p−1(2 + cpPoinc)‖u0‖pW1,p(Ω)

)

(by (3.15))

=: c(p, n)‖∇uj‖pLp(Ω) + d(p)‖u0‖pW1,p(Ω)
,

where the constants c and d are defined in the obvious manner. We then invoke

the growth bound (3.5) to find

c(p, n)‖∇uj‖pLp(Ω) ≤
c(p, n)

c1

(ˆ
Ω
F (∇uj) dx+ c2L

n(Ω)
)
.

In conclusion, we obtain

‖uj‖pW1,p(Ω)
≤ c(p, n)

c1

(ˆ
Ω
F (∇uj) dx+ c2L

n(Ω)
)

+ d(p)‖u0‖pW1,p(Ω)
. (3.16)

Thus, the boundedness of (F [uj ]) implies the boundedness of (uj) for

‖ · ‖W1,p(Ω). Hence, F is coercive on D1 for the norm on W1,p(Ω).

• Compactness. By Remark 3.4 and since 1 < p < ∞, W1,p(Ω) is

reflexive. Thus, by Corollary 3.3, there exists u ∈ W1,p(Ω) such that

uj(k) ⇀ u in W1,p(Ω) as k →∞.

• Lower semicontinuity. By Corollary 3.7, F is lower semicontinuous

for weak convergence on W1,p(Ω).
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We are thus done if we can show that u ∈W1,p(Ω) in fact belongs to D1. This

is a consequence of the following abstract result9:

Lemma 3.9. Let (X, ‖ · ‖) be a normed space and let M ⊂ X be convex

and closed (for the norm topology). Then M is weakly sequentially closed: If

(xj) ⊂M satisfies xj ⇀ x as j →∞, then x ∈M .

Proof. If we had x /∈ M , then the Hahn-Banach separation theorem yields

the existence of some y′ ∈ X ′ and α ∈ R such that y′(y) < α < y′(x) for all

y ∈ M . Inserting y = xj and passing to the limit j → ∞, xj ⇀ x yields the

contradictory y′(x) < y′(x). The proof is complete.

The Dirichlet classesD1 are affine, closed subspaces of W1,p(Ω) and thus, in

particular, convex and (norm-)closed subsets of W1,p(Ω). Therefore, Lemma 3.9

yields u ∈ D1. In consequence, all requirements of the direct method are ful-

filled, and so Theorem 3.8 follows – i.e.,

u ∈ D1 is a minimiser.

The case of D2 as sketched in the following has not been addressed in class.

The functional F still is bounded on D2, and we denote (uj) a corresponding

minimising sequence. In this situation, we employ the Poincaré inequality,

type 2:

‖ϕ‖Lp(Ω) ≤ c‖∇ϕ‖Lp(Ω) for all ϕ ∈W1,p(Ω) ∩ {v ∈ L1(Ω):

ˆ
Ω
v dx = 0}.

Note that it is at this inequality that we need the connectedness of Ω and the

higher regularity of ∂Ω – see the discussion in Chapter 3.4. In analogy with

D1 – see (3.16) – we obtain for two constants c, d > 0 that

‖uj‖pW1,p(Ω)
≤ c

ˆ
Ω
F (∇uj) dx+ dL n(Ω) for all j ∈ N.

Then we may equally extract a weakly convergent subsequence (uj(k)) and

find u ∈ W1,p(Ω) with uj(k) ⇀ u in W1,p(Ω). The Neumann class D2 is

equally norm-closed and convex, so weakly closed; this could even be seen

directly without appealing to Lemma 3.9. In consequence, we also obtain the

existence of a minimiser in this case.

Up to now, we have not dealt with the full model functionals from (3.7)

but only their gradient parts. We now sketch how the full model cases can be

handled.

9 Also see Theorem 9.18 in the lecture notes by Robert Denk.

https://www.mathematik.uni-konstanz.de/typo3temp/secure_downloads/89928/0/e0d84c4e0e20561b541155109cb6120883f27089/fa_ss17.pdf
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Remark 3.10 (The full model functionals, λ > 0 in (3.7)). We work from

(3.6). This inequality is certainly fulfilled for q = p. The Sobolev embed-

ding theorem (which we assume here) asserts that we may even choose

q to be


any number in [p, np

n−p ] if 1 ≤ p < n,

any number in [p,∞) if p = n,

any number in [p,∞] if p > n.

Moreover, the Rellich-Kondrachov theorem asserts that the embedding

W1,p(Ω) into Lp(Ω) is compact (provided Ω is open and bounded with bound-

ary of class C1).

We now exemplarily argue for D1. As was done for Theorem 3.8, we find

by λ > 0 that F as in (3.7) is bounded below. We take a minimising sequence

(uj) of F ; by the same argument as above, (uj) is bounded on W1,p(Ω).

Extracting uj(k) as above with uj(k) ⇀ u in W1,p(Ω), we only need to show

that

F [u] ≤ lim inf
k→∞

F [uj(k)].

By Corollary 3.7, it suffices to establish that

ˆ
Ω
|u− f |q dx ≤ lim inf

k→∞

ˆ
Ω
|uj(k) − f |q dx. (3.17)

By passing to a subsequence, we may assume that the lim inf on the right-

hand side of (3.17) is a limit indeed. By Rellich-Kondrachov, we may assume

that uj(k) → v strongly in Lp(Ω). Passing to another subsequence, we may

thus assume that uj(k(l)) → u L n-a.e. as l →∞. Since f ∈ Lq(Ω), we obtain

(3.17) directly by Fatou’s lemma, thereby completing the proof.

