Intro & Overview Korn Operators of Type 1 ...and of Type 2 Cod

On the Characterisation of Korn-type Operators

FRANZ GMEINEDER

University of Oxford

Analysis Seminar Osnabrück, Jan 24, 2017

Intro & Overview Korn Operators of Type 1 ...and of Type 2 Coda ooo ooo ooo

Introduction & Overview

Consider the variational integral

$$\mathfrak{F}[v] := \int_{\Omega} f(\varepsilon(u)) dx, \qquad u \colon \Omega \to \mathbb{R}^n,$$

where

- Ω is an open and bounded Lipschitz subset of \mathbb{R}^n ,
- $\varepsilon(u) := \frac{1}{2}(Du + D^{\mathsf{T}}u)$ is the **symmetric gradient**, and
- $f: \mathbb{R}^{n \times n}_{ ext{sym}} o \mathbb{R}_{\geq 0}$ is continuous and satisfies for 1

$$c_1 |\xi|^p \le f(\xi) \le c_2 (1 + |\xi|)^p$$
 for all $\xi \in \mathbb{R}^{n \times n}_{\mathrm{sym}}$.

• Given $u_0 \in W^{1,p}(\Omega; \mathbb{R}^n)$, can we prove existence of minima of \mathfrak{F} in the Dirichlet class $\mathcal{D}_{u_0} := u_0 + W_0^{1,p}(\Omega; \mathbb{R}^n)$?

◆ロ → ◆同 → ◆ 豆 → ● ◆ り Q ○

Intro & Overview Korn Operators of Type 1 ...and of Type 2 Coc ○●○○ ○○○ ○○○ ○○○

Korn-type Inequalities: 1

• Crucial Ingredient: Korn—type Inequalities allow to estimate the **full** gradient against the **symmetric part** of the gradient, e.g.,

$$\exists C > 0 \,\forall \varphi \in \mathsf{C}^{\infty}_{c}(\Omega; \mathbb{R}^{n}) \colon \|D\varphi\|_{\mathsf{L}^{p}(\Omega; \mathbb{R}^{n \times n})} \leq C \|\varepsilon(\varphi)\|_{\mathsf{L}^{p}(\Omega; \mathbb{R}^{n \times n})}.$$

- Important: Restriction to 1 is necessary!
- Other Korn-type Inequalities also available:

$$\exists C > 0 \, \forall \varphi \in \mathsf{C}^{\infty}(\Omega; \mathbb{R}^n) \, \exists \Pi \in \mathcal{R}(\Omega) : \\ \|D(\varphi - \Pi)\|_{\mathsf{L}^p(\Omega; \mathbb{R}^{n \times n})} \leq C \|\varepsilon(\varphi)\|_{\mathsf{L}^p(\Omega; \mathbb{R}^{n \times n})},$$

where $\mathcal{R}(\Omega) := \{x \mapsto Ax + b \colon A \in \mathbb{R}^{n \times n}_{scew}, b \in \mathbb{R}^n \}$ is the nullspace of ε .

Intro & Overview Korn Operators of Type 1 ...and of Type 2 Coro oo oo oo oo

Korn-type Inequalities: 1

 Crucial Ingredient: Korn-type Inequalities allow to estimate the full gradient against the symmetric part of the gradient, e.g.,

$$\exists C>0 \,\forall \varphi \in C_c^{\infty}(\Omega; \mathbb{R}^n) \colon \ \|D\varphi\|_{L^p(\Omega; \mathbb{R}^{n \times n})} \leq C \|\varepsilon(\varphi)\|_{L^p(\Omega; \mathbb{R}^{n \times n})}.$$

- Important: Restriction to 1 is necessary!
- Other Korn-type Inequalities also available:

$$\begin{split} \exists \, C > 0 \, \forall \varphi \in \mathsf{C}^\infty(\Omega;\mathbb{R}^n) \, \exists \Pi \in \mathcal{R}(\Omega) \colon \\ \|D(\varphi - \Pi)\|_{\mathsf{L}^p(\Omega;\mathbb{R}^{n \times n})} \leq C \|\varepsilon(\varphi)\|_{\mathsf{L}^p(\Omega;\mathbb{R}^{n \times n})}, \end{split}$$

where $\mathcal{R}(\Omega) := \{x \mapsto Ax + b \colon A \in \mathbb{R}^{n \times n}_{scew}, \ b \in \mathbb{R}^n \}$ is the nullspace of ε .