3.3 Weak*-compactness and vectorial Radon measures

The previous section gives us a satisfactory treatment of the existence of min-

ima for convex p-growth functionals for 1 < p <∞. We now turn to p = 1.

If p = 1, then the chief obstruction is that W1,1(Ω) is not reflexive. So

the Banach-Alagolu-Bourbaki theorem does not yield any compactness result.

This might be regarded as the functional analytic viewpoint on the matter10;

namely, if it were, any bounded sequence (uj) ⊂W1,1(Ω) would allow to extract

a weakly convergent subsequence. This is easily seen to not be the case by

adopting the measure theoretic viewpoint. The following example is slightly

different from that as given in class – both do the job.

10 Indeed, even more drastically, W1,1 is not even the dual of any normed space.
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Example 3.11 (Concentration of bounded sequences in W1,1). Consider the

following sequence (uj) ∈W1,1((−1, 1)) given by

uj(x) :=


1 for 1

j < x < 1,

jx for − 1
j ≤ x ≤

1
j ,

−1 for − 1 < x ≤ 1
j .

The weak gradient of uj is given by

u′j(x) :=


0 for 1

j < x < 1,

j for − 1
j ≤ x ≤

1
j ,

0 for − 1 < x ≤ 1
j .

We may compute explicitely that (uj) is bounded in W1,1((−1, 1)), which we

leave as an exercise to the reader. Now, if uj(k) ⇀ v ∈ W1,1((−1, 1)) in

W1,1((−1, 1)), then the same argument as in the proof of Corollary 3.7 would

yield that u′j(k) ⇀ v′ in L1((−1, 1)). Now let ϕ ∈ C∞c ((−1, 1)). Then

ˆ
(−1,1)

v′ϕdx = lim
k→∞

ˆ
(−1,1)

u′j(k)ϕdx

=
1

2
lim
k→∞

2j(k)

ˆ 1/j(k)

−1/j(k)
ϕdx =

1

2
ϕ(0),

where we have used that

1

2ε

ˆ x+ε

x−ε
ϕ(t) dt→ ϕ(0) as ε↘ 0.

Taking ϕ to be arbitrary but compactly supported off x = 0, v′ ≡ 0 L 1-

a.e.. As in Example 2.7, we then arrive at a contradiction by considering

ϕ ∈ C∞c ((−1, 1)) with ϕ(0) 6= 0.

Lecture 3, April 30, 2021

Lecture 4, May 07, 2021

Different from the context of Sobolev spaces with 1 < p <∞,

(uj) bounded in W1,1(Ω)

6⇒ (∇uj) has a weakly convergent subsequence in L1(Ω;Rn).

Thus, we wish to come up with a suitable space X such that

(uj) bounded in W1,1(Ω)
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⇒ (∇uj) has a convergent subsequence in X (in a suitable sense)

This consideration will finally lead us to the space BV of functions of bounded

variation, which consquently will be defined in terms of X . In the following,

we present some ideas of what such a space X could be.

We want to gain compactness. By the concentration displayed in Ex-

ample 3.11 – recall that the weak*-limit is a multiple of the Dirac measure

centered at the origin – a good guess is to work with measures. The key will

be the Banach-Alaoglu-Bourbaki theorem (Theorem 3.2), for which we would

like to realise measures as the dual of another (separable) space. Here we face

some obstructions:

• First of all, the gradients of functions are Rn-valued. If we wish to

understand them – in some sense – as measures, we need a concept of

Rn-valued measures.

• Similarly, the Banach-Alaoglu-Bourbaki theorem forces us to work with

vector spaces. The usual measures as known from previous courses do

not form a vector space.

• Thirdly, if we wish to fruitfully employ the Banach-Alaoglu-Bourbaki

theorem, we have to find a norm on the Rn-valued measures.

We now introduce the requisite terminology and generalise the concepts from

an introductory course on measure and integration theory.

Let (X,Σ) be a measurable space and m ∈ N. We say that

• µ : Σ → [0,∞] is a positive measure provided it is a measure in the

sense of an introductory course on measure theory and integration; this

is, µ(∅) = 0 and we have

µ
( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai)

for any sequence (Ai) of mutually disjoint elements contained in Σ.

• µ : Σ → Rm is an Rm-valued measure (or vector-valued measure

or simply measure) provided µ(∅) = 0 and

µ
( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai)

for any sequence (Ai) of mutually disjoint elements contained in Σ. If

m = 1, then R-valued measures are also called real measures.

For an Rm-valued measure µ as above, we define the associated total varia-

tion measure |µ| on Σ by

|µ|(A) := sup

{ ∞∑
i=1

|µ(Ai)| :
Ai ∈ Σ for all i ∈ N, mutually

disjoint with A =
⋃∞
i=1Ai

}
(3.18)
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Here, | · | is an arbitrary but fixed norm on Rm. The particular choice of | · |
is non-essential as all norms are equivalent on Rm.

We now work towards the three items from above:

Lemma 3.12. Let (X,Σ) be a measurable space and let µ : Σ → Rm be a

vector measure. Then the following hold:

(a) |µ| is a positive measure with |µ|(X) <∞.

(b) The space M(X;Rm) of measures µ : Σ → Rm is a normed vector

space when endowed with the total variation norm ‖µ‖ := |µ|(Ω).

Proof. We only establish that |µ|(X) <∞. Here, we may assume that m = 1;

if µ = (µ1, ..., µm) is an Rm-valued measure, we use that |µ|(A) ≤
∑m

i=1 |µi|(A).

Hence let m = 1 and suppose towards a contradiction that |µ|(X) = +∞.

Working from the definition of the total variation measure, cf. (3.18), we then

find a sequence (Xj) of mutually disjoint sets contained in Σ and some N ∈ N
such that

N∑
j=1

|µ(Xj)| > 2(|µ(X)|+ 1).

This consequently yields

A+B :=
( ∑

1≤j≤N :
µ(Xj)≥0

µ(Xj)
)

+
( ∑

1≤j≤N :
µ(Xj)<0

(−µ(Xj))
)
> 2(|µ(X)|+ 1).

Clearly, not both of A and B can be smaller than |µ(X)|+ 1. Without loss of

generality, suppose that A > |µ(X)|+ 1. In this case, put

E :=
⋃

1≤j≤N :
µ(Xj)≥0

Xj

(if B > |µ(X)| + 1, let E be the union over those Xj with 1 ≤ j ≤ N and

µ(Xj) < 0). In any case, we obtain E ∈ Σ with |µ(E)| > |µ(X)|+ 1.

We now define F := X \E. Since µ is an Rm-valued measure, we conclude

by the inverse triangle inequality:

|µ(F )| = |µ(X)− µ(E)| = |µ(E)− µ(X)| ≥ |µ(E)| − |µ(X)| > 1.

Since |µ| is a measure, too, we have |µ|(F ) + |µ|(E) = |µ|(X) = ∞. Hence,

either |µ|(F ) =∞ or |µ|(E) =∞ (or both). We distinguish two cases:

• If |µ|(F ) = ∞, we put E1 := E. Replacing X by F in our above

considerations, we then find E2 and F1 with E2 ∪ F1 = F , |µ|(E2) > 1

and |µ|(F1) =∞.
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• If |µ|(E) =∞, put E1 := F .

Proceeding in this way, we obtain a sequence (Ei) of mutually disjoint elements

of Σ such that |µ(Ei)| > 1 for all i ∈ N. In consequence, the series
∑

i∈N µ(Ei)

cannot coverge. However, since µ is a measure and thus σ-additive,∑
i∈N

µ(Ei) = µ
( ⋃
i∈N

Ei

)
∈ Rm.

This is at variance with
∑

i∈N µ(Ei) not being convergent, and the proof is

complete.

In the following, we need a variant of the Radon-Nikodým theorem for

vectorial measures. To state it, let (X,Σ) be a measurable space and µ, µ̃ be

positive measures, and ν, ν̃ be Rm-valued measures on (X,Σ). We say that

• ν is absolutely continuous for µ (in formulas ν � µ) if we have

µ(A) = 0⇒ ν(A) = 0 for all A ∈ Σ.

• µ, µ̃ are mutually singular (in formulas µ⊥µ̃) if there exists E ∈ Σ

such that

µ(A) = µ̃(X \A) = 0.

• ν, ν̃ are mutually singular if |ν|⊥|ν̃|, and ν, µ are mutually singular if

|ν|⊥µ.

For the following proposition, recall that X is σ-finite for µ if there exists a

sequence A1 ⊂ A2 ⊂ ... of sets in Σ such that µ(Ai) < ∞ for all i ∈ N and

X =
⋃
i∈NAi. We also define

L1
µ(X;Rm) := {f = (f1, ..., fm) : Ω→ Rm :

ˆ
X
|fi|dµ <∞ for all i ∈ {1, ...,m}},

and L1
µ(X;Rm) := L1

µ(X;Rm)/∼, ∼ being the usual equivalence relation iden-

tifying two maps that coincide µ-a.e..

Proposition 3.13 (Radon-Nikodým). Let (X,Σ) be a measurable space, µ, ν

be as above and let X be σ-finite for µ. Then there exists a uniquely deter-

mined pair νa, νs of Rm-valued measures on Σ such that

ν = νa + νs, νa � µ and νs⊥µ.

Moreover, there is a unique f = (f1, ..., fm) ∈ L1
µ(X;Rm) such that νa = fµ,

that is,

νa(A) = (fµ)(A) :=

ˆ
X

(f1, ..., fm) dµ
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:=
( ˆ

X
f1 dµ, ...,

ˆ
X
fm dµ

)
for all A ∈ Σ.

We refer to f as the density of νa with respect to µ, and also write

f =
dν

dµ
.

From an introductory course on measure and integration theory, we have a

clear understanding of integrating functions against a positive measure. Based

on the previous proposition, we now generalise this concept to integration with

respect to vector-valued measures.

Remark 3.14. In the situation of the previous proposition, we always have

ν � |ν|. (3.19)

With the notation from Proposition 3.13, we then have

ν =
dν

d|ν|
|ν|.

Now, if g : X → R or h = (h1, ..., hm) : X → Rm are Σ-B(R)- or Σ-B(Rm)-

measurable, respectively, we put

ˆ
g dν :=

ˆ
g

dν

d|ν|
d|ν|,

ˆ
hdν :=

ˆ
〈h,dν〉 :=

ˆ 〈
h,

dν

d|ν|

〉
d|ν|

=
m∑
i=1

ˆ
hi

( dν

d|ν|

)
i
d|ν|.

(3.20)

Finally, if ν � µ so that ν = fµ for some f ∈ L1
µ(X;Rm), the total variation

measure of ν can be represented via

|ν|(A) =

ˆ
A
|f |dµ, A ∈ Σ. (3.21)

Now, having a clear definition of vector-valued measure and the underlying

integration theory, we introduce the main concepts that turn out crucial for

the requisite compactness assertions. In a first step, we generalise the concept

of Radon measures (cf. Example 2.7) to the vectorial context:
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Definition 3.15 (Vectorial Radon measures). Let Ω ⊂ Rn be open. An

Rm-valued set function defined on the relatively compact Borel subsets of Ω,

which is a measure on (K,B(K)) for any compact K ⊂ Ω, is called a real

or vectorial Radon measure (on Ω). If, moreover, µ : B(Ω) → Rm is a

measure, we call µ a finite Radon measure. We put

RM(Ω;Rm) := {µ is an Rm-valued Radon measure on Ω},
RMfin(Ω;Rm) := {µ is a finite Rm-valued Radon measure on Ω}.