Intro & Overview Korn Operators of Type 1 ...and of Type 2 Coda 000 000 000 000

Korn-type Inequalities: 1

 Crucial Ingredient: Korn-type Inequalities allow to estimate the full gradient against the symmetric part of the gradient, e.g.,

$$\exists C>0 \,\forall \varphi \in C^{\infty}_{c}(\Omega;\mathbb{R}^{n})\colon \ \|D\varphi\|_{L^{p}(\Omega;\mathbb{R}^{n\times n})} \leq C\|\varepsilon(\varphi)\|_{L^{p}(\Omega;\mathbb{R}^{n\times n})}.$$

- Important: Restriction to 1 is necessary!
- Other Korn-type Inequalities also available:

$$\begin{split} \exists \, C > 0 \, \forall \varphi \in \mathsf{C}^\infty(\Omega;\mathbb{R}^n) \, \exists \Pi \in \mathcal{R}(\Omega) \colon \\ \|D(\varphi - \Pi)\|_{\mathsf{L}^p(\Omega;\mathbb{R}^{n \times n})} \leq \, C \|\varepsilon(\varphi)\|_{\mathsf{L}^p(\Omega;\mathbb{R}^{n \times n})}, \end{split}$$

where $\mathcal{R}(\Omega) := \{x \mapsto Ax + b \colon A \in \mathbb{R}^{n \times n}_{\mathsf{scew}}, \ b \in \mathbb{R}^n \}$ is the nullspace of ε .

 Intro & Overview
 Korn Operators of Type 1
 ...and of Type 2
 Coda

 ○●○○
 ○○○
 ○○○
 ○○○

Korn-type Inequalities: 1

 Crucial Ingredient: Korn-type Inequalities allow to estimate the full gradient against the symmetric part of the gradient, e.g.,

$$\exists C > 0 \, \forall \varphi \in \mathsf{C}^\infty_c(\Omega; \mathbb{R}^n) \colon \ \|D\varphi\|_{\mathsf{L}^p(\Omega; \mathbb{R}^{n \times n})} \leq C \|\varepsilon(\varphi)\|_{\mathsf{L}^p(\Omega; \mathbb{R}^{n \times n})}.$$

- Important: Restriction to 1 is necessary!
- Other Korn-type Inequalities also available:

$$\begin{split} \exists \, C > 0 \, \forall \varphi \in \mathsf{C}^\infty(\Omega; \mathbb{R}^n) \, \exists \Pi \in \mathcal{R}(\Omega) \colon \\ \|D(\varphi - \Pi)\|_{\mathsf{L}^p(\Omega; \mathbb{R}^{n \times n})} \leq C \|\varepsilon(\varphi)\|_{\mathsf{L}^p(\Omega; \mathbb{R}^{n \times n})}, \end{split}$$

where $\mathcal{R}(\Omega) := \{x \mapsto Ax + b \colon A \in \mathbb{R}^{n \times n}_{scew}, b \in \mathbb{R}^n\}$ is the nullspace of ε .

◆ロ > ◆ 母 > ◆ き > ◆ き * り へ で

Need for a unifying approach

- In a similar vein: If we replace ε by other differential operators, what survives?
- E.g., in compressible fluid mechanics, one often considers the deviatoric part of the symmetric gradient

$$\varepsilon^D(u) := \varepsilon(u) - \frac{1}{n}\operatorname{div}(u)\operatorname{Id}, \qquad n \ge 3$$

- Goal: A unifying approach to Korn-type Inequalities which does not depend on the specific differential operator.
 - Given two finite–dimensional \mathbb{R} –vector spaces V,W, a **standard operator** is a first order, linear, homogeneous and constant coefficient differential operator of the form

$$\mathbb{A}[D] := \sum_{\substack{lpha \in \mathbb{N}_0^n \ |lpha| = 1}} \mathbb{A}_lpha \partial^lpha ext{ with } \mathbb{A}_lpha \in \mathscr{L}(V,W) ext{ fixed.}$$

Intro & Overview Korn Operators of Type 1 ...and of Type 2 000

Old and New Questions

Consider the variational integral

$$\mathfrak{F}[v] := \int_{\Omega} f(\mathbb{A}[D]v) \, \mathrm{d}x$$

$$\dim(\ker(\mathbb{A}[D]; \mathsf{B})) < \infty.$$

Old and New Questions

Consider the variational integral

$$\mathfrak{F}[v] := \int_{\Omega} f(\mathbb{A}[D]v) \, \mathrm{d}x.$$

with an integrand $f \in C^2(W; \mathbb{R})$ of p-growth, p > 1. Questions:

- ▶ What is the correct function space framework?
- ▶ When can we reduce this framework to the usual Sobolev spaces?
- As we will find out, the correct notion is that of FDP-operators, i.e.,

$$\dim(\ker(\mathbb{A}[D]; \mathsf{B})) < \infty$$

Old and New Questions

UNIVERSITY OF OXFORD

Consider the variational integral

$$\mathfrak{F}[v] := \int_{\Omega} f(\mathbb{A}[D]v) \, \mathrm{d}x.$$

with an integrand $f \in C^2(W; \mathbb{R})$ of p-growth, p > 1. Questions:

- ▶ What is the correct function space framework?
- ▶ When can we reduce this framework to the usual Sobolev spaces?
- As we will find out, the correct notion is that of FDP-operators, i.e., differential operators $\mathbb{A}[D]$ with

$$\dim(\ker(\mathbb{A}[D]; \mathsf{B})) < \infty.$$

Korn. Ornstein and all that, on \mathbb{R}^n – I

Suppose we want to prove

$$\forall 1 0 \,\forall \varphi \in \mathsf{C}^\infty_c(\mathbb{R}^n; V) \colon \|D\varphi\|_{\mathsf{L}^p} \leq C \|\mathbb{A}[D]\varphi\|_{\mathsf{L}^p}$$

and suppose there is a linear map

$$\Phi \colon \mathsf{C}^{\infty}_{c}(\mathbb{R}^{n}; W) \ni \mathbb{A}[D]\varphi \mapsto D\varphi \in \mathsf{C}^{\infty}_{c}(\mathbb{R}^{n}; \mathbb{R}^{n} \times V).$$

- What are the mapping properties of Φ ? Does Φ boundedly extend to a continuous linear map on $L^p(\mathbb{R}^n; W)$?
- As we will see, Φ is a singular integral of convolution type and thus is bounded between $L^p \to L^p$ if and only if 1 .

◆ロ > ← 日 > ← 目 > ← 目 → りへで

Korn, Ornstein and all that, on \mathbb{R}^n – II

• A differential operator of the form $\mathbb{A}[D] = \sum_{k=1}^{n} \mathbb{A}_k \partial_k$ with $\mathbb{A}_k \in \mathcal{L}(V; E)$ fixed is called **elliptic** provided its symbol map

$$\mathbb{A}[\xi] := \sum_{k=1}^{n} \mathbb{A}_{k} \xi_{k} \colon V \to E, \qquad \xi = (\xi_{1}, ..., \xi_{n})$$

is injective for each $\xi \in \mathbb{R}^n \setminus \{0\}$.

 \implies In this situation, we have for all $u \in \mathsf{C}^\infty_c(\mathbb{R}^n;V)$

$$u(x) = \mathscr{F}_{\xi \mapsto x}^{-1}((\mathbb{A}^*[\xi] \circ \mathbb{A}[\xi])^{-1} \mathbb{A}^*[\xi] \widehat{\mathbb{A}[D]u}) =: \varPhi(\mathbb{A}[D]u)(x)$$

and Φ is a Riesz potential operator of order n-1.

• Now use boundedness of singular integral operators of convolution type on L^p -spaces, 1 .

◆ロ → ◆同 → ◆ 豆 → ● ◆ り Q ○

Korn Operators of the First Kind

We say that A[D] is a **Korn(-type) operator of the first kind** if and only if

$$\forall 1 0 \,\forall v \in \mathsf{C}^\infty_c(\mathsf{B}; V) \colon \ \|D\varphi\|_{\mathsf{L}^1(\mathsf{B}; \mathbb{R}^n \times V)} \leq C \|\mathbb{A}[D]\varphi\|_{\mathsf{L}^p(\mathsf{B}; W)}$$

We then have

Theorem (G., '16)

Let A[D] be a standard operator. Then the following are equivalent:

- A[D] is elliptic.
- A[D] is a Korn operator of the first kind.