Theorem 3.2 gives us some compactness in the space of finite Rm-valued

Radon measures provided the latter space is a dual space (of some separable

space). The following theorem a lá Riesz precisely allows this conclusion:

Theorem 3.16 (Riesz). Let Ω ⊂ Rn be open and let Φ: C0(Ω;Rm) → R be

a linear and bounded functional, so

‖Φ‖ := sup{|Φ(ϕ)| : ϕ ∈ C0(Ω;Rm), |ϕ| ≤ 1} <∞.

Then there exists a uniquely determined finite, Rn-valued Radon measure

µ = (µ1, ..., µn) ∈ RMfin(Ω;Rn) such that

Φ(ϕ) =

ˆ
Ω
ϕdµ :=

m∑
i=1

ˆ
Ω
ϕi dµi

holds for all ϕ = (ϕ1, ..., ϕm) ∈ C0(Ω;Rm). We then moreover have

‖Φ‖ = |µ|(Ω). (3.22)

In other words, the finite Rm-valued Radon measures on Ω are nothing but

the dual of the Rm-valued continuous functions vanishing at the boundary:

(RMfin(Ω;Rm), | · |(Ω)) ∼= (C0(Ω),Rm), ‖ · ‖sup)′. (3.23)

Let us now return to the situation that we addressed in the main part of

the chapter. Namely, let (uj) ⊂ W1,1(Ω) be a sequence which is bounded

in W1,1(Ω) – in particular, the sequence of gradients (∇uj) is bounded in

L1(Ω;Rn), so supj∈N ‖∇uj‖L1(Ω) ≤ C <∞.

We define measures µj ∈ RMfin(Ω;Rm) via µj = ∇ujL n, i.e.,

µj(A) =

ˆ
A
∇uj dx for all A ∈ B(Ω).
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By Remark 3.14 and our assumption supj∈N ‖∇uj‖L1(Ω) ≤ C < ∞, we then

have

|µj |(Ω) =

ˆ
Ω
|∇uj | dx ≤ C <∞.

By Theorems 3.16 and 3.211, there is µ ∈ RMfin(Ω;Rn) and a subsequence

(µj(k)) ⊂ (µj) such that

µj(k)
∗
⇀ µ as k →∞.

This last line means nothing but

ˆ
Ω
ϕdµj(k) →

ˆ
Ω
ϕdµ for k →∞,

and recalling the definition of µj(k), µj(k) = ∇ujL n, we have

ˆ
Ω
〈ϕ,∇uj(k)〉 dx→

ˆ
Ω
ϕdµ for k →∞.

Therefore, if we assume that uj(k) → u e.g. in L1(Ω), we obtain

ˆ
Ω
udiv(ϕ) dx = lim

k→∞

ˆ
Ω
uj(k) div(ϕ) dx

= − lim
k→∞

ˆ
Ω
〈ϕ,∇uj(k)〉 dx = −

ˆ
Ω
ϕdµ.

(3.24)

Generalising the concept of measure-regular distributions from Example 2.7

to the situation at our disposal, we see that the ultimate equation just tells us

that µ is the (measure regular representative of the) distributional gradient of

u; for more detail, also see Remark 3.17 below.

We may summarise the above discussion by means of the following.

The moral: If we want to get compactness for sequences bounded in

W1,1, then we should work those L1-functions for which the distributional

gradients are finite Rn-valued measures.

The following remark had not been addressed in the lecture and is only

intended to clarify the discussion after (3.24):

11 Note that C0(Ω;Rm) is a separable Banach space when endowed with the supremum

norm. Recall the argument: We may regard C0(Ω;Rm) as a subset of C(Ω;Rm), and the

latter space is separable by the Weierstraß approximation theorem – the Rm-valued polyno-

mials with rational coefficients are dense.
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Remark 3.17. In Definition 2.8, we defined the distributional gradient of

some T ∈ D(Ω) as (∂1T, ..., ∂nT ) ∈ (D ′(Ω))n, where ∂iT is the i-th ditri-

butional partial derivative of T . Equivalently – and this is precisely what

underlies (3.24) – an element S = (S1, ..., Sn) ∈ (D ′(Ω))n is the distributional

gradient of u (or, more precisely, Tu) if and only if

ˆ
Ω
udiv(ϕ) dx = −S(ϕ) := −

n∑
i=1

Si(ϕi)

for all ϕ = (ϕ1, ..., ϕn) ∈ (D(Ω))n.

Above, we also called µ the measure regular representative of u (or, more

precisely, Tu). This is analogous to Example 2.7, every real Radon measure µ

on Ω induces a distribution via

Tu(ϕ) :=

ˆ
Ω
ϕdµ, ϕ ∈ C∞c (Ω).

Similarly as above, if T ∈ D ′(Ω) satisfies T = Tµ for some real Radon measure

µ, then we also call T measure regular. This terminology directly inherits to

Rn-valued Radon measures, now defined on (D ′(Ω))n.

3.4 Recap on some facts from Sobolev space theory

Poincaré inequalities allow to estimate the Lp-norm of a weakly differentiable

function by that of its gradient. We used them in the proof of the main

existence result of this chapter, Theorem 3.8, and now give a brief recap.

Poincaré-type inequalities, type 1: Let Ω ⊂ Rn be open and bounded.

Then, for each 1 ≤ p < ∞, there exists a constant c = c(p, n,diam(Ω)) > 0

such that

‖u‖Lp(Ω) ≤ c ‖∇u‖Lp(Ω) holds for all u ∈W1,p
0 (Ω). (3.25)

First of all, note carefully that inequality (3.25) does not hold for all

Sobolev functions u ∈ W1,p(Ω) (note our requirement u ∈ W1,p
0 (Ω)). In-

deed, (3.25) is false for any non-zero, constant function – such functions are

precisely ruled out by u ∈W1,p
0 (Ω).

Let us briefly see how inequalities (3.25) can be derived in n = 1 dimen-

sions. To this end, let Ω ⊂ R be open and bounded. Given u ∈ C∞c (Ω), we

think of u to be extended to the entire R by zero and suppose that Ω = (a, b)

with −∞ < a < b < ∞. By the fundamental theorem of calculus, we obtain
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for any x ∈ Ω

u(x) = u(x)− u(a)︸︷︷︸
=0

=

ˆ x

a
u′(t) dt,

and so, by Hölder’s inequality,

ˆ
Ω
|u(t)|p dt =

ˆ b

a
|u(x)|p dx ≤

ˆ b

a

∣∣∣∣ˆ x

a
u′(t) dt

∣∣∣∣p dx

≤ (b− a)p
ˆ b

a
|u′(t)|p dt = (b− a)p

ˆ
Ω
|u′(t)|p dt.

Now let u ∈ W1,p
0 (Ω). By definition of W1,p

0 (Ω), there exists (uj) ⊂ C∞c (Ω)

such that ‖u − uj‖W1,p(Ω) → 0 as j → ∞. Then, based on what we have

already established,

‖u‖Lp(Ω) ≤ ‖u− uj‖Lp(Ω) + ‖uj‖Lp(Ω)

≤ ‖u− uj‖Lp(Ω) + c‖u′j‖Lp(Ω)

≤ ‖u− uj‖Lp(Ω) + c‖u′j − u′‖Lp(Ω) + c‖u′‖Lp(Ω)

→ c‖u′‖Lp(Ω), j →∞.

This establishes the claim for n = 1; the general case can be reduced to the

one-dimensional case by Fubini’s theorem.

Poincaré-type inequalities, type 2: Let Ω ⊂ Rn be connected, open

and bounded with boundary of class C1. Then, for each 1 ≤ p < ∞, there

exists a constant c = c(p, n,diam(Ω)) > 0 such that

‖u− (u)Ω‖Lp(Ω) ≤ c ‖∇u‖Lp(Ω) holds for all u ∈W1,p
0 (Ω), (3.26)

where

(u)Ω :=

 
Ω
udx :=

1

L n(Ω)

ˆ
Ω
udx

is the mean of u over Ω.

A sketch of proof for these sorts of inequalities will be inserted soon.
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4 Functions of bounded variation: Definition & elementary
properties

In Chapter 3 we saw the crucial need of compactness to ensure the existence of

minima by means of the direct method. Since compactness displays a major

issue for p-growth functionals with p = 1, we argued in Section 3.3 to study

functions for which the distributional gradients are finite, vectorial Radon

measures.

This is precisely the space BV of functions of bounded variation. In this

chapter, we thoroughly introduce this class of functions and study their various

properties. As a solid basis, we start with the following

Theorem and Definition 4.1 (Functions of bounded variation). Let Ω ⊂ Rn
be open. Then the following are equivalent for u ∈ L1(Ω):

(a) The distributional gradient of u (or, more precisely, Tu) is a measure

regular distribution in the sense that there exists a finite, Rn-valued

Radon measure µ = (µ1, ..., µn) ∈ RMfin(Ω;Rn) such that

ˆ
Ω
udiv(ϕ) dx = −

ˆ
Ω
ϕdµ

(
:=

n∑
i=1

ˆ
Ω
ϕi dµi

)
holds for all ϕ = (ϕ1, ..., ϕn) ∈ (C∞c (Ω))n.

(b) The total variation |Du|(Ω) satisfies

|Du|(Ω) := sup

{ˆ
Ω
udiv(ϕ) dx : ϕ ∈ C∞c (Ω;Rn), |ϕ| ≤ 1

}
<∞.

If (a) or, equivalently, (b) hold, then we say that u is of bounded variation,

and we put

BV(Ω) := {u ∈ L1(Ω): |Du|(Ω) <∞}. (4.1)

Lecture 4, May 07, 2021

Lecture 5, May 14, 2021

Proof of Theorem 4.1. Ad ’(a)⇒(b)’. Let ϕ = (ϕ1, ..., ϕn) ∈ C∞c (Ω;Rn) be

such that |ϕ| ≤ 1. By (b), we haveˆ
Ω
udiv(ϕ) dx = −

ˆ
Ω
ϕdµ

≤
∣∣∣∣ˆ

Ω
ϕdµ

∣∣∣∣ =

∣∣∣∣ˆ
Ω

〈
ϕ,

dµ

d|µ|

〉
d|µ|

∣∣∣∣ ≤ ˆ
Ω
|ϕ| d|µ| ≤ |µ|(Ω).
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Passing to the supremum over all such ϕ, we obtain |Du|(Ω) < ∞, which is

(b). Ad ’(b)⇒(a)’. Consider the linear functional

Φ(ϕ) := −
ˆ

Ω
udiv(ϕ) dx, ϕ = (ϕ1, ..., ϕn) ∈ C∞c (Ω;Rn).