Intro & Overview Korn Operators of Type 1 ...and of Type 2 Coro

Korn-type Operators of the Second Type

Given a first order differential operator as above and an exponent 1 , define

$$\mathsf{W}^{\mathbb{A},p}(\mathsf{B}) := \{ v \in \mathsf{L}^p(\mathsf{B}; V) \colon \ \mathbb{A}[D] v \in \mathsf{L}^p(\mathsf{B}; W) \}$$

and equip it with the canonical norm. We then have

Theorem (G.,'16)

Let $\mathbb{A}[D]$ be a standard differential operator of order one. Then the following are equivalent:

- 1. A[D] has the **FDP**, i.e., $dim(ker(A[D]; B)) < \infty$.
- 2. There exists a bounded and linear extension operator from $W^{\mathbb{A},p}(\mathbb{B})$ to $W^{\mathbb{A},p}(\mathbb{R}^n)$ and $\mathbb{A}[D]$ is elliptic.
- 3. A[D] is a type-(C) operator.
- 4. $\mathbb{A}[D]$ is a Korn-type operator, i.e., $\mathbb{W}^{\mathbb{A},p}(B) \simeq \mathbb{W}^{1,p}(B;V)$.

Structure of the Proof

UNIVERSITY OF

- 1. $\mathbb{A}[D]$ has the **FDP**, i.e., dim(ker($\mathbb{A}[D]$; B)) $< \infty$.
- 2. There exists a bounded and linear extension operator from $W^{\mathbb{A},p}(B)$ to $W^{\mathbb{A},p}(\mathbb{R}^n)$ and $\mathbb{A}[D]$ is elliptic.
- 3. $\mathbb{A}[D]$ is a type–(C) operator.
- 4. $\mathbb{A}[D]$ is a Korn-type operator, i.e., $\mathbb{W}^{\mathbb{A},p}(\mathbb{B}) \simeq \mathbb{W}^{1,p}(\mathbb{B};V)$.

A Note on the single Steps

• On the Peetre-Tartar Lemma:

Lemma (Peetre-Tartar)

Let E_1 be a Banach and E_2, E_3 normed spaces, $A \in \mathcal{L}(E_1, E_2)$, $B \in \mathcal{L}(E_1, E_3)$ such that $\|\cdot\|_1 \approx \|A \cdot \|_2 + \|B \cdot \|_3$ and B is compact. Then $\dim(\ker(A)) < \infty$.

• On the Kalamajska Theorem: If $\mathbb{A}[D]$ is of type–(C), then for any $v \in C^{\infty}(\Omega; V)$

$$v_i(x) = \mathfrak{P}_{\omega}^{l-1}v_i(x) + \sum_{j=1}^N \int_{\Omega} K_{ji}(x,y)(\mathbb{A}[D]v)_j \,\mathrm{d}y,$$

Coda

UNIVERSITY OF

We go back to the variational integral

$$\mathfrak{F}[v] := \int_{\Omega} f(\mathbb{A}[D]v) \, \mathrm{d}x.$$

with an integrand $f \in C(W; \mathbb{R}_{\geq 0})$ of p-growth, p > 1.

- Given $u_0 \in W^{1,p}(\Omega; V)$ and assuming the FDP, Dirichlet classes $\mathcal{D}_{u_0} := u_0 + W_0^{1,p}(\Omega; V)$ are weakly closed.
- ightarrow Dirichlet problem has a minimiser provided ${\mathfrak F}$ is swlsc on ${\sf W}^{{\mathbb A},p}$ or $W^{1,p}$, respectively.

• Given a constant–rank, linear and homogeneous first order differential operator $\mathscr A$ from W to Z, Fonseca & Müller proved that if $f: W \to \mathbb R_{>0}$ is $\mathscr A$ –quasiconvex, i.e.,

$$f(A) \leq \int_{\mathbb{T}^n} f(A + v(x)) dx \qquad \forall \ v \in \ker(\mathscr{A}) \cap \mathsf{C}^{\infty}(\mathbb{T}^n; W)) \cap \{(w)_{\mathbb{T}^n} = 0\},$$

and $v_k \rightharpoonup v$ in $L^p(\Omega; W)$ together with $Av_k \stackrel{*}{\rightharpoonup} 0$ in $W^{-1,p}(\Omega; W)$, then

$$\int_{\Omega} f(v) dx \leq \liminf_{k \to \infty} \int_{\Omega} f(v_k) dx.$$

This gives swlsc of §!

Intro & Overview Korn Operators of Type 1 ...and of Type 2 Coda 0000 000 000 000

THANKS FOR YOUR ATTENTION!