By (b), Φ is bounded as a functional on (C∞c (Ω;Rn), ‖ · ‖sup), where

‖ϕ‖sup :=
n∑
i=1

‖ϕi‖sup, ϕ = (ϕ1, ..., ϕn).

Since C∞c (Ω;Rn) is dense in C0(Ω;Rn) for ‖ · ‖sup, Φ uniquely extends to a

bounded linear functional Φ: C0(Ω;Rn) → R with ‖Φ‖ = ‖Φ‖. By the Riesz

representation theorem, Theorem 3.16, there exists a uniquely determined

finite, Rn-valued Radon measure µ on Ω such that

Φ(ϕ) =

ˆ
Ω
ϕdµ for all ϕ ∈ C0(Ω;Rn).

Since Φ and Φ coincide on C∞c (Ω;Rn), we obtain by the definition of Φ

−
ˆ

Ω
udiv(ϕ) dx =

ˆ
Ω
ϕdµ for all ϕ ∈ C∞c (Ω;Rn).

This is (a), and the proof is complete.

Remark 4.2. With |Du|(Ω) as in item (b) from above, we may equally write

|Du|(Ω) = sup

{ˆ
Ω
udiv(ϕ) dx : ϕ ∈ C1

c(Ω;Rn), |ϕ| ≤ 1

}
(4.2)

(note the difference in the smoothness of admissible competitors). The right-

hand side of (4.2) is certainly larger or equal than |Du|(Ω). Now let ϕ ∈
C1
c(Ω;Rn) be arbitrary with |ϕ| ≤ 1. Pick a standard mollifier ρ and its ε-

rescaled variant ρε. We then have div(ρε ∗ ϕ) = ρε ∗ div(ϕ) → div(ϕ) in

C0(Ω;Rn) as ε↘ 0 (as ϕ is C1
c and so div(ϕ) is Cc). Note that∣∣∣∣ˆ

Ω
udiv(ϕ− ρε ∗ ϕ) dx

∣∣∣∣ ≤ ‖u‖L1(Ω)‖div(ϕ)− ρε ∗ div(ϕ)‖L∞ → 0 (4.3)

as ε↘ 0. Since, moreover, |ρε ∗ ϕ| ≤ 1, we obtain

ˆ
Ω
udiv(ϕ) dx =

ˆ
Ω
udiv(ϕ− ρε ∗ ϕ) dx︸ ︷︷ ︸

→0 by (4.3)

+

ˆ
Ω
udiv(ρε ∗ ϕ) dx︸ ︷︷ ︸
≤|Du|(Ω)

and so (4.2) follows.
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Now let u ∈ BV(Ω). By the Radon-Nikodým theorem, Proposition 3.13, we

may decompose Du into an absolutely continuous and singular part for L n:

Du = Dau+Dsu

=
dDau

dL n
L n +

dDsu

d|Dsu|
|Dsu|.

A good deal of the present chapter will be to get a deeper insight on the single

parts Dau and Dsu. We now turn to some examples, and start with the case

where the singular part is not present:

Remark 4.3. Let u ∈ BV(Ω). Then we have

u ∈W1,1(Ω)⇔ Dsu = 0.

This is a direct consequence of Theorem and Definition 4.1.

Motivated by the questions of the preceding chapters, we first verify that

BV-functions are indeed allowed to have jumps. We thereby obtain a first

instance of a BV-function that does not belong to W1,1:

Example 4.4 (Jumps). Let n ≥ 2 and consider the function

u := 1B1(0)∩{xn>0} : B1(0)→ R

with the open unit ball B1(0) in Rn. Let ϕ = (ϕ1, ..., ϕn) ∈ C∞c (B1(0);Rn).

Using the Gauß-Green theorem (i.e., integration by parts), we then obtain

ˆ
B1(0)

udiv(ϕ) dx =

ˆ
B1(0)∩{xn>0}

div(ϕ) dx

=

ˆ
∂B1(0)∩{xn>0}

〈ϕ, ν〉 dH n−1

= −
ˆ
{x=(x′,xn) : |x′|<1, xn=0}

〈ϕ, en〉 dH n−1.

Denoting the restriction of a measure µ to some A by µ A, we thus obtain

Du = enH
n−1 {x = (x′, xn) : |x′| < 1, xn = 0}

and so u ∈ BV(B1(0)). Since the Hausdorff measure restricted to {x =

(x′, xn) : |x′| < 1, xn = 0} is not absolutely continous for L n, u ∈
(BV \W1,1)(B1(0)).

The previous example gives an instance of a jump discontinuity, and in

this case, Dsu does not vanish. However, Dsu does not need to vanish when u
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has no jump discontinuities. This can be seen by the Cantor ternary function,

which we only discuss; the proof of the corresponding properties will be added

soon.

Example 4.5 (The Cantor ternary function). We define the Cantor ternary

function as follows: For x ∈ [0, 1], we

• express x in base 3, i.e., x = 0.c1c2c3c4..., where

x =
∞∑
j=1

cj3
−j , cj ∈ {0, 1, 2}.

• If some digit cj equals 1, then we replace any digit after the first 1 by 0.

• We replace all remaining coefficients 2 by 1.

• Finally, we interpret the number obtained in this way as a binary number

– the outcome of this procedure is the Cantor ternary function c(x).

Let us exmplarily compute two values of c:

• If x ∈ [1
3 ,

2
3), then x = 1 · 3−1 + 0 · 3−1 + 0 · 3−2 + .... We then directly

pass to the base-2-interpretation and obtain c(x) = 1 · 2−1 + 0 · 2−2 + ...,

so c(x) = 1
2 .

• If x ∈ [1
9 ,

2
9), then x = 0 · 3−1 + 1 · 3−2 + 0 · 3−3 + 0 · 3−4 + .... We then

form 0 · 2−1 + 1 · 2−2 + 0 · 3−3 + 0 · 3−4 + ..., and so the value of c(x) is 1
4 .

The graph of c is depicted in Figure 6. Based on the above definition, one

is in position to show that c is continuous and increasing; in one dimension,

this already implies that c ∈ BV((0, 1)); moreover, one can establish that

c /∈W1,1((0, 1)). However, by continuity, c cannot have jump discontinuities.

In conclusion, the singular part might not only stem from jump discon-

tinuties but also parts which reveal some Cantor-type behaviour. The aim of

the chapter thus is to

get a good understanding of the above gradient decomposition

and the corresponding densities.

4.1 Notions of convergence and approximation by smooth
functions

In this subsection we present three sorts of convergence on BV(Ω) and study

both their advantages and disadvantages in view of smooth approximation

and compactness. This particularly comprises
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Fig. 6: A plot of the Cantor ternary function from Example 4.5.

• the norm convergence,

• the strict convergence,

• the weak*-convergence.

As an important auxiliary tool, we require the following proposition.

Proposition 4.6 (Lower semicontinuity of the total variation). Let Ω ⊂ Rn
be open and suppose that u ∈ L1

loc(Ω) and u1, u2, ... ∈ BV(Ω) are such that

uj → u in L1
loc(Ω). Then there holds

|Du|(Ω) ≤ lim inf
j→∞

|Duj |(Ω). (4.4)

Proof. Let ϕ ∈ C∞c (Ω;Rn) be arbitrary with |ϕ| ≤ 1. We then have

ˆ
Ω
udiv(ϕ) dx = lim

j→∞

ˆ
Ω
uj div(ϕ) dx

= − lim
j→∞

ˆ
Ω
ϕdDuj

≤ lim inf
j→∞

|Duj |(Ω).

We then pass to the supremum over all such ϕ to conclude.
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Norm convergence

Lemma 4.7. Let Ω ⊂ Rn be open and define ‖u‖BV(Ω) := ‖u‖L1(Ω) + |Du|(Ω).

Then the following hold:

(a) (BV(Ω), ‖ · ‖BV(Ω)) is Banach space.

(b) (C∞ ∩BV)(Ω) is not dense in BV(Ω) for ‖ · ‖BV(Ω).

Proof. Let (uj) ⊂ BV(Ω) be a Cauchy sequence for ‖ · ‖BV(Ω). Then, since

L1(Ω) is complete, there exists u ∈ L1(Ω) such that uj → u in L1(Ω). By

Proposition 4.6, u ∈ BV(Ω). Moreover, for any fixed j,

|D(u− uj)|(Ω) ≤ lim
m→∞

|D(um − uj)|(Ω)→ 0, j →∞,

and so the Banach space property follows. As a consequence of Example ??, for

every open Ω ⊂ Rn, there exists u ∈ (BV \W1,1)(Ω). Now, if (C∞ ∩BV)(Ω)

were dense in BV(Ω), we would find a sequence (uj) ⊂ (C∞ ∩BV)(Ω) such

that ‖uj − u‖BV(Ω) → 0 as j → ∞. In consequence, (uj) is Cauchy for

‖ · ‖BV(Ω). Now note that on C∞ ∩BV = C∞ ∩W1,1, the norms ‖ · ‖W1,1(Ω)

and ‖ · ‖BV(Ω) coincide. Thus (uj) is already Cauchy in W1,1(Ω), and since

(W1,1(Ω), ‖ · ‖W1,1(Ω)) is complete, uj → v ∈W1,1(Ω). Now,
ˆ

Ω
ϕdDu = −

ˆ
Ω
udiv(ϕ) dx = − lim

j→∞

ˆ
Ω
uj div(ϕ) dx

= −
ˆ

Ω
v div(ϕ) dx =

ˆ
Ω
〈ϕ,∇v〉 dx

for all ϕ ∈ C∞c (Ω;Rn) and so

Du = ∇vL n, so Du� L n.

This is a contradiction to u ∈ (BV \W1,1)(Ω), and the proof is complete.

Lecture 5, May 14, 2021

Lecture 6, May 21, 2021

Strict convergence

Definition 4.8. Let Ω ⊂ Rn be open. The strict metric on BV(Ω) is defined

as

ds(u, v) := ‖u− v‖L1(Ω) + | |Du|(Ω)− |Dv|(Ω)|, u, v ∈ BV(Ω).
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Theorem 4.9. Let Ω ⊂ Rn be open. Then the following hold:

(a) (BV(Ω), ds) is a complete metric space.

(b) The metric ds is not translation-invariant. In particular, there is no

norm ‖ · ‖ on BV(Ω) such that ds(u, v) = ‖u− v‖ for all u, v ∈ BV(Ω).

(c) (C∞ ∩BV)(Ω) is dense in BV(Ω) for ds.

Proof. Ad (b). Translation invariance of a metric d : X → X → R≥0 defined

on a vector space X means that d(u+z, v+z) = d(u, v) holds for all u, v, z ∈ X.

In particular, if uj → u for a translation-invariant metric, then uj − u → 0,

which can be seen by d(uj−u, 0) = d(uj , u)→ 0. Let u ∈ (BV \W1,1)(Ω) and

choose, due to (c), a sequence (uj) ⊂ (C∞ ∩BV)(Ω) such that ds(u, uj)→ 0. If

ds were translation-invariant, then ds(uj−u)→ 0. This, in turn, is equivalent

‖uj − u‖BV(Ω) → 0 which we know to be impossible by Lemma 4.7.

The key to almost all smooth approximation results is mollification. Here

we do not necessarily work on the entire Rn and thus follow the usual scheme

to firstly localise, secondly mollify and finally patch together. To this end, let

ε > 0 be arbitrary.

Step 1. Constructing the smooth approximation. We choose m ∈ N so

large such that with

Ωk :=
{
x ∈ Ω: dist(x, ∂Ω) >

1

m+ k

}
∩ B(0,m+ k)

there holds

|Du|(Ω \ Ω1) <
ε

4
. (4.5)

We then put U0 := ∅ and inductively define Uk := Ωk+1 \ Ωk−1 for k ∈
N≥1. For future reference, we remark that by construction, at most three Uk’s

overlap each.

In a next step, let (ρk) be a partition of unity subordinate to (Uk)k∈N. By

this we understand that

(P1) ρk ∈ C∞c (Uk; [0, 1]) for all k ∈ N and

(P2)
∑

k ρk ≡ 1 in Ω.

For each k ∈ N, we pick εk ∈ (0, 1) such that spt(ϕεk ∗ (ρku)) ⊂ Uk,ˆ
Ω
|ϕεk ∗ (ρku)− ρku| dx <

ε

2k+2
, (4.6)

together with
ˆ

Ω
|ϕεk ∗ (u⊗∇ρk)− (u⊗∇ρk)|dx <

ε

2k+3
. (4.7)
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Our candidate for the requisite smooth approximation then is given by

uε :=
∞∑
k=1

ϕεk ∗ (ρku).

Note that this is a locally finite sum: For each x ∈ Ω there exists a neighbour-

hood U such that only finitely many (namely, three) summands in the infinite

sum defining uε actually contribute to uε(y) for all y ∈ U . Since each of the

summands is clearly of class C∞, we have uε ∈ C∞(Ω;RN ).

Step 2. The L1-part. We recall (P2) from above to find

‖u− uε‖L1(Ω;RN ) =

ˆ
Ω

∣∣∣∣∣(
∞∑
k=1

ρk)u−
∞∑
k=1

ϕεk ∗ (ρku)

∣∣∣∣∣ dx
≤
∞∑
k=1

ˆ
Uk

|ρku− ϕεk ∗ (ρku)|dx < ε

4
.

Thus uε → u in L1(Ω;RN ) as ε↘ 0.

Step 3. The total variation part. As established in step 2, uε → u in

L1(Ω;RN ) as ε ↘ 0 and thus, by Lemma ??, |Du|(Ω) ≤ lim infε↘0 |Duε|(Ω).

We thus must show that lim infε↘0 |Duε|(Ω) ≤ |Du|(Ω) to conclude the proof.

To this end, we first recall the equality

ˆ
Rn

(f ∗ g)hdx =

ˆ
Rn

f(g ∗ h) dx (4.8)

for all f, g, h. Aiming to employ the dual characterisation (??) of the total

variation, we let ϕ ∈ C1
c(Ω;RN×n) with |ϕ| ≤ 1 be arbitrary. We then rewrite

ˆ
Ω
uε div(ϕ) dx =

∞∑
k=1

ˆ
Ω

(ϕεk ∗ (ρku)) div(ϕ) dx

=
∞∑
k=1

ˆ
Ω

(ρku) div(ϕεk ∗ ϕ) dx

=

∞∑
k=1

ˆ
Ω
udiv(ρkϕεk ∗ ϕ) dx−

ˆ
Ω

(u⊗∇ρk)(ϕεk ∗ ϕ) dx) = (∗).

By (P2),
∑

k∇ρk = ∇
∑

k ρk = 0 in Ω and thus
∑

k u ⊗ ∇ρk = 0 in Ω.

Therefore,

(∗) =
∞∑
k=1

ˆ
Ω
u div(ρkϕεk ∗ ϕ) dx−

ˆ
Ω

(u⊗∇ρk)(ϕεk ∗ ϕ) dx

=

∞∑
k=1

ˆ
Ω
u div(ρkϕεk ∗ ϕ) dx−

ˆ
Ω

(u⊗∇ρk)(ϕεk ∗ ϕ− ϕ) dx = I + II,

with an obvious definition of I and II.



4 Functions of bounded variation: Definition & elementary properties 51

The map ρ1(ϕε1∗ϕ) is compactly supported in Ω and satisfies |ρ1(ϕε1∗ϕ)| ≤
1. Since at most three Uk’s overlap each, we thus obtain

I ≤
ˆ

Ω
udiv(ρ1ϕε1 ∗ ϕ) dx+

∞∑
k=2

ˆ
Ω
udiv(ρkϕεk ∗ ϕ) dx

≤ |Du|(Ω) +

∞∑
k=2

ˆ
Ω
udiv(ρkϕεk ∗ ϕ) dx

≤ |Du|(Ω) +
3

4
ε,

where we have used the dual characterisation of the total variation, cf. (??), in

the second and assumption (4.5) in the third step. Ad II. Arguing similarly

as above, cf. (4.8), we find by |ϕ| ≤ 1

II =
∞∑
k=1

∣∣∣∣ˆ
Ω

(u⊗∇ρk)(ϕεk ∗ ϕ− ϕ) dx

∣∣∣∣
≤
∞∑
k=1

|ϕεk ∗ (u⊗∇ρk)− u⊗∇ρk| dx ≤
ε

8

∞∑
k=1

2−k =
ε

8
.

Summarising, since the estimates on I, II do not depend on the specific choice

of ϕ,

|Duε|(Ω) ≤ |Du|(Ω) + ε.

Now send ε↘ 0 to conclude. The proof is complete.

Remark 4.10.

Example 4.11.

Example 4.12.
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